Graphs With Large Sets of Strongly Cospectral Vertices

Peter Sin

University of Florida

CRM Workshop, August 8th, 2022 (online)

Overview

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

Examples from heterocyclic groups

Examples of cubelike graphs

Further research

Let X be a (simple) graph with adjacency matrix A. Let the spectral decomposition of A be

$$
A=\sum_{r=1}^{d} \theta_{r} E_{r}
$$

where the E_{r} are the indempotent projections onto eigenspaces.

Let X be a (simple) graph with adjacency matrix A. Let the spectral decomposition of A be

$$
A=\sum_{r=1}^{d} \theta_{r} E_{r}
$$

where the E_{r} are the indempotent projections onto eigenspaces.
Two vertices a and b are cospectral iff for all $r,\left(E_{r}\right)_{a, a}=\left(E_{r}\right)_{b, b}$. They are strongly cospectral iff for all $r,\left(E_{r}\right) e_{a}= \pm\left(E_{r}\right) e_{b}$.

Let X be a (simple) graph with adjacency matrix A. Let the spectral decomposition of A be

$$
A=\sum_{r=1}^{d} \theta_{r} E_{r}
$$

where the E_{r} are the indempotent projections onto eigenspaces.
Two vertices a and b are cospectral iff for all $r,\left(E_{r}\right)_{a, a}=\left(E_{r}\right)_{b, b}$.
They are strongly cospectral iff for all $r,\left(E_{r}\right) e_{a}= \pm\left(E_{r}\right) e_{b}$. Both are equivalence relations. The concept of strongly cospectral vertices, introduced by Godsil around 2012, is important in the theory of quantum walks on graphs.

Continuous-time quantum walks

Let A be the adjacency matrix of a graph X, and consider the unitary matrices

$$
U(t)=e^{-i t A}, t \in \mathbb{R}
$$

acting on $\mathbb{C} V(X)$.

Continuous-time quantum walks

Let A be the adjacency matrix of a graph X, and consider the unitary matrices

$$
U(t)=e^{-i t A}, t \in \mathbb{R}
$$

acting on $\mathbb{C} V(X)$.
X has perfect state transfer from a to $b \in V(X)$ if, for some τ, we have $\left|U(\tau)_{b, a}\right|=1$.

Comparing PST and SC

If we have PST from a to b, then the two vertices are SC.

Comparing PST and SC

If we have PST from a to b, then the two vertices are SC.
If we have PST from a to b and from a to c then $b=c$ (Kay).

Comparing PST and SC

If we have PST from a to b, then the two vertices are SC.
If we have PST from a to b and from a to c then $b=c$ (Kay).
SC classes can have more than 2 elements. 4 in $P_{2} \square P_{3}, 8$ in $P_{2} \square P_{3} \square P_{4}$.

Comparing PST and SC

If we have PST from a to b, then the two vertices are SC. If we have PST from a to b and from a to c then $b=c$ (Kay).
SC classes can have more than 2 elements. 4 in $P_{2} \square P_{3}, 8$ in $P_{2} \square P_{3} \square P_{4}$.
Cartesian products of k paths of suitable lengths where the 2^{k} "corners" are SC.

Comparing PST and SC

If we have PST from a to b, then the two vertices are SC. If we have PST from a to b and from a to c then $b=c$ (Kay).
SC classes can have more than 2 elements. 4 in $P_{2} \square P_{3}, 8$ in $P_{2} \square P_{3} \square P_{4}$.
Cartesian products of k paths of suitable lengths where the 2^{k} "corners" are SC.
What about vertex-transitive graphs?

Restrictions on SC classes

- If a and b are SC then any automorphism fixing a must fix b.
- No tree can have 3 SC vertices (Coutinho-Juliano-Spier 2022).
- Arnadottir-Godsil (2021): In a normal Cayley graph the SC class of identity element forms an central elementary abelian 2-group $G_{s c}$.
$\left|G_{s c}\right| \leq|G| / m$, where m is the maximum eigenvalue multiplicity. For cubelike graphs, this bound is roughly
$\sqrt{|G|}$. Examples of size 4 in cubelike graphs.

SC classes in Cayley graphs are unbounded

We shall describe two families of examples which show that an SC class in certain abelian Cayley graphs can be arbitraily large.
In the first family, all involutions belong to $G_{s c}$.
The graphs in the second family are cubelike, hence integral.

