The statement of the Theorem on p. 2654 should be:

Theorem. Suppose\(^3\)\(n > 6\), and let \((I, J, K)\) be a triple as above. Then

\[H^1(G, C_I \otimes L_J \otimes S_K) \cong F \]

if \((I, J, K)\) is Galois conjugate to \((\{0\}, \emptyset, \emptyset)\) or \((\{1\}, \{0\}, \emptyset)\) and is zero otherwise. The same result holds for \(G\) if \(I, J\) and \(K\) are allowed to be any three disjoint finite subsets of the natural numbers and Galois conjugation is given by translation by \(Z\).

(In the published paper, the second triple contained a misprint.)

In the proof of Lemma 3.3, the paragraph labelled (5) should read:

(5). It is safe to assume \(r + 1 \in I \cup J\). If \(r + 1 \in I\), then \((L_{r+1} \otimes C_{r+1}) \otimes C_{I \setminus \{r, r+1\}} \otimes L_J\) has a filtration with factors (ignoring multiplicities) \(S_{r+1} \otimes C_{I \setminus \{r, r+1\}} \otimes L_J, C_{I \setminus \{r, r+1\}} \otimes L_J, C_{I \setminus \{r\}} \otimes L_J\) and \(C_{r+2} \otimes (C_{I \setminus \{r, r+1\}} \otimes L_J)\). Only the last may have a composition factor \(S_T\) (since \(|I \cup J| > 2\) and from Lemma 2.3 it follows that this can happen only if \(|T| \leq 1\).

Now any map from \(X(S_T, C_I \otimes L_J)\) into \(C_{r+2} \otimes (C_{I \setminus \{r, r+1\}} \otimes L_J)\) must map the socle to zero, so we are done if \(\text{Hom}_{FG}(S_T, C_{r+2} \otimes (C_{I \setminus \{r, r+1\}} \otimes L_J))\) is zero, so we consider when this can fail. If \(T = \emptyset\) then the above can fail to be zero only if \(I = \{r, r + 1, r + 2\}\) and \(J = \emptyset\). If \(|T| = 1\) then it follows from Lemma 2.5 that the above can fail to be zero only if \(I = \{r, r + 1\}\) and \(J = \{r + 2\}\).

However, in both of these cases we claim that the original space of maps, \(\text{Hom}_{FG}(X(S_T, C_I \otimes L_J), L_{r+1} \otimes (C_{I \setminus \{r\}} \otimes L_J))\) is zero. Indeed, by easy computation, we see that \(\text{Hom}_{FG}(F, L_{r+1} \otimes C_{\{r+1, r+2\}})\), \(\text{Hom}_{FG}(C_{\{r+1, r+2\}}, L_{r+1} \otimes C_{\{r+1, r+2\}})\), \(\text{Hom}_{FG}(L_{r+2}, L_{r+1} \otimes C_{\{r, r+1\}})\) and \(\text{Hom}_{FG}(C_{\{r+1\}} \otimes L_{r+2}, L_{r+1} \otimes C_{\{r+1\}})\) are all zero.

If \(r + 1 \in J\), then \(L_{r+1} \otimes (C_I \setminus \{r\} \otimes L_J) = (L_{r+1} \otimes L_{r+1}) \otimes (C_{I \setminus \{r\}} \otimes L_{J \setminus \{r+1\}})\) has a filtration with factors \(C_{I \setminus \{r\}} \otimes L_{J \setminus \{r+1\}}, C_{I \setminus \{r+1\} \setminus \{r\}} \otimes L_{J \setminus \{r+1\}}, C_{I \setminus \{r\}} \otimes L_J, (i)\) \(C_{r+2} \otimes (C_{I \setminus \{r\}} \otimes L_{J \setminus \{r+1\}}), \) (ii) \(C_{r+2} \otimes (C_{I \setminus \{r\}} \otimes L_{J \setminus \{r+1\}})\) and (iii) \(L_{r+2} \otimes (C_{I \setminus \{r\}} \otimes L_{J \setminus \{r+1\}})\).

The first three are simple and not of the form \(S_T\) since \(|I \cup J| > 2\). As for the others, it follows from Lemma 2.3 that they cannot have \(S_T\) as a composition factor unless \(|T| \leq 1\), so we assume this. Moreover, by considering masses, we see that \(C_I \otimes L_J\) is not a composition factor, so maps of \(X(S_T, C_I \otimes L_J)\) to (i),(ii) and (iii) must annihilate \(C_I \otimes L_J\). Now by Lemma 2.5, \(S_T \otimes C_{r+2}\) will either be simple or else it will have a simple head isomorphic to either \(C_{r+2}\) or \(L_{r+2}\). This implies that there are no nonzero maps from \(X(S_T, C_I \otimes L_J)\) to (i) and that there are none to (ii) unless either \((T, I, J) = (\emptyset, \{r, r + 2\}, \{r + 1\})\) or \((T, I, J) = (\{r + 2\}, \{r\}, \{r + 1, r + 2\})\). In both cases it is easy to check that there are no maps from \(X(S_T, C_I \otimes L_J)\) into the original module \(L_{r+1} \otimes (C_{I \setminus \{r\}} \otimes L_J)\). In (iii), if \(T = \emptyset\), there will be no maps from \(X(S_T, C_I \otimes L_J)\) to (iii) unless \(I = \{r\}\) and \(J = \{r + 1, r + 2\}\), in which case there are no maps into the original module \(L_{r+1} \otimes (C_{I \setminus \{r\}} \otimes L_J)\). Suppose finally that \(T = \{r + 2\}\). If \(r + 2 \in I\), we have

\[
\text{Hom}_{FG}(S_{r+2}, L_{r+2} \otimes C_{I \setminus \{r\}} \otimes L_{J \setminus \{r+1\}}) \\
\cong \text{Hom}_{FG}(S_{r+2} \otimes C_{r+2}, C_{I \setminus \{r, r+2\}} \otimes L_{J \setminus \{r+2\} \setminus \{r+1\}})
\]

which will be zero unless \(I = \{r, r + 2\}\) and \(J = \{r + 1\}\), in which case there will be no maps from \(X(S_{r+2}, C_{\{r, r+2\}} \otimes L_{\{r+1\}})\) into the original module \(L_{r+1} \otimes (C_{r+2} \otimes L_{r+1})\).

If \(r + 2 \in J\), we note that the only composition factors of \(S_{r+2} \otimes L_{r+2}\) which have \(L_{r+2}\) as a tensor factor are \(L_{r+2}\) and \(C_{r+3} \otimes L_{r+2}\). Therefore, there will be nonzero maps of

\(^3\)The hypothesis \(n > 6\) is used only at the beginning of §4; everywhere else in this paper \(n > 2\) is strong enough.
$S_{r+2} \otimes L_{r+2}$ to $C_I \{r\} \otimes L_J \{r+1\}$ only if $(I, J) = (\{r\}, \{r+1, r+2\})$ or $(\{r, r+3\}, \{r+1, r+2\})$. In both cases one can check there are no maps from $X(S_T, C_I \otimes L_J)$ into the original module $L_{r+1} \otimes (C_{r+2} \otimes L_{r+1})$.