The statement of the Theorem on p. 2654 should be:
Theorem. Suppose ${ }^{1} n>6$, and let (I, J, K) be a triple as above. Then

$$
H^{1}\left(G, C_{I} \otimes L_{J} \otimes S_{K}\right) \cong F
$$

if (I, J, K) is Galois conjugate to $(\{0\}, \emptyset, \emptyset)$ or $(\{1\},\{0\}, \emptyset)$ and is zero otherwise. The same result holds for \mathbf{G} if I, J and K are allowed to be any three disjoint finite subsets of the natural numbers and Galois conjugation is given by translation by \mathbb{Z}.
(In the published paper, the second triple contained a misprint.)
In the proof of Lemma 3.3, the paragraph labelled (5) should read:
(5). It is safe to assume $r+1 \in I \cup J$. If $r+1 \in I$, then $\left(L_{r+1} \otimes C_{r+1}\right) \otimes C_{I \backslash\{r, r+1\}} \otimes L_{J}$ has a filtration with factors (ignoring multiplicities) $S_{r+1} \otimes C_{I \backslash\{r, r+1\}} \otimes L_{J}, C_{I \backslash\{r, r+1\}} \otimes L_{J}$, $C_{I \backslash\{r,\}} \otimes L_{J}$ and $C_{r+2} \otimes\left(C_{I \backslash\{r, r+1\}} \otimes L_{J}\right)$. Only the last may have a composition factor S_{T} (since $|I \cup J|>2$) and from Lemma 2.3 it follows that this can happen only if $|T| \leq 1$. Now any map from $X\left(S_{T}, C_{I} \otimes L_{J}\right)$ into $C_{r+2} \otimes\left(C_{I \backslash\{r, r+1\}} \otimes L_{J}\right)$ must map the socle to zero, so we are done if $\operatorname{Hom}_{F G}\left(S_{T}, C_{r+2} \otimes\left(C_{I \backslash\{r, r+1\}} \otimes L_{J}\right)\right)$ is zero, so we consider when this can fail. If $T=\emptyset$ then the above can fail to be zero only if $I=\{r, r+1, r+2\}$ and $J=\emptyset$. If $|T|=1$ then it follows from Lemma 2.5 that the above can fail to be zero only if $I=\{r, r+1\}$ and $J=\{r+2\}$. However, in both of these cases we claim that the original space of maps, $\operatorname{Hom}_{F G}\left(X\left(S_{T}, C_{I} \otimes L_{J}\right), L_{r+1} \otimes\left(C_{I \backslash\{r\}} \otimes L_{J}\right)\right)$, is zero. Indeed, by easy computation, we see that $\operatorname{Hom}_{F G}\left(F, L_{r+1} \otimes C_{\{r+1, r+2\}}, \operatorname{Hom}_{F G}\left(C_{\{r, r+1, r+2\}}, L_{r+1} \otimes\right.\right.$ $C_{\{r+1, r+2\}}, \operatorname{Hom}_{F G}\left(S_{r+2}, L_{r+1} \otimes C_{\{r+1, r+2\}}\right.$ and $\operatorname{Hom}_{F G}\left(C_{\{r, r+1\}} \otimes L_{r+2}, L_{r+1} \otimes C_{\{r+1, r+2\}}\right.$ are all zero.

If $r+1 \in J$, then $L_{r+1} \otimes\left(C_{I \backslash\{r\}} \otimes L_{J}\right)=\left(L_{r+1} \otimes L_{r+1}\right) \otimes\left(C_{I \backslash\{r\}} \otimes L_{J \backslash\{r+1\}}\right)$ has a filtration with factors $C_{I \backslash\{r\}} \otimes L_{J \backslash\{r+1\}}, C_{I \cup\{r+1\} \backslash\{r\}} \otimes L_{J \backslash\{r+1\}}, C_{I \backslash\{r\}} \otimes L_{J}$, (i) $C_{r+2} \otimes$ $\left(C_{I \cup\{r\} \backslash\{r\}} \otimes L_{J \backslash\{r+1\}}\right),($ ii $) C_{r+2} \otimes\left(C_{I \backslash\{r\}} \otimes L_{J \backslash\{r+1\}}\right)$ and (iii) $L_{r+2} \otimes\left(C_{I \backslash\{r\}} \otimes L_{J \backslash\{r+1\}}\right)$.

