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COMMUNICATIONS IN ALGEBRA, 20(9), 2653-2662 ( 1 9 9 2 )  

On the 1-Cohomology  of  the G r o u p s  Gz(2") 

PETER SIN 

Mathematics Department, 201, Walker Hall, University of Florida, Gainesville. Florida 32611-2082, USA. 

Abstract. We compute the firs1 cohomology group with coefficients in a simple module for the 
algebraic group Gz(F2) and related finite groups. 

The principal result of this paper is the calculation of the cohomiogy group H1(G,  M ) ,  
where G is either the finite group G2(2") or the algebraic group G2(F2), and M is a simple 
module. We shall consider only rational modules for the algebraic group. This cohomology 
group turns out to be trivial for most simple modules. As in [6] and [2] we prove this by 
exploiting an interaction of ~ x t '  with tensor products, cf. Lemma 3 .1  below. 

$1. PRELI~IINARIES AND STATEMENT OF THE MAIN RESULT 

Let F = F2 be an algebraic closure of the field F2 of two elements. We shall identify a 
finite extension of F2 with its isomorphic image in F .  Let @ be a root system of type G?, 
with fundamental roots a1 (long) and a2 (short) and corresponding fundamental dominant 
weights vl and vz. Let G denote the algebraicgroup G 2 ( F )  and let G be the finite subgroup 
G42") of Fgn-rational points. The simple G-modules are parametrized by dominant weights 
v = avl + bv2, where a and b are non-negative integers, the simple module being denot.ed by 
L(v). The  corresponding Weyl module, having L(v) is its unique simple quot.ient, is t l cno~c~l  
by V(v). We shall now describe some of these modules more explicitly. The group G is the 
automorphism group of the (split) Cayley algebra C over F, an 8-dimensional alternative 
algebra carrying an invariant linear form (trace) and a nonsingular quadratic form (norm). 
The Weyl module V(v2) is then the 7-dimensional space of elements of trace zero and L(vp) 
is the quotient of this by the scalar multiples of le. The module V(vl) is the adjoint module 
for G ,  namely, the 14-dimensional simple Lie algebra of derivations of C, with G = Aut C 
acting by conjugation (in Endp C). Being a simple module it is equal to  L(v1). Thc  modulc 
V(v1 + v2) is the first Steinberg module. It is also simple and has dimension 21"1 = 64. It 
will be convenient to denote the simple modules L(v2), L(vI) and L(vl + v2) by C, L and 
S respectively. They remain simple upon restriction to the finite group G. 

For any F-vector space V and natural number i, we denote by 1/;. the i-th Frobenills lwist 
of V, which is the same abelian group but with 7 E F acting on V, as 72-' acts on V .  For 

Partially supported by NSF grant number DMS 900-1273. 1 wish to thank also Lhe hlathematical Scicnccb 
Research Institute, Berkeley, where the work for this paper was done while the autllur hcld a postdo~:koral 
fellowship. 

Copyright O 1992 by Marcel Dekker, Inc. 
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a finite set I of natural numbers we shall write V, for the tensor product BiCI 1/,. Then by 
Steinberg's Tensor Product Theorem, the simple G-modules are the modules 

where I, J and I( are pairwise disjoint finite subsets (possibly empty) of natural numbers. 
For any FG-module V ,  we have K+, Z :' and the simple FG-modules are the 2'" modules 
Cr@LJ@Sx,  where now ( I ,  J, I<) is anordered tripleof disjoint subsets of A' = 10, I , .  . . , n- 
11, which we shall simply call a triple from now on. The module SN is the Steinberg 
module for G; it is projective. Each simple module is isomorphic to its dual and it will be 
unnecessary to  make any distinction. It is clear that  Gal(F2./F2) acts on the set of triples; 
the automorphism y c* y2' acts by adding i to each element of N and taking the remainder 
modulo n. 

THEOREM. Supposeln > 6, and let ( I ,  J ,  Ii') be a triple a s  above. Then 

if ( I ,  J ,  I() is Galois conjugate to ({0), 0 ,0)  o r  ((01, { I} ,  0) and is zero othenvise. The same 
result holds for G if I ,  J and I( are allowed to be any three disjoint finite subsets of the 
natural numbers and conjugation is by Gal(FIF2) E 2. 

