
Graphs With Large Sets of Strongly
Cospectral Vertices

Peter Sin

University of Florida

CRM Workshop, August 8th, 2022 (online)



Overview

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

Examples from heterocyclic groups

Examples of cubelike graphs

Further research



Let X be a (simple) graph with adjacency matrix A. Let the
spectral decomposition of A be

A =
d∑

r=1

θr Er

where the Er are the indempotent projections onto
eigenspaces.

Two vertices a and b are cospectral iff for all r , (Er )a,a = (Er )b,b.
They are strongly cospectral iff for all r , (Er )ea = ±(Er )eb.
Both are equivalence relations. The concept of strongly
cospectral vertices, introduced by Godsil around 2012, is
important in the theory of quantum walks on graphs.
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Continuous-time quantum walks

Let A be the adjacency matrix of a graph X , and consider the
unitary matrices

U(t) = e−itA, t ∈ R,

acting on CV (X ).

X has perfect state transfer from a to b ∈ V (X ) if, for some τ ,
we have |U(τ)b,a| = 1.
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Comparing PST and SC

If we have PST from a to b, then the two vertices are SC.

If we have PST from a to b and from a to c then b = c
(Kay).
SC classes can have more than 2 elements. 4 in P2�P3, 8
in P2�P3�P4.
Cartesian products of k paths of suitable lengths where the
2k “corners” are SC.
What about vertex-transitive graphs?
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Restrictions on SC classes

I If a and b are SC then any automorphism fixing a must fix
b.

I No tree can have 3 SC vertices (Coutinho-Juliano-Spier
2022) .

I Arnadottir-Godsil (2021): In a normal Cayley graph the SC
class of identity element forms an central elementary
abelian 2-group Gsc .
|Gsc | ≤ |G|/m, where m is the maximum eigenvalue
multiplicity. For cubelike graphs, this bound is roughly√
|G|. Examples of size 4 in cubelike graphs.



SC classes in Cayley graphs are unbounded

We shall describe two families of examples which show that an
SC class in certain abelian Cayley graphs can be arbitraily
large.
In the first family, all involutions belong to Gsc .
The graphs in the second family are cubelike, hence integral.
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Strong Cospectrality in Abelian Cayley Graphs

X = Cay(G,S) simple, abelian Cayley graph, (S closed under
inversion, conjugation, 1 /∈ S, connected if S generates G)

Eigenvalues come from Irreducible characters. χ ∈ Irr(G)
gives the eigenvalue

θχ = χ(S) :=
∑
s∈S

χ(s).

Theorem
Distinct elements g and h of G are strongly cospectral iff there
is a central involution z such that the following hold.
(a) h = zg.
(b) (∀χ, ψ ∈ Irr(G)), χ(S) = ψ(S) implies χ(z) = ψ(z).
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Let Zd denote a cyclic group of order d , written mutiplicatively.
We use the notation Cm = 〈xm〉 for Z2m . We shall assume that
m ≥ 3. Let ωm = exp(2πi

2m ), a primitive 2m-th root of unity in C.
We identify the group of irreducible complex characters with
Z/2mZ, where a ∈ Z/2mZ corresponds the the character
[a] : xm 7→ ωa

m.
If u = x2m−1

m is the involution in Cm then [a](u) = (−1)a.



The sets Tm ⊂ Cm

In the group Cm, we consider the generating set

Tm = {x2i+1
m | 0 ≤ i ≤ 2m−3−1}∪{x−(2i+1)

m | 0 ≤ i ≤ 2m−3−1}.

x5

x−1
5

The generating set T5 ⊂ C5.



The Graphs Cay(GJ ,SJ)

Let J be a finite set of positive integers j ≥ 3. Let GJ =
⊕

j∈J Cj .
SJ = ∪j∈JTj is a generating set of GJ The characters of GJ are
given by tuples aJ = ([aj ])j∈J with aj ∈ Z/2jZ. The eigenvalues
of Cay(GJ ,SJ) = �j∈JCay(Cj ,Tj) are given by

aJ(SJ) =
∑
j∈J

[aj ](Tj).