Overview

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

Examples from heterocyclic groups

Examples of cubelike graphs

Further research

Strong Cospectrality in Abelian Cayley Graphs

$X=\operatorname{Cay}(G, S)$ simple, abelian Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G)

Strong Cospectrality in Abelian Cayley Graphs

$X=\operatorname{Cay}(G, S)$ simple, abelian Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G) Eigenvalues come from Irreducible characters. $\chi \in \operatorname{Irr}(G)$ gives the eigenvalue

$$
\theta_{\chi}=\chi(S):=\sum_{s \in S} \chi(s)
$$

Strong Cospectrality in Abelian Cayley Graphs

$X=\operatorname{Cay}(G, S)$ simple, abelian Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G) Eigenvalues come from Irreducible characters. $\chi \in \operatorname{Irr}(G)$ gives the eigenvalue

$$
\theta_{\chi}=\chi(S):=\sum_{s \in S} \chi(s)
$$

Strong Cospectrality in Abelian Cayley Graphs

$X=\operatorname{Cay}(G, S)$ simple, abelian Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G) Eigenvalues come from Irreducible characters. $\chi \in \operatorname{Irr}(G)$ gives the eigenvalue

$$
\theta_{\chi}=\chi(S):=\sum_{s \in S} \chi(s)
$$

Theorem

Distinct elements g and h of G are strongly cospectral iff there is a central involution z such that the following hold.
(a) $h=z g$.
(b) $(\forall \chi, \psi \in \operatorname{Irr}(G)), \chi(S)=\psi(S)$ implies $\chi(z)=\psi(z)$.

Overview

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

Examples from heterocyclic groups

Examples of cubelike graphs

Further research

Let Z_{d} denote a cyclic group of order d, written mutiplicatively. We use the notation $C_{m}=\left\langle x_{m}\right\rangle$ for $Z_{2^{m}}$. We shall assume that $m \geq 3$. Let $\omega_{m}=\exp \left(\frac{2 \pi i}{2^{m}}\right)$, a primitive 2^{m}-th root of unity in \mathbb{C}. We identify the group of irreducible complex characters with $\mathbb{Z} / 2^{m} \mathbb{Z}$, where $a \in \mathbb{Z} / 2^{m} \mathbb{Z}$ corresponds the the character [a] : $x_{m} \mapsto \omega_{m}^{a}$.
If $u=x_{m}^{2^{m-1}}$ is the involution in C_{m} then $[a](u)=(-1)^{a}$.

The sets $T_{m} \subset C_{m}$

In the group C_{m}, we consider the generating set

$$
T_{m}=\left\{x_{m}^{2 i+1} \mid 0 \leq i \leq 2^{m-3}-1\right\} \cup\left\{x_{m}^{-(2 i+1)} \mid 0 \leq i \leq 2^{m-3}-1\right\} .
$$

The generating set $T_{5} \subset C_{5}$.

The Graphs Cay $\left(G_{J}, S_{J}\right)$

Let J be a finite set of positive integers $j \geq 3$. Let $G_{J}=\bigoplus_{j \in J} C_{j}$. $S_{J}=\cup_{j \in J} T_{j}$ is a generating set of G_{J} The characters of G_{J} are given by tuples $a_{J}=\left(\left[a_{j}\right]\right)_{j \in J}$ with $a_{j} \in \mathbb{Z} / 2^{j} \mathbb{Z}$. The eigenvalues of $\operatorname{Cay}\left(G_{J}, S_{J}\right)=\square_{j \in J} \operatorname{Cay}\left(C_{j}, T_{j}\right)$ are given by

$$
a_{J}\left(S_{J}\right)=\sum_{j \in J}\left[a_{j}\right]\left(T_{j}\right)
$$

Some Galois theory

Consider the fields $\mathbb{Q}\left(\omega_{m}\right)$ and $F_{m}=\mathbb{Q}\left(\omega_{m}+\omega_{m}^{-1}\right)$. The following lemma summarizes some well known facts from Galois theory that we shall need.

