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ABSTRACT. A well-known theorem of Fong states that over large enough fields
of any characteristic, the principal indecomposable modules of a soluble finite
group are induced from subgroups of order prime to the characteristic. It is
shown that this property in fact characterises soluble finite groups.

1. INTRODUCTION AND STATEMENT OF THE MAIN THEOREM

Fong [7] has shown that over a large enough field of characteristic p, all
the projective indecomposable modules of a p-soluble finite group are induced
from a p-complement. Let G be a finite group. If one postulates the existence
of a p’-subgroup H from which all the projective indecomposable modules are
virtually induced, then it is not hard to show, by considering dimensions of
projective modules, that H must be a p-complement. However, G need not
be p-soluble, as illustrated by the example below. Nevertheless, if one makes
the same assumption for all primes, then G is soluble by P. Hall’s theorem. We
consider a weaker hypothesis, in which the p’-subgroups are allowed to depend
on the projective module to be induced, which in some ways resembles the
definition of an M-group. We now state our result; we shall assume all fields
to be splitting fields for all groups which occur.

Theorem. Let G be a finite group. If for every prime p, all the projective inde-
composable modules for G in characteristic p are induced from p'-subgroups,
then G is soluble.

To see that a p-local version of the theorem does not hold, take G to be the
alternating group 4, and p = 5. Itis not hard to check that the three 5-modular
irreducible modules of dimensions 1, 3 and 5 have projective covers induced
from subgroups isomorphic to 4,, S;, and A, respectively. Moreover, all
projective modules are virtually induced from 4, .

In the same vein, we mention the Fong-Swan-Isaacs theorem that each ir-
reducible p-modular character of a p-soluble group is liftable to a p-rational
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794 PETER SIN AND WOLFGANG WILLEMS

complex character. G. Hiss has proved that a finite group satisfying the conclu-
sion of this theorem for all primes must be soluble [8]. Again A, provides an
example against a p-local version.

2. PRELIMINARIES

Lemma 2.1. Let B and C be subgroups of A, with B < A. If the kA-module
V is induced from C then the k(A/B)-module V ®, ,k(A/B) is induced from
BC/B.
Proof. We have a natural isomorphism

(W @, kA)®, , k(4/B) = (W &, k(BC/B)) ®;(pc;s k(A/B),

for any kC-module W, obtained by factoring the natural map C — A4/B in
two ways (associativity of tensor product).

Lemma 2.2. Let B Q A and let V be an irreducible k(A/B)-module. Let P,
and P, /B denote the kA- and k(A/B)-projective covers of V. Then

P, 5= P, ®, k(4/B).

Proof. The right-hand side is clearly a projective k(A/B)-module with V' as
its head.

Lemma 2.3. Let B < A, and suppose that V is an irreducible k A-module such
that Vy is a multiple of some irreducible k B-module W . If some multiple of
the projective cover P(V) of V is induced from a subgroup C then a (possibly
different) multiple of P(W) is induced from BN C. In the special case where
V = k is the trivial module, its kB-projective cover is a transitive permutation
module if its kA-projective cover is.

Proof. Since Vj is a multiple of W, it follows from [6, II, 2.11] that P(V),
is a multiple of P(W). On the other hand, applying Mackey’s formula to our
hypothesis yields

B
P(V)g Xc B = (X®g)cgng )

for certain elements g € G. In particular, X B is a multiple of P(W). If
V =k, then we have
B
kens” = ePlcy)
and Frobenius reciprocity implies e = 1.

2.4. A reduction step. Let H be a minimal counterexample to the theorem of
§1. If N is a minimal normal subgroup then by Lemmas 2.1 and 2.2 H/N is
soluble. Therefore N must be the direct product of copies of some nonabelian
simple group G. The theorem will be derived from the classification of finite
simple groups.

3. GROUPS OF LIE TYPE

In this section we shall always assume that the simple subnormal subgroup
G of the minimal counterexample H is of Lie type, of characteristic p, say.
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The main idea used to eliminate these groups is a reduction of the problem to
groups of small rank by means of the Steinberg module. Explicit information
about the groups of low rank is then applied.