The first three are simple and not of the form S_{T} since $|I \cup J|>2$. As for the others, it follows from Lemma 2.3 that they cannot have S_{T} as a composition factor unless $|T| \leq 1$, so we assume this. Moreover, by considering masses, we see that $C_{I} \otimes L_{J}$ is not a composition factor, so maps of $X\left(S_{T}, C_{I} \otimes L_{J}\right)$ into (i),(ii) and (iii) must annihilate $C_{I} \otimes L_{J}$. Now by Lemma $2.5, S_{T} \otimes C_{r+2}$ will either be simple or else it will have a simple head isomorphic to either C_{r+2} or L_{r+2}. This implies that there are no nonzero maps from $X\left(S_{T}, C_{I} \otimes L_{J}\right)$ to (i) and that there are none to (ii) unless either $(T, I, J)=$ $(\emptyset,\{r, r+2\},\{r+1\})$ or $(T, I, J)=(\{r+2\},\{r\},\{r+1, r+2\})$. In both these cases it is easy to check that there are no maps from $X\left(S_{T}, C_{I} \otimes L_{J}\right)$ into the original module $L_{r+1} \otimes\left(C_{I \backslash\{r\}} \otimes L_{J}\right)$. In (iii), if $T=\emptyset$, there will be no maps from $X\left(S_{T}, C_{I} \otimes L_{J}\right)$ to (iii) unless $I=\{r\}$ and $J=\{r+1, r+2\}$, in which case there are no maps into the original module $L_{r+1} \otimes\left(C_{I \backslash\{r\}} \otimes L_{J}\right)$. Suppose finally that $T=\{r+2\}$. If $r+2 \in I$, we have

$$
\begin{aligned}
& \operatorname{Hom}_{F G}\left(S_{r+2}, L_{r+2} \otimes C_{I \backslash\{r\}} \otimes L_{J \backslash\{r+1\}}\right) \\
& \cong \operatorname{Hom}_{F G}\left(S_{r+2} \otimes C_{r+2}, C_{I \backslash\{r, r+2\}} \otimes L_{J \cup\{r+2\} \backslash\{r+1\}}\right)
\end{aligned}
$$

which will be zero unless $I=\{r, r+2\}$ and $J=\{r+1\}$, in which case there will be no maps from $X\left(S_{r+2}, C_{\{r, r+2\}} \otimes L_{\{r+1\}}\right)$ into the original module $L_{r+1} \otimes\left(C_{r+2} \otimes L_{r+1}\right)$. If $r+2 \in J$, we note that the only composition factors of $S_{r+2} \otimes L_{r+2}$ which have L_{r+2} as a tensor factor are L_{r+2} and $C_{r+3} \otimes L_{r+2}$. Therefore, there will be nonzero maps of

[^0]$S_{r+2} \otimes L_{r+2}$ to $C_{I \backslash\{r\}} \otimes L_{J \backslash\{r+1\}}$ only if $(I, J)=(\{r\},\{r+1, r+2\})$ or $(\{r, r+3\},\{r+$ $1, r+2\})$. In both cases one can check there are no maps from $X\left(S_{T}, C_{I} \otimes L_{J}\right)$ into the original module $L_{r+1} \otimes\left(C_{r+2} \otimes L_{r+1}\right)$.

[^0]: ${ }^{1}$ The hypothesis $n>6$ is used only at the beginning of $\S 4$; everywhere else in this paper $n>2$ is strong enough.