Lemma

(a) $\operatorname{Gal}\left(\mathbb{Q}\left(\omega_{m}\right) / \mathbb{Q}\right)=\left\langle\beta_{m}\right\rangle \times\left\langle\gamma_{m}\right\rangle \cong Z_{2} \times Z_{2^{m-2}}$, where $\beta\left(\omega_{m}\right)=\left(\omega_{m}^{-1}\right)$ and $\gamma_{m}\left(\omega_{m}\right)=\omega_{m}^{5}$.
(b) Let τ_{m} be the unique involution of $\left\langle\gamma_{m}\right\rangle$. Then $\tau_{m}\left(\omega_{m}\right)=-\omega_{m}$.
(c) The restriction map $\operatorname{Gal}\left(\mathbb{Q}\left(\omega_{m}\right) / \mathbb{Q}\right) \rightarrow \operatorname{Gal}\left(F_{m} / \mathbb{Q}\right)$ defines an isomorphism of $\left\langle\gamma_{m}\right\rangle$ with $\operatorname{Gal}\left(F_{m} / \mathbb{Q}\right)$.
(d) The field F_{m-1} is the subfield of F_{m} fixed by τ_{m}.

Corollary

Let [a] be a character of C_{m}.
(a) $[a]\left(T_{m}\right) \neq 0$ if a is odd.
(b) $\tau_{m}\left([a]\left(T_{m}\right)\right)=-[a]\left(T_{m}\right)$ if a is odd.
(c) $[a]\left(T_{m}\right) \in \mathbb{Q}$ if a is even.

All involutions are SC in $\operatorname{Cay}\left(G_{J}, S_{J}\right)$

Recall $G_{J}=\bigoplus_{j \in J} C_{j}, S_{J}=\cup_{j \in J} T_{j},(J \subset\{3,4, \ldots\})$.
Lemma
Let $a_{J}=\left(\left[a_{j}\right]\right)_{j \in J}$ and $b_{J}=\left(\left[b_{j}\right]\right)_{j \in J}$ be characters of G_{J}.
Suppose that $a_{J}\left(S_{J}\right)=b_{J}\left(S_{J}\right)$. Assume that not all a_{j} and b_{j} are even, and let $m \in J$ be the largest element for which either a_{m} or b_{m} is odd. Then both a_{m} and b_{m} are odd and $\left[a_{m}\right]\left(T_{m}\right)=\left[b_{m}\right]\left(T_{m}\right)$.

Proof.

$$
\sum_{j \in J}\left[a_{j}\right]\left(T_{j}\right)=\sum_{j \in J}\left[b_{j}\right]\left(T_{j}\right) \in F_{m}
$$

By the Galois theory lemma, all terms except $\left[a_{m}\right]\left(T_{m}\right)$ and $\left[b_{m}\right]\left(T_{m}\right)$ are in the 1-eigenspace of τ_{m}, and $\left[a_{m}\right]\left(T_{m}\right)$ is in the (-1)-eigenspace.

Corollary

Let $a_{J}=\left(\left[a_{j}\right]\right)_{j \in J}$ and $b_{J}=\left(\left[b_{j}\right]\right)_{j \in J}$ be characters of G_{J}. and suppose that $a_{J}\left(S_{J}\right)=b_{J}\left(S_{J}\right)$. Then for every $j \in J, a_{j}$ and b_{j} are either both odd or both even. In particular $a_{J}(t)=b_{J}(t)$ for every involution $t \in G_{J}$. Thus, all involutions belong to $G_{s c}$.

Overview

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

Examples from heterocyclic groups

Examples of cubelike graphs

Further research

cubelike graphs

A cubelike graph is $\operatorname{Cay}(G, S)$ where G is an elementary abelian 2 -group and the connecting set S is any subset of G that does not contain the identity. Let $|G|=2^{n}$. We will identify G with the additive group of the vector space \mathbb{F}_{2}^{n} over \mathbb{F}_{2}, so we may speak of hyperplanes instead of subgroups of index 2 , make use of the dot product and, later on, quadratic forms.

Characters

For $w \in G, \chi_{w}: G \rightarrow\{ \pm 1\}$ is the character defined by $\chi_{w}(x)=(-1)^{w \cdot x}$. Then the eigenvalues of $\operatorname{Cay}(G, S)$, counted with multiplicity, are the 2^{n} values

$$
\chi_{w}(S):=\sum_{s \in S} \chi_{w}(S)=\sum_{s \in S}(-1)^{w \cdot s}=|S|-2 n_{w}
$$

where $n_{w}=|\{s \in S \mid w \cdot s=1\}|$.
We have $n_{w}=|S|-\left|S \cap H_{w}\right|$, where H_{w} is the hyperplane orthogonal to w with respect to the dot product, if $w \neq 0$, and $H_{0}=G$. Let $\sigma=\sum_{s \in S} s$, where we mean the sum in the group G. Then

$$
\chi_{w}(\sigma)=\prod_{s \in S}(-1)^{w \cdot s}=(-1)^{n_{w}}
$$

Thus for any w, knowing $\left|S \cap H_{w}\right|$ is equivalent to knowing the eigenvalue $\chi_{w}(S)$, and this information completely determines $\chi_{w}(\sigma)$.