The result for G follows from the result for G by means of Theorem 7.1 of [3] (See also 
[I] Proposition 2.7), which states that  the restriction map 

2654 SIN I 
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! 
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I 
I 

i 

is injective if the coefficients in v and p of vl  and vz are less than 2", and that i t  is an 

isomorphism if n is sufficiently large with respect to these coefficients. \I'e shall also makc 
use of this result in the opposite direction to  apply results about G in the course of the 
proof for G. 

Until further notice, we shall assume n > 2. 

Let us denote the (Brauer) character of the simple FG-module CI @ L j  @SI< by 

PROOF: Parts (a), (b) and (c) are calculated by decomposing tensor producls of \\'cyl 
modules. The other parts are then readily derived from these. 

For use in inductive arguments we define the mass of the simple FG-module CI  8 L j @SK 
(or of its character or of the triple) to  be 2111+31J1+51K1. The  mass of an arbitrary module 
is then defined to be the maximum of the masses of its composition factors. The mass of 
a module is clearly preserved under taking duals and Galois conjugates. The usefulness of 
this invariant lies in the following property, which follows a t  once from Lemma 2.1. 

]The hypothesis n > 6 is used only at the beginning of $4; everywhere else in this paper 7 1  > 2 is strong 
enough. 
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1-COHOMOLOGY OF GROUPS G 2 ( 2 n )  

LEMMA 2.2. Let ( I ,  J, 1;) and (P, Q, R) be triples. Then 

with equality if and only if ( I  U K) n (P u R) = 0 = ( J  U I<) n (Q u R). 

L ~ h f h l ~  2.3. Let ( I ,  J, I() be a triple and i E N .  

(a) ~ ~ ( X I X J U K )  has no constituent of the form UT with (TI > )I(( + 1 if i E 1 u J and 
none with IT( > IK( if i 6 I u J 

(b) X ~ ( X ~ X J U K )  has no constituent of the form UT with (TI > 11<1 + 1 i f i  E I u J and 
none with IT( > JIiJ i f i  4 I U  J .  

(c) U~(XIXJCK) has no  constituent of the form UT with IT( > lIi'l+ 1. 

PROOF: Parts  (a) and (b) will be proved together by induction on the mass of (I :  J ,  I i ) .  
The statements are obvious if i @ I U J U  Ii, in particular for mass zero. We assume (a) and 
(b) hold for triples of smaller mass. First we prove (a). If i E I, then by Lemma 2.l(a), 

The  first two terms are multiplesof irreducible characters not of the form UT for IT1 > (KI+1, 
and induction applies to the last term. A similar argument using Lemma 2.l(b) works iT 
i E J .  If i E I<, then by Lemma 2.l(d) we have 

and each term is either irreducible (and not of the form UT, (TI > II(1 + 1) or else one to 
which we can apply part (a) or part (b) of the inductive hypothesis, with I< replaced by 
I( \ {i}. 

The argument to prove (b) is similar, using Lemma 2.l(b), (c) and (e). This proves (a) 
and (b). We omit the details of the proof of (c), which proceeds similarly by induction on 
mass, making use of parts (a) and (b). 

The next lemma concerns tensoring with the Steinberg module. Here, P ( M )  denotes the 
projective cover of the module M. 

PROOF: We shall prove (b) and leave the simpler case (a). Since Sw is both projective and 
simple, the multiplicity of P(CI Q LJ Q S K )  a s  a direct summand of Li @ SN is simply the 
multiplicity of UN as a constituent of X~(XIXJUK). If i E J ,  then UN is not a constituent, 
for by Lemma 2.1 (c) and Lemma 2.2, 

If i E I ,  then by Lemma 2.l(b) and Lernma2.2, 

and this will equal 51NI if and only if I = {i), J = 0 and I< = N \ {i). In this case t,he 
multiplicity in question will be 1. If i E I<, then by Lemma 2.l(e) and Lemma 2.2. 
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The mass will be 51N( if and only if I = J = 0 and I( = .Ar. The terms of mass 5 in A , n ,  
are 2ui, xiXi+l and 3,yi+1Xi. It is easily seen that  ~ i X i + l a ~ ~ \ ( ~ )  and ~ , + ~ X , a , y \ ( i )  Irave 110 

constituent O N ,  so it follows that  the multiplicity of UN in XiuN is 2 .  The lemma is proved. 