Lemma 3.1. Suppose G has a split BN-pair of characteristic p. Then

(a) A multiple of the Steinberg module St is induced from a p'-subgroup
of G.

(b) Let G, be a parabolic subgroup of G with Levi factor L,. Then some
multiple of St L, s induced from a p’-subgroup of L ;-

Proof. (a) Let N = G x --- x G be a minimal normal subgroup of H and
choose an irreducible kH-module lying over the irreducible kN-module W :=
St; ® - ®St,. Since W is H-stable, Lemma 2.3 implies that some multiple
of P(W) is induced from a p’-subgroup of N. The assertion follows from a
further application of Lemma 2.3 with G as a normal subgroup of N.

(b) The module S7; may be regarded as a kG,-module. Let P beits kG-
projective cover. It is well known that P = (St;); (see [3, 6.3.3]). By (a)
some multiple of St is induced from a p’-subgroup of G. It follows from
Mackey decomposition that some multiple of P = (St;) G, is induced from a

p'-subgroup of G ;- Lemmas 2.1 and 2.2 now give the result.

3.2. A reduction step. Suppose that G is not the Tits group 2F4(2)'. Then G
has a split BN-pair in the defining characteristic, so Lemma 3.1 applies. Thus
for any Levi factor L,, a multiple of the Steinberg module is induced from a
p'-subgroup of L ;- Since Z(L,) < KerStLJ , the same is true of the quotient
L,/Z(L;), by Lemma 2.1. If J is connected and L, is insoluble and not of
type B,(2), then the derived subgroup L of L,/Z(L,) is a simple group of Lie
type in the same characteristic as L, . In this case a multiple of S¢, is induced
from a p’-subgroup, by Lemma 2.3, since the Steinberg module of L , remains
irreducible upon restriction to L. Thus a major part of the elimination of the
simple groups of Lie type will be accomplished by proving, for various simple
groups L of low rank, the impossibility of the equation

(%) eSt, =X, L ,
where X is an irreducible module for a p’-subgroup U of L and e is a natural
number.

We shall use the following result repeatedly.

Lemma 3.3. Let L be a group of Lie type and U a p'-subgroup such that (%)
holds. Then U contains a conjugate of every cyclic p'-subgroup of L.

Proof. Let xg, be the complex character of a lift of S¢; . The lemma follows
from the formula for induced characters and the fact that x;, does not vanish

at p’-elements [3, 6.4.7].
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In the next step we eliminate all simple groups G = L(g) of Lie type, in
which the field parameter g is greater than 7. By 3.2, it is enough to show that
(*) never holds for simple rank 1 groups L with g > 7.

3.4. Groups of rank 1, ¢ > 7. ' In each of the following cases we assume that
(*) holds and obtain a contradiction.

(a) L =282(q) , 4 = 2%+l , § > 1: All Sylow subgroups of odd order are
cyclic, so by lemma 3.3, L has a 2-complement. But none exists (see [12]).

(b) L =PSL(2,q9), q=p° > 7 if p isodd, and ¢ > 4 if p = 2: If
p = 2, then all Sylow subgroups of odd order are cyclic, giving rise by Lemma
3.3 to a nonexistent 2-complement. If p is odd, then all Sylow subgroups for
primes other than p are cyclic or dihedral, so that the subgroup U of (x) must
have order at least (g + 1)(¢ — 1). Dickson’s list of subgroups of PSL(2,q)
and the assumption that g > 7 leave only the possibility that L = PSL(2,11)
and U = 4. By comparing dimensions and Frobenius reciprocity, we have
e =dim X = ((St,), ,X), which is incompatible with the character degrees of
A, and the fact that Sz, is 11-dimensional.

() L="G,(q), ¢ =3""",5> 1: It is known [9, XI, 13.2] that the Sylow
r-subgroups are cyclic for r # 2,3 . Thus by Lemma 3.3 we have

Ll 3 5y IUI L1

Also, the Sylow 2-subgroups are known to be elementary abelian or order 8 [9,
XI, 13.2]. Since the Suzuki groups of a) are the only nonabelian simple groups
of order not divisible by 3, and these have larger 2-parts than L, U must be
soluble, and we may deduce the following structure for it.