Idea behind construction

Suppose $S=S_{1} \cup S_{2} \cup S_{3}$ is the disjoint union of three subsets. Let σ_{i} be the sum in G of the elements of S_{i}.
Suppose S has the property that for all $w,\left|H_{w} \cap S\right|$ determines $\left|H_{w} \cap S_{i}\right|$ for all i.
Then $\chi_{w}(S)$ determines $\left|H_{w} \cap S\right|$, which determines $\left|H_{w} \cap S_{i}\right|$ for all i, which determines $\chi_{w}\left(\sigma_{i}\right)$. Thus, two characters that give the same eigenvalue of $\operatorname{Cay}(G, S)$ agree on each element σ_{i}, and so the elements σ_{i} are cospectral to 0 (although they may be equal to zero in some cases). If we can find S and S_{i} as above such that the σ_{i} generate a group of order 8 , we will have an example of a strongly cospectral subgroup of order 8. Of course, we can generalize this idea to subsets $S_{i}, i=1, \ldots$, k, to construct a strongly cospectral subgroup of order 2^{k}.

First try

We consider a prototype for this idea (in which unfortunately the $\sigma_{i}=0$).
Let $n=n_{1}+n_{2}+n_{3}$, with $n_{1} \ll n_{2} \ll n_{3}$.
$G=V_{1} \oplus V_{2} \oplus V_{3}$, with $\operatorname{dim}_{\mathbb{F}_{2}} V_{i}=n_{i}$. (View V_{i} as a subspace of G in the usual way.)
Let $S_{i}=V_{i} \backslash\{0\}$ and $S=\cup_{i=1}^{3} S_{i}$.
For any hyperplane H of $G,\left|H \cap S_{i}\right|=2^{n_{i}}-1$ or $2^{n_{i}-1}-1$.
If the n_{i} are chosen properly, say with n_{3} very large, n_{2} moderate and n_{1} small, we can deduce $\left|H \cap S_{i}\right|, i=1,2,3$ from $|H \cap S|$. In this prototype, we can see that $\sigma_{i}=0$, so we do not have a working construction yet, but we can now try to fix things up.

Quadratic forms over \mathbb{F}_{2}

We will use quadratic forms over \mathbb{F}_{2}. Let $V=\mathbb{F}_{2}^{d}$, where $d=2 e+1, e \geq 1$. On V we take coordinates x_{1}, \ldots, x_{d} quadratic form $q\left(x_{1}, \ldots, x_{d}\right)=x_{d}^{2}+\sum_{i=1}^{e} x_{i} x_{e+i}$. Let Q be the set of zeros of q in $V \backslash\{0\}$. The bilinear form $b\left(v, v^{\prime}\right)=q\left(v+v^{\prime}\right)-q(v)-q\left(v^{\prime}\right)$ associated with q has a 1-dimensional radical $\langle p\rangle$, where $p=(0, \ldots, 0,1)$, called the nucleus of q. Note that $q(p)=1$.

First we shall consider $\sigma_{Q}=\sum_{v \in Q} v$.
Lemma
If $d=3$, then $\sigma_{Q}=(0,0,1)$ and for $d \geq 5$ we have $\sigma_{Q}=0$.

By the Lemma, if $d \geq 5$ and we set $S^{\prime}=Q \cup\{p\}$, then $\sigma_{S^{\prime}}:=\sigma_{Q}+p=p \neq 0$.

Lemma
Suppose $G=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{k}$, with $\operatorname{dim} V_{i}=n_{i}$. Suppose $S_{i} \subset V_{i} \backslash\{0\}$ and $S=\cup_{i=1}^{k} S_{i}$. Let $N_{i}=\left\{\left|H \cap S_{i}\right| \mid H\right.$ a hyperplane of $\left.G\right\}$ and
$\epsilon_{i}=\min \left\{|a-b| \mid a, b \in N_{i}, a \neq b\right\}$. Suppose

$$
\epsilon_{i} \geq 2^{n_{i-1}+2} \quad \text { for all } i=2, \ldots, k
$$

Then $|H \cap S|$ determines $\left|H \cap S_{i}\right|$ for all $i=1, \ldots, k$.