(a) C @ S has simple head and socle, isomorphic to L. 
(b) HomFG(L 8 S, C )  F 
(c) C @ L 2 S $ M, where M has simple head and socle, isomorphic to C. 

PROOF: The first two parts are corollaries of Lemma 2.4. To  prove (c) ,  we note that h!. 
(b), C @ L has both a subniodule and a quotient isomorphic to  S. But since S appears 
only once as a composition factor of C @  L, by Lemma 2.1, it must be a direct summand. 
A complementary summand M will then be a self-dual module will, c o ~ n p o s i t i o ~ ~  filrio~.. ( '  

(twice), F (twice) and C1.  Since HomFG(C 8 L, F )  = 0 and HomFc(C @ L,  C I )  = 0, I.he 
result follows. 

LEMMA 2.6. Let i E I E N .  Then Ci @ CI has a t  most two simple modules in each Loewy 
layer. Furthermore, if I = {i, i + 1, .  . . , i + r ) ,  then the Loewy layers are 

PROOF: I t  is enough to prove the result when I has the form {i, i +  1 , .  . . , i+ r) because for 
any I, the moduleCi@Cl is a tensor factor of C;@CN. We argue by induction on r. For the 
case r = 0 we observe that  HomFc(C 8 C, F )  F ,  tha t  H o r n p ~ ( C  8 C ,  C1) = 0 and that 
by Lemma 2.5(c) HomFc(C @ C ,  L) r F. The result then follows from Lemma 2.l(a) and 
the fact that  C 8 C is self-dual. Let I' = {i + 1, .  . .i + r) .  Then Ci @ CI = (Ci 8 Ci)  @ CI, 
has a (descending) filtration with factors in the order 

Induction applies to the middle factor which therefore has head isomorphic to C r r , , , + l )  % 
( C I ~ \ { ~ + I )  8 Li+l), and so the proof is completed by the fact that  C, @ CI is self dual and 
the equation 

$3 .  THE M A I N  CASE 

The aim of this section is to show that H1(G, CI 8 LJ @ S K )  = 0 unless 1 U J and li are 
both very small, cutting the proof of the main theorem down to a manageable size. 

The first lemma appears in [6] and will provide the basis of our inductive arguments. For 
two FG-modules A and B ,  we let d ( A ,  B) =  dim^ E X ~ ; ~ ( A ,  B )  and if they are simple, we 
let X ( A ,  B )  be an FG-module with a unique maximal submodule isomorphic to a direct 
sum of d ( A ,  B) copies of B and the quotient by this submodule isomorphic to A .  I t  is 
determined up to isomorphism by these properties. 

LEMMA 3.1. Let D be any FG-module and E a simple quotient of B @ D. Then 
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1-COHOMOLOGY OF GROUPS G2 (2n) 2657 

We shall apply this where A @ D is simple. Most frequently, we shall check the premise 
H O ~ ~ ~ ( X ( A , B )  @ D, E) = 0 simply by checking t h a i  A is7not a composition factor of 
D ' 8  E. 

LEMMA 3.2. Let (I, J, Ii) be a triple and T E N. If IT1 > lIil+ 2, then ~ x l k ~ ( . Y ~ ,  C, @ 
LJ @ S K )  = 0. 

