Graphs With Large Sets of Strongly Cospectral Vertices

Peter Sin

University of Florida

CRM Workshop, August 8th, 2022 (online)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples from heterocyclic groups

Examples of cubelike graphs

Further research

Let X be a (simple) graph with adjacency matrix A. Let the spectral decomposition of A be

$$A = \sum_{r=1}^{d} \theta_r E_r$$

where the E_r are the indempotent projections onto eigenspaces.

Let X be a (simple) graph with adjacency matrix A. Let the spectral decomposition of A be

$$A = \sum_{r=1}^{d} \theta_r E_r$$

where the E_r are the indempotent projections onto eigenspaces.

Two vertices *a* and *b* are *cospectral* iff for all *r*, $(E_r)_{a,a} = (E_r)_{b,b}$. They are *strongly cospectral* iff for all *r*, $(E_r)e_a = \pm (E_r)e_b$.

A D F A 同 F A E F A E F A Q A

Let X be a (simple) graph with adjacency matrix A. Let the spectral decomposition of A be

$$A = \sum_{r=1}^{d} \theta_r E_r$$

where the E_r are the indempotent projections onto eigenspaces.

Two vertices *a* and *b* are *cospectral* iff for all *r*, $(E_r)_{a,a} = (E_r)_{b,b}$. They are *strongly cospectral* iff for all *r*, $(E_r)e_a = \pm (E_r)e_b$. Both are equivalence relations. The concept of strongly cospectral vertices, introduced by Godsil around 2012, is important in the theory of quantum walks on graphs. Let *A* be the adjacency matrix of a graph *X*, and consider the unitary matrices

$$U(t) = e^{-itA}, t \in \mathbb{R},$$

acting on $\mathbb{C}V(X)$.

Let A be the adjacency matrix of a graph X, and consider the unitary matrices

$$U(t) = e^{-itA}, t \in \mathbb{R},$$

acting on $\mathbb{C}V(X)$. X has **perfect state transfer** from *a* to $b \in V(X)$ if, for some τ , we have $|U(\tau)_{b,a}| = 1$. If we have PST from *a* to *b*, then the two vertices are SC.

If we have PST from *a* to *b*, then the two vertices are SC. If we have PST from *a* to *b* and from *a* to *c* then b = c (Kay).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

If we have PST from *a* to *b*, then the two vertices are SC. If we have PST from *a* to *b* and from *a* to *c* then b = c (Kay).

SC classes can have more than 2 elements. 4 in $P_2 \Box P_3$, 8 in $P_2 \Box P_3 \Box P_4$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

If we have PST from *a* to *b*, then the two vertices are SC.

If we have PST from a to b and from a to c then b = c (Kay).

SC classes can have more than 2 elements. 4 in $P_2 \Box P_3$, 8 in $P_2 \Box P_3 \Box P_4$.

Cartesian products of k paths of suitable lengths where the 2^k "corners" are SC.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If we have PST from *a* to *b*, then the two vertices are SC.

If we have PST from a to b and from a to c then b = c (Kay).

SC classes can have more than 2 elements. 4 in $P_2 \Box P_3$, 8 in $P_2 \Box P_3 \Box P_4$.

Cartesian products of k paths of suitable lengths where the 2^k "corners" are SC.

(ロ) (同) (三) (三) (三) (三) (○) (○)

What about vertex-transitive graphs?

- If a and b are SC then any automorphism fixing a must fix b.
- No tree can have 3 SC vertices (Coutinho-Juliano-Spier 2022).
- Arnadottir-Godsil (2021): In a normal Cayley graph the SC class of identity element forms an central elementary abelian 2-group G_{sc}.

 $|G_{sc}| \leq |G|/m$, where *m* is the maximum eigenvalue multiplicity. For cubelike graphs, this bound is roughly $\sqrt{|G|}$. Examples of size 4 in cubelike graphs.