U=Gsy 5 (U)o

y <z
Gsy »(U) @
}<Z,x2Z,xZ,
K = G, (U) l;
F(K) °
I}
1 °

Here F(K) denotes the Fitting subgroup of K. Now L has cyclic Hall sub-
groups M* and M~ of orders g+ 3m+1 and g—3m+1 respectively, where
m =3’ [9, XI, 13.2(f) and (g)]. We may assume these are contained in U .

I The referee has suggested the following argument which would cover the cases in which ¢ > 11
is a power of a prime p > 3: Choose a cyclic maximal torus 7T as given in Rational groups and
related topics, W. Feit, G. Seitz. By 3.3, we may assume T < U. Now for the values of ¢
considered, one knows from (10.2) of The root subgroups of maximal tori in finite groups of Lie
type, G. Seitz, Pacific J. Math. 106 (1983), 153-244, the structure of U . In particular, T J U as
p 1 |U|. This gives a contradiction as one can find some prime / other than p which does not
divide |N(T)|, since by 3.3, / divides |U|.
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Let M be either M or M~ . Then for x € M it is known that C,(x) =M
[9, XI, 13.2(f)). Clearly, F(K) is nontrivial so we may choose a prime r di-
viding its order. If r||M|, then M < U, which contradicts the fact that

IN,(M): M]|2.

Suppose then, that (|[F(K)|,|M*||M~|) = 1. It follows from the structure of
L that F(K) is cyclic of order dividing §(q + 1)(¢ — 1). Pick a nontrivial
subgroup J of F(K) of prime order. Then both M * and M~ act faithfully
on J so we have

g —q+1=|M"||M7|||Aw(J)| < $(g - 1),

a contradiction.
(d) Finally we have to show that for L = PSU(3,4%), ¢* = p” > 4, the
equation (*) leads to a contradiction. The order of L is

2@ - a+ D@ - Dig+1),

where d = (3,q+1). Pick a Zsigmondy prime r|q6—1 = p6s—1 with r ¢ p’—l
for 1 <j < 6s. Thus r+q3—1 and rfqz—l ) r|q2—q+1 . Since p'_1 = 1(r),
we have r > 7. According to [10] we know the structure of the Sylow subgroups
of L. For instance, the Singer cycle of order (q2 —q+1)/d is a Hall subgroup
and the normaliser of a Sylow p-subgroup has a cyclic complement of order
(¢* = 1)/d . Thus, Lemma 3.3 and (*) imply

(+2) 2@ ~a+ 1) - DUl

Suppose first that the generalised Fitting subgroup F*(U) is soluble. Let
R be a subgroup of order r and choose a Singer cycle S with R< S < U.
If R < F*(U) then R < U since the Sylow r-subgroups are cyclic. But
SNS” =1 unless y € N,(S) so that N,(S) = N,(R), contradicting (*),
since |N,(S)| = 3|S|. Therefore we may assume that R ¢ F *(U). Since
C,(F*(U)) < F*(U), we may find a Sylow subgroup 7 < F(U) which is
not centralised by R. As the ranks of all Sylow subgroups of L are bounded
by 2, and r > 7, the order of T is not a power of 2 or 3. This means in
particular that 7 is abelian, so may be decomposed as T = C,(R) x [T ,R].
Then E = [T, R]R is a Frobenius group. Since neither p nor 3 divides the
order of E, we may lift its 3-dimensional modular, projective representation as
a subgroup of L to a faithful 3-dimensional ordinary complex representation.
This is contrary to the fact that a faithful character of a Frobenius group must
have degree no less than the order of the Frobenius complement.