PROOF: Since the result is true when T = N, we shall argue by downward induction on 
IT/. We may also assume that I f  E T ,  since S is self-dual so 

Suppose first that  I U J $ T. Pick r E ( I  U J )  \ T. If r I, we shall prove 

and if r E J we shall prove 

The  result will then follow by induction. Suppose r E I. then by Lemma 2.5(a), (C, 8 L j  6 
S K )  @ S r  has a quotient isomorphic to  CI\{,) 8 LJutrl @ SK. Therefore (3.2.1) will follow 
from Lemma 3.1 if we prove 

This is immediate from Lemma 2.3 and the hypothesis (TI > lICl + 2. The proof of (3.2.2) 
if r E J is similar. We may therefore assume that  I U J U IC E T. For r E N \ T we shall 
prove 

and apply induction. To use Lemma 3.1, we must show 

which is true because by Lemma 2.3, the right hand module has no composit.ion fact.or S T .  
The lemma is proved. 

LEMMA 3.3. Let I and J be disjoint subsets of A' such that jI u JI > 2. Then 

PROOF: If JTI > 2 then the preceding lemma applies. This is so if T > I U J .  Therefore, 
we may assume there exists r E N \ T. We shall find disjoint subsets I' and J' such that, 
I I U J ' =  I U J a n d  

Iteration of this process will bring us back to the case IT1 > 2 .  

C a s e  A. r E I. Here, Sr €3 (CI 63 LJ)  has a simple quotient CI\Ir) @ LJu{,), and by Lemma 
3.1, (3.3.1) will follow from 

In order to establish (3.3.2), we consider the factors (ignoring rnultiplicities) in a fiIt.ration 
of Sr 8 (CI\{,] @ L J ~ , ) )  = (ST 8 L,) @ GI\{,) @ LJ induced by a composition series of 
S, @ L,. By Lemma 2.1, these are 

cr+l @ (Cl\{r) @ LJu(r))? 
(2) G+I @ (0 8 LJ),  
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SIN 

together with simple factors CI\{,) @ LJuir1,  CI @ LJ and CI\{,) @ L J .  It will suffice to 
check that  there are no (nonzero) homomorphisms from X ( S T ,  Cc  @ L J )  into any  of these 
filtration factors. This is clear for the simple ones. 

(1). We have 

Now S T @ C r f l  has a simple head by Lemma 2.4, and it is not isomorphic to C r \ ! r ) , 8 L ~ u { , ) ,  
so the first term on the right of the inequality is zero. If r + 1 $! I U J then rt IS obvious 
that  the second term is also zero. If r + 1 E I, then without any difficulty, i t  can hc sccn 
using Lemma 2.2 that  

has no constituent XI\{,) X J u I r ) .  The same kind of argument works if instead 1. + 1 E .I 
(2) We have 

Now HomFc(ST 8 CVtl, Cl @ LJ)  = 0, since by Lemma 2.4 ST 8 C,+I is either sinlplc 01. 

has head'isomorphic to L,+l which, since II U J J  > 1, is different from CI 8 L J .  
The last term of the inequality above is clearly zero if r + 1 $ I U J .  If t. + 1 E I ,  then using 
Lemma 2.2, it is straightforward to verify that  xrXJ is not a constituent of 

Likewise, if T + 1 E J ,  then X , + ~ X ~ X J  has no constituent XIXJ. 
The proof that  there are no nonzero homomorphismsfrom X ( S T ,  CI 8 L J )  into the factors 

(3) and (4) involves similar character calculations; it should he pointed out perhaps tha t  

the standing hypothesis n > 2 is used in the proof for these two parts. 
(5). It issafe to assume r + 1  E I U J .  If r t  1 E I,  then (L,+, @C,+l )@CI\{ , , ,+I )  @IdJ  

has a filtration with factors (ignoring multiplicities) @CI\{,,,+l) @ L j ,  (Jl\(,, ,+l) 6) LJ. 
C q t r , )  @ LJ and Cr+28(Cl \{r , r+ l )  8 L j ) .  Only the last may have a con~position factor ST 
(since II u JI > 2) and from Lemma 2.3 it follows that  this can happen only i f  T = {r .+ 2 ) .  
Moreover, by Lemma 2.3, H O ~ ~ ~ ( S ~ + ~ , C , + ~  8 (CI\{,,,+l) 8 LJ)). is zero unless I = 
{r,r+ 1) and J = {r t 2). However, in this case we claim that  the original space of maps, 
H o m j - c ( X ( S ~ ,  CI 8 LJ) ,  L,+1 8 (CI\(,) 8 LJ)) ,  is zero. Indeed, by direct computation, 
we see that  C{,,,+ll 8 Lr+Z is not a composition factor of L,+l 8 C,+, 8 Lr+:! and that 
Homfc(Sr+2, Lr+l €3 Cr+1 @ Lr+2) = 0. 
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1-COHOMOLOGY OF GROUPS G 2 ( Z n )  2659 