(ロ) (同) (三) (三) (三) (三) (○) (○)

We shall describe two families of examples which show that an SC class in certain abelian Cayley graphs can be arbitraily large.

In the first family, all involutions belong to G_{sc} .

The graphs in the second family are cubelike, hence integral.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples from heterocyclic groups

Examples of cubelike graphs

Further research

X = Cay(G, S) simple, abelian Cayley graph, (*S* closed under inversion, conjugation, $1 \notin S$, connected if *S* generates *G*)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $X = \operatorname{Cay}(G, S)$ simple, abelian Cayley graph, (*S* closed under inversion, conjugation, $1 \notin S$, connected if *S* generates *G*) Eigenvalues come from **Irreducible characters**. $\chi \in \operatorname{Irr}(G)$ gives the eigenvalue

$$heta_{\chi} = \chi(\mathcal{S}) := \sum_{\mathbf{s} \in \mathcal{S}} \chi(\mathbf{s}).$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

 $X = \operatorname{Cay}(G, S)$ simple, abelian Cayley graph, (*S* closed under inversion, conjugation, $1 \notin S$, connected if *S* generates *G*) Eigenvalues come from **Irreducible characters**. $\chi \in \operatorname{Irr}(G)$ gives the eigenvalue

$$heta_{\chi} = \chi(\mathcal{S}) := \sum_{\mathbf{s} \in \mathcal{S}} \chi(\mathbf{s}).$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

 $X = \operatorname{Cay}(G, S)$ simple, abelian Cayley graph, (*S* closed under inversion, conjugation, $1 \notin S$, connected if *S* generates *G*) Eigenvalues come from **Irreducible characters**. $\chi \in \operatorname{Irr}(G)$ gives the eigenvalue

$$heta_{\chi} = \chi(\mathcal{S}) := \sum_{\mathcal{s} \in \mathcal{S}} \chi(\mathcal{s}).$$

Theorem

Distinct elements g and h of G are strongly cospectral iff there is a central involution z such that the following hold.

(a)
$$h = zg$$
.
(b) $(\forall \chi, \psi \in Irr(G)), \chi(S) = \psi(S) \text{ implies } \chi(z) = \psi(z).$

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples from heterocyclic groups

Examples of cubelike graphs

Further research

Let Z_d denote a cyclic group of order d, written mutiplicatively. We use the notation $C_m = \langle x_m \rangle$ for Z_{2^m} . We shall assume that $m \ge 3$. Let $\omega_m = \exp(\frac{2\pi i}{2^m})$, a primitive 2^m -th root of unity in \mathbb{C} . We identify the group of irreducible complex characters with $\mathbb{Z}/2^m\mathbb{Z}$, where $a \in \mathbb{Z}/2^m\mathbb{Z}$ corresponds the the character $[a] : x_m \mapsto \omega_m^a$. If $u = x_m^{2^{m-1}}$ is the involution in C_m then $[a](u) = (-1)^a$.

The sets $T_m \subset C_m$

In the group C_m , we consider the generating set

$$T_m = \{x_m^{2i+1} \mid 0 \le i \le 2^{m-3} - 1\} \cup \{x_m^{-(2i+1)} \mid 0 \le i \le 2^{m-3} - 1\}.$$

The generating set $T_5 \subset C_5$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Let *J* be a finite set of positive integers $j \ge 3$. Let $G_J = \bigoplus_{j \in J} C_j$. $S_J = \bigcup_{j \in J} T_j$ is a generating set of G_J The characters of G_J are given by tuples $a_J = ([a_j])_{j \in J}$ with $a_j \in \mathbb{Z}/2^j\mathbb{Z}$. The eigenvalues of $Cay(G_J, S_J) = \Box_{j \in J} Cay(C_j, T_j)$ are given by

$$a_J(S_J) = \sum_{j \in J} [a_j](T_j).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Some Galois theory

Consider the fields $\mathbb{Q}(\omega_m)$ and $F_m = \mathbb{Q}(\omega_m + \omega_m^{-1})$. The following lemma summarizes some well known facts from Galois theory that we shall need.