Some Galois theory

Consider the fields Q(ωm) and Fm = Q(ωm + ω−1
m ). The

following lemma summarizes some well known facts from
Galois theory that we shall need.

Lemma

(a) Gal(Q(ωm)/Q) = 〈βm〉 × 〈γm〉 ∼= Z2 × Z2m−2 , where
β(ωm) = (ω−1

m ) and γm(ωm) = ω5
m.

(b) Let τm be the unique involution of 〈γm〉. Then
τm(ωm) = −ωm.

(c) The restriction map Gal(Q(ωm)/Q)→ Gal(Fm/Q) defines
an isomorphism of 〈γm〉 with Gal(Fm/Q).

(d) The field Fm−1 is the subfield of Fm fixed by τm.



Corollary
Let [a] be a character of Cm.
(a) [a](Tm) 6= 0 if a is odd.
(b) τm([a](Tm)) = −[a](Tm) if a is odd.
(c) [a](Tm) ∈ Q if a is even.

x5

x−1
5



All involutions are SC in Cay(GJ ,SJ)

Recall GJ =
⊕

j∈J Cj , SJ = ∪j∈JTj , (J ⊂ {3,4, . . .}).

Lemma
Let aJ = ([aj ])j∈J and bJ = ([bj ])j∈J be characters of GJ .
Suppose that aJ(SJ) = bJ(SJ). Assume that not all aj and bj
are even, and let m ∈ J be the largest element for which either
am or bm is odd. Then both am and bm are odd and
[am](Tm) = [bm](Tm).

Proof. ∑
j∈J

[aj ](Tj) =
∑
j∈J

[bj ](Tj) ∈ Fm.

By the Galois theory lemma, all terms except [am](Tm) and
[bm](Tm) are in the 1-eigenspace of τm, and [am](Tm) is in the
(−1)-eigenspace.



Corollary
Let aJ = ([aj ])j∈J and bJ = ([bj ])j∈J be characters of GJ . and
suppose that aJ(SJ) = bJ(SJ). Then for every j ∈ J, aj and bj
are either both odd or both even. In particular aJ(t) = bJ(t) for
every involution t ∈ GJ . Thus, all involutions belong to Gsc .
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cubelike graphs

A cubelike graph is Cay(G,S) where G is an elementary
abelian 2-group and the connecting set S is any subset of G
that does not contain the identity. Let |G| = 2n. We will identify
G with the additive group of the vector space Fn

2 over F2, so we
may speak of hyperplanes instead of subgroups of index 2,
make use of the dot product and, later on, quadratic forms.



Characters

For w ∈ G, χw : G→ {±1} is the character defined by
χw (x) = (−1)w ·x . Then the eigenvalues of Cay(G,S), counted
with multiplicity, are the 2n values

χw (S) :=
∑
s∈S

χw (S) =
∑
s∈S

(−1)w ·s = |S| − 2nw ,

where nw = |{s ∈ S | w · s = 1}|.
We have nw = |S| − |S ∩ Hw |, where Hw is the hyperplane
orthogonal to w with respect to the dot product, if w 6= 0, and
H0 = G. Let σ =

∑
s∈S s, where we mean the sum in the group

G. Then
χw (σ) =

∏
s∈S

(−1)w ·s = (−1)nw .

Thus for any w , knowing |S ∩ Hw | is equivalent to knowing the
eigenvalue χw (S), and this information completely determines
χw (σ).



Idea behind construction

Suppose S = S1 ∪S2 ∪S3 is the disjoint union of three subsets.
Let σi be the sum in G of the elements of Si .
Suppose S has the property that for all w , |Hw ∩ S| determines
|Hw ∩ Si | for all i .
Then χw (S) determines |Hw ∩ S|, which determines |Hw ∩ Si |
for all i , which determines χw (σi). Thus, two characters that
give the same eigenvalue of Cay(G,S) agree on each element
σi , and so the elements σi are cospectral to 0 (although they
may be equal to zero in some cases). If we can find S and Si
as above such that the σi generate a group of order 8, we will
have an example of a strongly cospectral subgroup of order 8.
Of course, we can generalize this idea to subsets Si , i = 1,. . . ,
k , to construct a strongly cospectral subgroup of order 2k .