If r + 1 E J ,  then L + i  8 (GI\{,) 8 L J )  = (Lr+l @ L,+l) 8 (CI\{,) 8 LJ\{?+l ] )  Iias a 
filtration with factors CI\{,) 8 LJ\{,+I), Cru{r+l)\(T) db L J \ { ~ + I ) ,  CI\( , )  @ L J ,  (i) Cr+? c?; 
( c ~ u { r ) \ { r )  @LJ\{r+l))? (ii) c r t 2 8 ( c 1 \ { r )  @ L ~ \ { r + l ] )  and (iii) L r t ? @ ( c ~ \ { , ]  @ L J \ { ~ + I ]  ). 

The first three are simple and not of the form ST since 11 U J l  > 2. As for the others, it 
follows from Lemma2.3 that  they cannot have ST as a composition factor unless T { r + 2 ) ,  
so  we assume this. Moreover, by considering masses, wesee that  C18LJ  is not a composition 
factor, so maps of X(ST,  CI @ LJ)  into (i),(ii) and (iii) must annihilate CI 8 L j .  Now by 
Lemma 2.5, ST @ Cr+2 will have a simple head isomorphic to either C,+? or L,+?. This 
implies that  there are no nonzero maps from X(ST,  Cr 8 L J )  to (i) and that  there arc none 
to  (ii) unless either (T, I ,  J) = ( 0 ,  {r, r+2}, { r + l ) )  or (T, I ,  J) = ({ r+2) ,  { r ) ,  { r + l , v + 2 ) ) .  
In both these cases it is easy to check that  there are no maps from X(ST,CI 8 L J )  int.0 
the original module L,+1 8 (GI\{,) 8 LJ).  In (iii), if T = 0, there will be no maps from 
X(ST,C, 8 LJ)  to (iii) unless I = { r )  and J = { r  + l , r  + 21, in which case there are no 
maps into the original module Lrt l  8 (Cl\{,l @ L J ) .  Suppose finally t . l ~ a ~  T = { r  + 2 ) .  I T  
r .+ 2 E I, we have 

which will be zero unless I = { r , r  + 2) and J = { r  + l ) ,  in which case there will be no 
maps from X(S,+?, CIr,r+2) 8 L I , + ~ ) )  into the original module L,+] Bi (CTtn 3, I,,.,,). T T  
r + 2 E J ,  we note that  the only composition factors of Sr+l 8 Lr+2 which have L,+? as a 
tensor factor are Lr+2 and Cr+&Lr+2. Therefore, there will be nonzero maps of S,+?@L,+? 
to C I \ { ~ )  8 LJ\{,+I) only if ( I ,  J)  = ({ r ) ,  { r  + 1 , r  + 2)) or ( { r , ~  + 3),  { r  + 1, r + 2)) .  1 1 1  

both cases one can check there are no maps from X(ST, CI @ LJ) into the original module 
Lr+l @ (Cr+? @ Lr+1). 

(6). This  can be dealt with by calculations like those in (5). 
This completes the proof of Case A. 

C a s e  B. r E 3 .  The proof proceeds by arguments and calculations, of which we omiL the 
details, which are entirely analogous to those of Case A. 

54. COMPLETION O F  T H E  PROOF 

The results of the last section leave the groups H1(G,  CI @ LJ 8 S K ) ,  where ( I  u JI < 2 
and II<] < 2,  to be determined. This is the only place where we shall need n > 6: t.Iie solr 
reason being to apply Theorem 7.1 of [3], which gives sufficient conditions on 12 and t l i c  

weights v and p for the restriction map (1.1) to be an isomorphism. From t.his and the 
structure of the Weyl modules V(ul), V(VZ), V(vI + v2) and V(2v2) (found by elementary 
computations) we obtain 

as long as2 n > 6. We now compute the remaining cohomology groups E X ~ ~ ~ ( S ~ < ,  CI @ L j )  
in the separate cases II U JI = 0,l  and 2, back under the weaker assumption n > 2 . 
4.1. I U J = 0. Since G is simple, we have E X ~ ~ ~ ( F ,  F) = 0, and E x t k G ( ~ , S k )  is in the 
list (4.0.1). The case 11() = 2 is covered by the following. 