Lemma

(a) Gal(
$$\mathbb{Q}(\omega_m)/\mathbb{Q}$$
) = $\langle \beta_m \rangle \times \langle \gamma_m \rangle \cong Z_2 \times Z_{2^{m-2}}$, where $\beta(\omega_m) = (\omega_m^{-1})$ and $\gamma_m(\omega_m) = \omega_m^5$.

- (b) Let τ_m be the unique involution of $\langle \gamma_m \rangle$. Then $\tau_m(\omega_m) = -\omega_m$.
- (c) The restriction map $\operatorname{Gal}(\mathbb{Q}(\omega_m)/\mathbb{Q}) \to \operatorname{Gal}(F_m/\mathbb{Q})$ defines an isomorphism of $\langle \gamma_m \rangle$ with $\operatorname{Gal}(F_m/\mathbb{Q})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(d) The field F_{m-1} is the subfield of F_m fixed by τ_m .

Corollary

Let [a] be a character of C_m .

- (a) $[a](T_m) \neq 0$ if a is odd.
- (b) $\tau_m([a](T_m)) = -[a](T_m)$ if a is odd.
- (c) $[a](T_m) \in \mathbb{Q}$ if a is even.

(日)

All involutions are SC in $Cay(G_J, S_J)$

Recall
$$G_J = \bigoplus_{j \in J} C_j$$
, $S_J = \bigcup_{j \in J} T_j$, $(J \subset \{3, 4, \ldots\})$.

Lemma

Let $a_J = ([a_j])_{j \in J}$ and $b_J = ([b_j])_{j \in J}$ be characters of G_J . Suppose that $a_J(S_J) = b_J(S_J)$. Assume that not all a_j and b_j are even, and let $m \in J$ be the largest element for which either a_m or b_m is odd. Then both a_m and b_m are odd and $[a_m](T_m) = [b_m](T_m)$.

Proof.

$$\sum_{j\in J} [a_j](T_j) = \sum_{j\in J} [b_j](T_j) \in F_m.$$

By the Galois theory lemma, all terms except $[a_m](T_m)$ and $[b_m](T_m)$ are in the 1-eigenspace of τ_m , and $[a_m](T_m)$ is in the (-1)-eigenspace.

Corollary

Let $a_J = ([a_j])_{j \in J}$ and $b_J = ([b_j])_{j \in J}$ be characters of G_J . and suppose that $a_J(S_J) = b_J(S_J)$. Then for every $j \in J$, a_j and b_j are either both odd or both even. In particular $a_J(t) = b_J(t)$ for every involution $t \in G_J$. Thus, all involutions belong to G_{sc} .

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples from heterocyclic groups

Examples of cubelike graphs

Further research

A cubelike graph is Cay(G, S) where *G* is an elementary abelian 2-group and the connecting set *S* is any subset of *G* that does not contain the identity. Let $|G| = 2^n$. We will identify *G* with the additive group of the vector space \mathbb{F}_2^n over \mathbb{F}_2 , so we may speak of hyperplanes instead of subgroups of index 2, make use of the dot product and, later on, quadratic forms.

Characters

For $w \in G$, $\chi_w : G \to \{\pm 1\}$ is the character defined by $\chi_w(x) = (-1)^{w \cdot x}$. Then the eigenvalues of $\operatorname{Cay}(G, S)$, counted with multiplicity, are the 2^n values

$$\chi_w(S) := \sum_{s \in S} \chi_w(S) = \sum_{s \in S} (-1)^{w \cdot s} = |S| - 2n_w,$$

where $n_w = |\{s \in S \mid w \cdot s = 1\}|$. We have $n_w = |S| - |S \cap H_w|$, where H_w is the hyperplane orthogonal to *w* with respect to the dot product, if $w \neq 0$, and $H_0 = G$. Let $\sigma = \sum_{s \in S} s$, where we mean the sum in the group *G*. Then

$$\chi_{\boldsymbol{w}}(\sigma) = \prod_{\boldsymbol{s}\in\mathcal{S}} (-1)^{\boldsymbol{w}\cdot\boldsymbol{s}} = (-1)^{n_{\boldsymbol{w}}}.$$

Thus for any *w*, knowing $|S \cap H_w|$ is equivalent to knowing the eigenvalue $\chi_w(S)$, and this information completely determines $\chi_w(\sigma)$.