First try

We consider a prototype for this idea (in which
unfortunately the σi = 0).
Let n = n1 + n2 + n3, with n1 � n2 � n3.
G = V1 ⊕ V2 ⊕ V3, with dimF2 Vi = ni . (View Vi as a
subspace of G in the usual way.)
Let Si = Vi \ {0} and S = ∪3

i=1Si .
For any hyperplane H of G, |H ∩ Si | = 2ni − 1 or 2ni−1 − 1.
If the ni are chosen properly, say with n3 very large, n2
moderate and n1 small, we can deduce |H ∩ Si |, i = 1, 2, 3
from |H ∩ S|. In this prototype, we can see that σi = 0, so
we do not have a working construction yet, but we can now
try to fix things up.



Quadratic forms over F2

We will use quadratic forms over F2. Let V = Fd
2 , where

d = 2e + 1, e ≥ 1. On V we take coordinates x1,. . . , xd
quadratic form q(x1, . . . , xd) = x2

d +
∑e

i=1 xixe+i . Let Q be the
set of zeros of q in V \ {0}. The bilinear form
b(v , v ′) = q(v + v ′)− q(v)− q(v ′) associated with q has a
1-dimensional radical 〈p〉, where p = (0, . . . ,0,1), called the
nucleus of q. Note that q(p) = 1.



First we shall consider σQ =
∑

v∈Q v .

Lemma
If d = 3, then σQ = (0,0,1) and for d ≥ 5 we have σQ = 0 .

By the Lemma, if d ≥ 5 and we set S′ = Q ∪ {p}, then
σS′ := σQ + p = p 6= 0.



Lemma
Suppose G = V1 ⊕ V2 ⊕ · · · ⊕ Vk , with dimVi = ni . Suppose
Si ⊂ Vi \ {0} and S = ∪k

i=1Si . Let
Ni = {|H ∩ Si | | H a hyperplane of G} and
εi = min{|a− b| | a,b ∈ Ni ,a 6= b}. Suppose

εi ≥ 2ni−1+2 for all i = 2,. . . ,k .

Then |H ∩ S| determines |H ∩ Si | for all i = 1,. . . ,k.



We can choose odd ni , Si = Qi ∪ {pi} ⊂ Vi as above. We can

check that εi ≥ 2
ni−3

2 , so ni can be chosen so that the
hypotheses of the lemma hold. Assuming such a choice, it
follows from our discussion that all the σi are strongly
cospectral in Cay(G,S), hence also all elements of the
subgroup they generate. Since the elements σSi = pi are
linearly independent, this group has order 2k .



Overview

Cospectrality and strong cospectrality

Strong Cospectrality in Abelian Cayley Graphs

Examples from heterocyclic groups

Examples of cubelike graphs

Further research



Pretty good state transfer, open problems

A quantum walk exhibits pretty good state transfer from vertex
a to vertex b if for every ε > 0 there exists t > 0 with
|U(t)b,a| > 1− ε.
I PST implies PGST implies SC. (D. Morris)

I These are equivalence relations.
I PST classes have at most 2 vertices.
I PGST classes can have more than 2 vertices (P2�P3

example of Pal-Bhattacharjya).
I SC classes can be arbitrarily large. Is the same true of

PGST classes? Is it true for PGST classes in
vertex-transitive graphs?

I If the graph is periodic then PGST is equivalent to PST (H.
Pal).
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PGST in Cayley graphs

I In a Cayley graph, the equiv class of the identity element in
each relation forms a subgroup: Gp ≤ Gpg ≤ Gsc .

I What can we say about Gpg?
I What is Gpg for the examples in this talk? Cubelike graphs

are integral, hence periodic, so PGST=PST.
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