2 ~ h i s  requirement is probably unnecessarily strong. For example we know from (51 that H'(G. C) % F Tor 
all n. 
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2660 SIN 

LEMMA 4 . 1 .  E X ~ ; ~ ( S P ,  SQ)  = 0 if JPJ 2 JQJ + 2 .  

PROOF: We may assume P > Q. We argue by backwards induction on IPI, st.arting at the 
injective module S N .  By means of Lemma 3 .1 ,  we shall show 

for r E N \ P, which will supply the inductive step. By Lemma 2.1 ,  mass(S,  @ S T )  = 7 < 10, 
so by Lemrna2.2, S p  is not a composition factor of S, QDSQU(.).  Thus,  Lemma 3 .1  applies. 

4.2. I U J = {i}. The cases where I( = 0 and I( = { i }  occur in ( 4 . 0 . 1 ) .  
If lICl = 2 ,  then Lemma3.1 can be used in conjunction with some character calculations 

to  prove 
~ ( S K ,  C i )  5 d ( S ~ u { i ) ,  L i )  and ~ ( S K ,  L i )  5  SKU(,), G). 

The result then follows from Lemma 3 .2 .  
Suppose then that  Ii' = { k )  for k # i. First, we shall show with the aid of Lemma 3.1 

that  

and 

By Lemma 2 . 5 ( a ) ,  Li is a quotient of Si @ C i ,  so (4 .2 .1 )  follows from the fact that St is 
not a composition factor of Si @ Li.  Similarly, C i  is a quotient of S; @ L; ,  ant1 Sk is no1 a 
composition factor of Si @ C i ,  proving (4 .2 .2 ) .  The following lemma shows that  the right 
hand members of (4 .2 .1)  and (4 .2 .2 )  are zero, which finishes ( 4 . 2 ) .  

LEMMA 4 . 2 .  Let i and k be distinct elements of R E N .  Then 

PROOF: The lemma will be proved by downward induction once we show that  for t E N \ R 
we have 

and 

As usual? we wish to invoke Lemma 3.1 .  For (4 .2 .3 )  we need check only that  on is no(. 
a constituent of a;aR\ ( i , k )X i  and for (4 .2 .4 )  that  U R  is not a constituent of ~ ~ u R \ t i , ~ l A i .  
Both of these are easlly verified using Lemma 2.2. 

4.3. I U J = {i, j}. Let us consider first the case IKI = 2 .  Let Ii' = { k ,  1 ) .  T'hell 
SK is not a composition factor of Si 8 M for M E { c ~  @ L,, C { i , j  I ,  L { , , j )  } ,  by Lemma 
2.3 .  Therefore by Lemmas 3.1 and 3.2 we have ~ ( S K ,  M) < d ( S K q i l ,  MI)  = 0, where 
M 1  E { C { i , j ) ,  Li @ C j , C i  @ L j }  is a simple quotient of Si @ 116. Sl~pposc nest 11i;lr I!' 
contains a single element, say lz. Arguments analogous to  those of ( 4 . 2 )  enable one to show 

(4 .3 .1 )  d ( S k , C { i , j ) )  5 d ( s ( i , k ) , C j  8 L i )  5 d ( S { i , j , k ) ,  L { i , j ) ) ,  
( 4 .3 .2 )  d (Sk ,C i  @ L j )  I d ( S ( j , ~ ) , C { i , j ) )  5 d ( S { i , j , k ) ,  Li 8 C j )  and 
(4 .3 .3 )  d ( S k ,  L { i , j ] )  < d ( S ( j , k ) , C j  @ Li )  5 d ( S { i , j , t ) , C { i , j ) ) .  
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1-COHOMOLOGY OF GROUPS G2(Zn) 