We can choose odd $n_{i}, S_{i}=Q_{i} \cup\left\{p_{i}\right\} \subset V_{i}$ as above. We can check that $\epsilon_{i} \geq 2^{\frac{n_{i}-3}{2}}$, so n_{i} can be chosen so that the hypotheses of the lemma hold. Assuming such a choice, it follows from our discussion that all the σ_{i} are strongly cospectral in $\operatorname{Cay}(G, S)$, hence also all elements of the subgroup they generate. Since the elements $\sigma_{S_{i}}=p_{i}$ are linearly independent, this group has order 2^{k}.

Overview

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

Examples from heterocyclic groups

Examples of cubelike graphs

Further research

Pretty good state transfer, open problems

A quantum walk exhibits pretty good state transfer from vertex a to vertex b if for every $\epsilon>0$ there exists $t>0$ with $\left|U(t)_{b, a}\right|>1-\epsilon$.

- PST implies PGST implies SC. (D. Morris)

Pretty good state transfer, open problems

A quantum walk exhibits pretty good state transfer from vertex a to vertex b if for every $\epsilon>0$ there exists $t>0$ with
$\left|U(t)_{b, a}\right|>1-\epsilon$.

- PST implies PGST implies SC. (D. Morris)
- These are equivalence relations.

Pretty good state transfer, open problems

A quantum walk exhibits pretty good state transfer from vertex a to vertex b if for every $\epsilon>0$ there exists $t>0$ with
$\left|U(t)_{b, a}\right|>1-\epsilon$.

- PST implies PGST implies SC. (D. Morris)
- These are equivalence relations.
- PST classes have at most 2 vertices.

Pretty good state transfer, open problems

A quantum walk exhibits pretty good state transfer from vertex a to vertex b if for every $\epsilon>0$ there exists $t>0$ with
$\left|U(t)_{b, a}\right|>1-\epsilon$.

- PST implies PGST implies SC. (D. Morris)
- These are equivalence relations.
- PST classes have at most 2 vertices.
- PGST classes can have more than 2 vertices ($P_{2} \square P_{3}$ example of Pal-Bhattacharjya).

Pretty good state transfer, open problems

A quantum walk exhibits pretty good state transfer from vertex a to vertex b if for every $\epsilon>0$ there exists $t>0$ with
$\left|U(t)_{b, a}\right|>1-\epsilon$.

- PST implies PGST implies SC. (D. Morris)
- These are equivalence relations.
- PST classes have at most 2 vertices.
- PGST classes can have more than 2 vertices $\left(P_{2} \square P_{3}\right.$ example of Pal-Bhattacharjya).
- SC classes can be arbitrarily large. Is the same true of PGST classes? Is it true for PGST classes in vertex-transitive graphs?

Pretty good state transfer, open problems

A quantum walk exhibits pretty good state transfer from vertex a to vertex b if for every $\epsilon>0$ there exists $t>0$ with
$\left|U(t)_{b, a}\right|>1-\epsilon$.

- PST implies PGST implies SC. (D. Morris)
- These are equivalence relations.
- PST classes have at most 2 vertices.
- PGST classes can have more than 2 vertices ($P_{2} \square P_{3}$ example of Pal-Bhattacharjya).
- SC classes can be arbitrarily large. Is the same true of PGST classes? Is it true for PGST classes in vertex-transitive graphs?
- If the graph is periodic then PGST is equivalent to PST (H. Pal).

PGST in Cayley graphs

- In a Cayley graph, the equiv class of the identity element in each relation forms a subgroup: $G_{p} \leq G_{p g} \leq G_{s c}$.

PGST in Cayley graphs

- In a Cayley graph, the equiv class of the identity element in each relation forms a subgroup: $G_{p} \leq G_{p g} \leq G_{s c}$.
- What can we say about $G_{p g}$?

PGST in Cayley graphs

- In a Cayley graph, the equiv class of the identity element in each relation forms a subgroup: $G_{p} \leq G_{p g} \leq G_{s c}$.
- What can we say about $G_{p g}$?
- What is $G_{p g}$ for the examples in this talk? Cubelike graphs are integral, hence periodic, so PGST=PST.