Suppose $S = S_1 \cup S_2 \cup S_3$ is the disjoint union of three subsets. Let σ_i be the sum in *G* of the elements of S_i .

Suppose *S* has the property that for all w, $|H_w \cap S|$ determines $|H_w \cap S_i|$ for all *i*.

Then $\chi_w(S)$ determines $|H_w \cap S|$, which determines $|H_w \cap S_i|$ for all *i*, which determines $\chi_w(\sigma_i)$. Thus, two characters that give the same eigenvalue of Cay(*G*, *S*) agree on each element σ_i , and so the elements σ_i are cospectral to 0 (although they may be equal to zero in some cases). If we can find *S* and *S_i* as above such that the σ_i generate a group of order 8, we will have an example of a strongly cospectral subgroup of order 8. Of course, we can generalize this idea to subsets S_i , i = 1, ..., k, to construct a strongly cospectral subgroup of order 2^k. We consider a prototype for this idea (in which unfortunately the $\sigma_i = 0$).

Let $n = n_1 + n_2 + n_3$, with $n_1 \ll n_2 \ll n_3$.

 $G = V_1 \oplus V_2 \oplus V_3$, with dim_{F₂} $V_i = n_i$. (View V_i as a subspace of *G* in the usual way.)

Let $S_i = V_i \setminus \{0\}$ and $S = \cup_{i=1}^3 S_i$.

For any hyperplane H of G, $|H \cap S_i| = 2^{n_i} - 1$ or $2^{n_i-1} - 1$.

If the n_i are chosen properly, say with n_3 very large, n_2 moderate and n_1 small, we can deduce $|H \cap S_i|$, i = 1, 2, 3 from $|H \cap S|$. In this prototype, we can see that $\sigma_i = 0$, so we do not have a working construction yet, but we can now try to fix things up.

We will use quadratic forms over \mathbb{F}_2 . Let $V = \mathbb{F}_2^d$, where d = 2e + 1, $e \ge 1$. On V we take coordinates x_1, \ldots, x_d quadratic form $q(x_1, \ldots, x_d) = x_d^2 + \sum_{i=1}^e x_i x_{e+i}$. Let Q be the set of zeros of q in $V \setminus \{0\}$. The bilinear form b(v, v') = q(v + v') - q(v) - q(v') associated with q has a 1-dimensional radical $\langle p \rangle$, where $p = (0, \ldots, 0, 1)$, called the nucleus of q. Note that q(p) = 1.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

First we shall consider $\sigma_Q = \sum_{v \in Q} v$.

Lemma If d = 3, then $\sigma_Q = (0, 0, 1)$ and for $d \ge 5$ we have $\sigma_Q = 0$.

By the Lemma, if $d \ge 5$ and we set $S' = Q \cup \{p\}$, then $\sigma_{S'} := \sigma_Q + p = p \ne 0$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma

Suppose $G = V_1 \oplus V_2 \oplus \cdots \oplus V_k$, with dim $V_i = n_i$. Suppose $S_i \subset V_i \setminus \{0\}$ and $S = \bigcup_{i=1}^k S_i$. Let $N_i = \{|H \cap S_i| \mid H \text{ a hyperplane of } G\}$ and $\epsilon_i = \min\{|a - b| \mid a, b \in N_i, a \neq b\}$. Suppose

$$\epsilon_i \ge 2^{n_{i-1}+2}$$
 for all $i = 2, ..., k$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Then $|H \cap S|$ determines $|H \cap S_i|$ for all i = 1, ..., k.

