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On the 1-Cohomology of the Groups G2(2")

PETER SIN

Mathematics Department, 201, Walker Hall, University of Florida, Gainesville, Florida 32611-2082, USA.,

Abstract. We compute the first cohomology group with coefficients in a simple module for the
algebraic group G;(F;) and related finite groups.

INTRODUCTION

The principal result of this paper is the calculation of the cohomology group H!(G, M),
where G is either the finite group G2(2") or the algebraic group G2(F:), and M is a simple
module. We shall consider only rational modules for the algebraic group. This cohomology
group turns out to be trivial for most simple modules. As in [6) and [2) we prove this by
exploiting an interaction of Ext! with tensor products, cf. Lemma 3.1 below.

§1. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

Let F = F, be an algebraic closure of the field Fy of two elements. We shall identify a
finite extension of F, with its isomorphic image in F. Let ® be a root system of type G2,
with fundamental roots «; (long) and «q (short) and corresponding fundamental dominant
weights vy and vy, Let G denote the algebraic group Go(F') and let G be the finite subgroup
(2(2") of Fan-rational points. The simple G-modules are parametrized by dominant weights
v = avy + bvy, where g and b are non-negative integers, the simple module being denoted by
L(v). The corresponding Weyl module, having L(v) is its unique simple quotient, is denoted
by V(). We shall now describe some of these modules more explicitly. The group G is the
autormnorphism group of the (split) Cayley algebra € over F, an 8-dimensional alternative
algebra carrying an invariant linear form (trace) and a nonsingular quadratic form (norm).
The Weyl module V{v2) is then the 7-dimensional space of elements of trace zero and L(vs)
is the quotient of this by the scalar multiples of 1¢. The module V(1) is the adjoint module
for G, namely, the 14-dimensional simple Lie algebra of derivations of €, with G = Aut €
acting by conjugation (in Endp €). Being a simple module it is equal to L{z1). The module
V(11 + v2) is the first Steinberg module. It is also simple and has dimension 2/**! = 64. It
will be convenient to denote the simple modules L{v;), L(vy) and L{vy + v3) by C, L and
S respectively. They remain simple upon restriction to the finite group G.

For any F-vector space V and natural number i, we denote by V; the i-th Frobenius twist
of V, which is the same abelian group but with v € F acting on V; as v acts on V. For
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a finite set I of natural numbers we shall write V7 for the tensor product &;¢; Vi. Then by
Steinberg’s Tensor Product Theorem, the simple G-modules are the modules

CI®LJ®SK>

where I, J and K are pairwise disjoint finite subsets (possibly empty) of natural numbers.
For any FG-module V, we have Vi1, & V; and the simple FG-modules are the 2?* modules
Ci®L;®Sx, where now (I, J, K) is an ordered triple of disjoint subsets of N = {0,1,...,n—
1}, which we shall simply call a triple from now on. The module Sy is the Steinberg
module for G; it is projective. Each simple module is isomorphic to its dual and it will be
unnecessary to make any distinction. It is clear that Gal(F2n /F2) acts on the set of triples;
the automorphism 4 — %' acts by adding i to each element of N and taking the remainder
modulo n.

THEOREM. Suppose'n > 6, and let (I, J, K) be a triple as above. Then
HI(G,CI® LJ®SK) =F

if (1, J, K) is Galois conjugate to ({0},0,8) or ({0}, {1}, 0) and is zero otherwise. The same
result holds for G if I, J and K are allowed to be any three disjoint finite subsets of the
natural numbers and conjugation is by Gal(F/F3) = Z.

The result for G follows from the result for G by means of Theorem 7.1 of {3] (See also
[1] Proposition 2.7), which states that the restriction map

(1.1) Extg (L(v), L(1)) = Extrg(L(v), L(1))

is injective if the coefficients in v and u of vy and v, are less than 27, and that it is an
isomorphism if n is sufficiently large with respect to these coefficients. We shall also make
use of this result in the opposite direction to apply results about G in the course of the
proof for G.

Until further notice, we shall assume n > 2.

§2. TENSOR PRODUCTS OF SIMPLE MODULES

Let us denote the (Brauer) character of the simple FG-module C; ® L; ® Sk by x Aok
LeMMA 2.1,

(a) X* =22+ x1 + 2.

(b) xA=c+x1+2x+2.