The right hand terms are all zero by Lemma 3.2. 
Suppose now I< = 0. If li - jl > 2, our standard arguments yield 

and for i , j  E R C N and t E N \ R, 

These imply d(F,CIibj))  = 0. With appropriate modifications, onc obtains chains of i l l -  

equalities to  prove d(F,  L{i,j)) = 0. 
If li - jl = 1, then by Galois conjugation, we may assume {i, j) = {O, 1). The groups 

ExtkG(C1,C) and E x t b G ( c l ,  L) appeared in (4.0.1). The standard argument s h o w  

In order to prove E x t h G ( ~ l ,  L) = 0, we wish to show 

(4.3.6) ~ ( L I ,  L) 5 d ( S , C  8 Li)  5 d(S{o,i),C{o,i)) 

5 d(S{0,1,2), C I O , ~ )  @ S2) _< . . . < ~ ( S N -  C{0.11@ SN\(O, I )  = 0. 
The only difficulty arises in proving the first inequality in (4.3.6), so we will discuss this 
further. Since d(S, C @ L1) = d(S  @ L1, C), we can try to  apply Lemma 3.1 by showiug 

Homfc(X(L1, L ) , S @  C )  Z H o m f ~ ( X ( L 1 ,  L) @ S , C )  = 0. 

By Lemma 2.5(c), it  suffices to show HomFG(X(L1, L), ( L  8 C )  @ C )  = 0. Consideration of 
the composition factors of C @ C (and the composition factors of their tensor I)! 
L) further reduces the problem to proving 

(4.3.7) Homfc(X(Li ,  L), L @ L) = 0. 

Now L = V(v1)  and it is well known (see for example [4] 11.4.19) that l/(vl) @ V(ul) has 
a submodule isomorphic to  V(2u1). The latter module has a simple head isomorphic to L1 
and by elementary computations one sees that it also has C1 as a composition factor. But 
HomFG(C1, L B L )  = 0 which implies that V(2vl) has socle length at  least 3 .  Therefore, the 
unique composition factor of L 8  L which is isomorphic to  L1 is not a composition faclor of 
soc2(L @ L) and so (4.3.7) is finally proved. Note that we used the injectivity of thr, m a p  
(1.1) for this argument, which requires only n > 2 for the modules involved. 

Finally we must turn to  the case li - jl = 2. Here, we may assume {i, j) = {0 ,2 ) .  We 
may also assume n > 3 or else we would be back in the case ( i  - jl = 1. The vanishing of 

E X ~ ~ ~ ( L ~ , C ) ,  ~ x t k ~ ( C 2 ,  L) and ExtLG(L2, L) is not difficult to prove by finding chains 
of inequalities similar to (4.3.4) and (4.3.5). This requires nothing but the usual cliaract,er 
calculations, though the assumption n > 3 is used in this step. For example, a suitable 
chain for E X ~ ~ ~ ( L ~ ,  C )  would be 



D
ow

nl
oa

de
d 

B
y:

 [D
an

is
h 

E
le

ct
ro

ni
c 

R
es

ea
rc

h 
Li

br
ar

y 
C

on
so

rti
um

 (D
E

F)
 - 

D
ek

ke
r T

itl
es

 o
nl

y]
 A

t: 
13

:2
3 

20
 J

ul
y 

20
07

 

SIN 

 dim^ H o m ~ c ( X ( C 2 ,  C) @ S, L )  < d i r n ~  Hompc(X(Ca,  C ) ,  (C'B L )  Q: L ) .  

Now of all the composition factors of L @ L only Cfo , , )  has the property that  it,s t,ensor 
product with C has C2 as a compostion factor. But it is clear from Lemma 2.6 that  
HomFG(X(Cz, C ) ,  C@C{o,l j)  = 0, hence also H o r n ~ ~ ( X ( C 2 ,  C ) @ S ,  L) = 0 and the desired 
inequality follows from Lemma 3.1. This completes the proof for ( 4 . 3 )  and  also the proof of 
the main theorem. 
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