We can choose odd n_i , $S_i = Q_i \cup \{p_i\} \subset V_i$ as above. We can check that $\epsilon_i \geq 2^{\frac{n_i-3}{2}}$, so n_i can be chosen so that the hypotheses of the lemma hold. Assuming such a choice, it follows from our discussion that all the σ_i are strongly cospectral in Cay(G, S), hence also all elements of the subgroup they generate. Since the elements $\sigma_{S_i} = p_i$ are linearly independent, this group has order 2^k .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Examples from heterocyclic groups

Examples of cubelike graphs

Further research

A quantum walk exhibits pretty good state transfer from vertex *a* to vertex *b* if for every $\epsilon > 0$ there exists t > 0 with $|U(t)_{b,a}| > 1 - \epsilon$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

PST implies PGST implies SC. (D. Morris)

A quantum walk exhibits pretty good state transfer from vertex *a* to vertex *b* if for every $\epsilon > 0$ there exists t > 0 with $|U(t)_{b,a}| > 1 - \epsilon$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- PST implies PGST implies SC. (D. Morris)
- ► These are equivalence relations.

A quantum walk exhibits pretty good state transfer from vertex *a* to vertex *b* if for every $\epsilon > 0$ there exists t > 0 with $|U(t)_{b,a}| > 1 - \epsilon$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- PST implies PGST implies SC. (D. Morris)
- These are equivalence relations.
- PST classes have at most 2 vertices.

A quantum walk exhibits pretty good state transfer from vertex *a* to vertex *b* if for every $\epsilon > 0$ there exists t > 0 with $|U(t)_{b,a}| > 1 - \epsilon$.

- PST implies PGST implies SC. (D. Morris)
- ► These are equivalence relations.
- PST classes have at most 2 vertices.
- ► PGST classes can have more than 2 vertices (P₂□P₃ example of Pal-Bhattacharjya).

(日) (日) (日) (日) (日) (日) (日)

A quantum walk exhibits pretty good state transfer from vertex *a* to vertex *b* if for every $\epsilon > 0$ there exists t > 0 with $|U(t)_{b,a}| > 1 - \epsilon$.

- PST implies PGST implies SC. (D. Morris)
- These are equivalence relations.
- PST classes have at most 2 vertices.
- ► PGST classes can have more than 2 vertices (P₂□P₃ example of Pal-Bhattacharjya).
- SC classes can be arbitrarily large. Is the same true of PGST classes? Is it true for PGST classes in vertex-transitive graphs?

(ロ) (同) (三) (三) (三) (三) (○) (○)

A quantum walk exhibits pretty good state transfer from vertex *a* to vertex *b* if for every $\epsilon > 0$ there exists t > 0 with $|U(t)_{b,a}| > 1 - \epsilon$.

- PST implies PGST implies SC. (D. Morris)
- These are equivalence relations.
- PST classes have at most 2 vertices.
- ► PGST classes can have more than 2 vertices (P₂□P₃ example of Pal-Bhattacharjya).
- SC classes can be arbitrarily large. Is the same true of PGST classes? Is it true for PGST classes in vertex-transitive graphs?
- If the graph is periodic then PGST is equivalent to PST (H. Pal).

▶ In a Cayley graph, the equiv class of the identity element in each relation forms a subgroup: $G_p \leq G_{pg} \leq G_{sc}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

In a Cayley graph, the equiv class of the identity element in each relation forms a subgroup: G_p ≤ G_{pg} ≤ G_{sc}.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

What can we say about G_{pg}?

- In a Cayley graph, the equiv class of the identity element in each relation forms a subgroup: G_p ≤ G_{pg} ≤ G_{sc}.
- What can we say about G_{pg}?
- What is G_{pg} for the examples in this talk? Cubelike graphs are integral, hence periodic, so PGST=PST.

(ロ) (同) (三) (三) (三) (三) (○) (○)