It remains to tackle the case that F*(U) has an insoluble composition factor.
Let U be the inverse image of U in SU(3 q ). From the 2-structure of
SU(3,q ) it follows that the layer Y of F* (U) is a quasisimple group. Since
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pt |)~’| , we may lift the representation of Y to obtain a faithful 3-dimensional
complex representation. Now Y = Y /Z()~’) cannot be a sporadic group, since
none has a nontrivial projective representation of degree 3 (see [5]). If Y is
an alternating group then from the 2-rank, the only possibilities are A, Ag
and A4,. Now A, has no nontrivial projective representations of degree 3 (see
[5]), and the two other groups are of Lie type. We are therefore reduced to
the case that Y is of Lie type, and has a nontrivial 3-dimensional projective
representation. By a result of Landazuri and Seitz [11], this can only happen
if Y is one of PSL(2,5), PSL(2,7) or PSL(2,9). Choose an element x of
order r in the inverse image of R in U. Then x acts nontrivially on Y
since S has the trivial intersection property. As r > 7 and |Z ()~’)| |6, x acts
trivially on Z (f’). We argue that ¥ = PSL(2,7) and r = 7; otherwise, x
would act trivially on Y, and for y € Y we would have y* = yz for some
zeZ (17) , and then y"6 = yz6 =y, contradicting the order of x. Therefore
Y =PSL(2,7) and r = 7, and it follows that qz—q+1| |PSL(2,7)|.2 = 2°3.7,
whence g = 5. Thus by (*x), PSU(3.52) has a 5'-subgroup of order divisible
by 2%.7.3. Since the subgroup of order q2 —1 =8 iscyclic, and U is insoluble,
we even have a subgroup of order divisible by twice this number. But such a
subgroup does not exist (see [5]).

3.5. Groups of low rank, ¢ < 7. Up to this point, we have proved that in a
minimal counterexample the simple group G = L(q) satisfies ¢ < 7. Since it
happens over small fields that the Steinberg module for groups of low rank may
satisfy () (for instance if the group is soluble), for these fields we must look
to groups of higher rank to provide the base of our induction. Explicitly, we
have two lists:

(i) PSL(2,4), PSL(3,q) for g=3,4,5 and 7, PSL(4,2), PSU(4,4),
PSU(5,4).
(i) PSL(2,7),PSL(3,2), B,(2)', G,(2)', G,(q) for ¢ = 3,4,5 and

7,PSp(4,q) for g=3,4,5 and 7, PSp(6,2),F,(2) .

If L(q) is any simple group of Lie type with g < 7, then either it belongs to
the second list or else it has a parabolic subgroup with a composition factor in
the first list. The impossibility of () for the groups in list (i) is easily verified
using Lemma 3.3 and the lists of maximal subgroups in the ATLAS [5].

As for the groups in (ii), the groups Gz(2)' = PSU(3,9) and BZ(2)' =
PSL(2,9) are covered by the case ¢ > 7. Most of the others can be dealt with
using the last part of Lemma 2.3. This tells us that for the simple group G,
the projective cover of the trivial module in every characteristic is a transitive
permutation module. Where possible we choose a prime which divides the group
order but whose square does not, and find candidates for the projective cover
P(1) of the trivial module from the ATLAS character tables, the choice being
severely restricted by general properties of projective characters and Brauer trees
(see the discussion in §4). We give a list of pairs (G,r) of the groups and
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primes.

(PSL(2,7) = PSL(3,2),3),(G,(3),7), (G,(4),7), (G,(5),7),
(PSp(4,3),5),(PSp(4,4),17),(PSp(4,5),13),(PSp(6,2),5),(F, (2) 13).

None of the possible degrees divides the group order, except in the case of
PSp(4,4). Here the only possibility would give a permutation character of
norm 2 and degree 51, but it is known (see [2]) that this group has no doubly
transitive permutation representations. Using the known degrees of the prin-
cipal series characters for G,(7) [4], the dimension of P(1) in characteristic
43 is found to be 4257 = 43 x 99, which does not divide the group order.
Similarly, using the degrees of the principal series characters of PSp(4,7) (see
[3, p. 448]), we find that in characteristic 5, P(1) gives a complex character of
norm 2 and degree 225. On the other hand we know (from [2], for example)
that this group has no doubly transitive permutation representation.

In view of 3.1, 3.2, 3.4 and 3.5, we have finished proving that the simple
group G in a minimal counterexample is not of Lie type.

4. ALTERNATING GROUPS AND SPORADIC SIMPLE GROUPS

We return to a minimal counterexample H to the theorem. In the previous
section, the groups of Lie type were eliminated as candidates for the simple
subnormal subgroup G of H. We now consider the possibilities that the group
G is an alternating group A, or a sporadic group. In the former case, we
know also that n > 7 and n # 8, since 4, = PSL(2,5),4, = PSL(2,9)
and 4; = PSL(4,2). From Lemma 2.3 we have that for every prime p, the p-
projective cover, P(1), of the trivial module is a transitive permutation module.
We assume these conditions for the rest of this section. We first point out the
relevance of Brauer trees to the present situation.

Lemma 4.1. If the principal p-block has cyclic defect groups and the node in the
Brauer tree adjacent to the trivial node is not exceptional, then P(1) is a doubly
transitive permutation module.

Lemma 4.2. Suppose n > 7 and p is a prime with n/2 < p < n. Then the
principal p-block of A, has cyclic defect groups and the node adjacent to the
trivial module is not exceptional.

Proof. Since p is odd, P(1) is the restriction to 4, of the projective cover
Q(1) of the trivial module for S, . The principal p-block of S, is also of
defect one, and its Brauer tree has no exceptional node, since all the characters
of S, are rational. Let ® be the character of Q(1). Then ® =1+ yx, for
some irreducible character y . We must show that y A, is irreducible. We may
assume that x(1) > 1. From the Brauer tree for S, we see that the restriction
of x tothe p-regular elements is 1+ B8, for some 1rredu01ble Brauer character
B . Suppose that y 4, =0+ 6° . Then the trivial Brauer character must be a
constituent of the restriction to the p-regular elements of one, hence both of 6



800 PETER SIN AND WOLFGANG WILLEMS

and 6° . Therefore B 4, has the trivial Brauer character as a constituent and so
is a multiple of it. Thus all p-regular elements lie in the kernel of x = 1+, so
since this kernel is nontrivial, it must be 4, , and x must be the sign character,
contradicting the assumption that x(1) > 1.

Lemma 4.3. The simple group G in the minimal counterexample is not an al-
ternating group.

Proof. 1t suffices to eliminate the groups 4,, n > 6, n # 8. By Bertrand’s
postulate, we may choose a prime p with n/2 < p < n. Then by Lemmas
4.1 and 4.2, P(1) is a doubly transitive permutation module. These were de-
termined by Maillet (see [2]). Apart from the natural representation of degree
n,only 4, and A4; have doubly transitive permutation representations, each
having one of degree 15. Since p does not divide n, the natural permutation
module is not projective. Therefore it remains to dispose of 4,. However,
as there is a subgroup of index 15 our strategy fails in this case. Fortunately,
the dimension of P(1) in characteristic 2 is known to be 72 (see [1]), and a
subgroup of order 35 would have to be cyclic, which is absurd. This completes
the proof of the lemma.

Our final result shows that the theorem is a consequence of the classification
of the finite simple groups.

Lemma 4.4. In the minimal counterexample H , the simple group G is not one
of the 26 sporadic groups.

Proof. In each case, we find a prime p which divides the group order, but
whose square does not. Then we find from the ATLAS character tables a list of
candidates for the character (or characters) adjacent to the trivial node of the
Brauer tree for the principal p-block. The following elementary facts reduce
the number of possibilities:

(a) If only one irreducible character is next to the trivial node, then it must
be rational and take the value —1 on p-elements.

(b) If the node next to the trivial node is exceptional, then all its characters
have the same degree, and the sum of their values on a class of p-
elements must be —1.

From this list, we obtain a shortlist of possible dimensions of P(1). In most
cases, the numbers on this shortlist do not divide the group order. In the five
cases which remain, we are able to inspect the lists of maximal subgroups; in
the ATLAS to see that there is no subgroup of the given index. This proves the
lemma. The pairs (G ,p) consisting of a sporadic group and the prime chosen
are given below; an asterisk indicates that the list of maximal subgroups was
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used to obtain the contradiction.

(Mn ’5)*’(M12 > 11)*,(-]1 ,19) ,(M22,7),(.12,7) >
(M23 , N, (HS,7) ,(J3 , 19)%, (M, , 11)x,(McL,11),
(He,17),(Ru,7),(Suz,7),(0’N,5),(C03,7),(C02, 11),
(Fiy,13),(HN,7),(Ly,7),(Th,13),(Fiy;,17),
(COl ,23),(]4 ,5) ,(Filz4 ,29),(B,31),(M,17).
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