(¢) A =2xq0,1} + M + 42 +4x; +4x + 6.

(d) xo =x1A2+ 3x{0,1) + 221 + 62+ Bx1 +6x + 8.

(e) Ao =xA+3x1A+20+ 4X(o_1) +4A; +6A+ 2x2 + 10x, + 10x + 16,

(f) ot = 2x10 + 2/\(0,1) +4xA1 + 8x1A + o1 + 4o+ 2)({0‘2) + 16,\’{0_1) + 16A) + 20X +
8x2 + 32x1 + 28x + 48.

Proor: Parts (a), (b) and (c¢) are calculated by decomposing tensor products of \Veyl
modules. The other parts are then readily derived from these.

For use in inductive arguments we define the mass of the simple FG-module C;® L; ® Sk
(or of its character or of the triple) to be 2|I|4-3|J|+5|K|. The mass of an arbitrary module
is then defined to be the maximum of the masses of its composition factors. The mass of
a module is clearly preserved under taking duals and Galois conjugates. The usefulness of
this invariant lies in the following property, which follows at once from Lemma 2.1.

1The hypothesis n > 6 is used only at the beginning of §4; everywhere else in this paper n > 2 is strong
enough,
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LeEMMaA 2.2, Let (1,J,K) and (P,Q, R) be triples. Then
mass(x1Aiox . xpAoar) < 211+ [P)) + 3171 + Q1) + 5(|K [+ |RY),
with equality if and only if JUK)N(PUR) =0 = (JUK)N(QUR).
Lemma 2.3. Let (I,J,K) be a triple and i € N.
(2) xi(xsA1ok) has no constituent of the form or with |T| > |K}+1ifi e U J and
none with [T > |K|ifi¢ TUJ '
(b) Xi(xsAsox) has no constituent of the form o with [T| > |K|4+ 1ifie IUJ and
none with |T| > |K| ifi ¢ TUJ.
(¢) oi(xrAsak) has no constituent of the form or with |T) > |K|+ 1.

ProoF: Parts (a) and (b) will be proved together by induction on the mass of (1, J, K).
The statements are obvious if i ¢ JUJU K, in particular for mass zero. We assume (a) and
{b) hold for triples of smaller mass. First we prove (a). If i € I, then by Lemma. 2.1(a),

XixrArox = (2422 + xiv1) XN\ (i} A\ 0K
= 2xn\{ijArok + 2x iy Asutin ok + Xin (xngArok).
The first two terms are multiples of irreducible characters not of the form o7 for [T} > |K|+1,

and induction applies to the last term. A similar argument using Lemma 2.1(b) works if
i€ J. Ifie K, then by Lemma 2.1(d) we have

Xi(x1As0k) = (Xig1Ai + 3X (041} + 2Xi41 + 68X + 6xigy + 6xi + 8)xrhioxy4)
= xin1(XrAsogy o y) + 3 (Xaotiy v oy ) + 2 (xr Aok i) 4 6xr A su i o ren i)
+ 6x 10 Ar TR\ GY + BXivt (X1 Ao r\GY) + SX1 AT R\ iy

and each term is either irreducible (and not of the form or, {T] > {K|+ 1) or else one to
which we can apply part (a) or part (b) of the inductive hypothesis, with K replaced by
K\ {i}.

The argument to prove (b) is similar, using Lemma 2.1(b), (c) and (e). This proves (a)
and (b). We omit the details of the proof of (c), which proceeds similarly by induction on
mass, making use of parts (a) and (b).

The next lemma concerns tensoring with the Steinberg module. Here, P(M) denotes the
projective cover of the module M.

LEMMA 2.4.
(a) Ci @ Sn = P(L; ® Sw\(i})-
(b) Li ® Sn = P(C: ® Sn\(i}) ® Sn & Sw.

Proor: We shall prove (b) and leave the simpler case (a). Since Sy is both projective and
simple, the multiplicity of P(C; ® Ly ® Sk) as a direct summand of L; ® Sy is simply the
multiplicity of o as a constituent of A;(xrAsok). If i € J, then oy is not a constituent,
for by Lemma 2.1 (¢) and Lemma 2.2,
mass(/\,'-“’(xp\_;\{,-)cr;()) =4+ 21+ 3(|J| - 1)+ 5[ K| < 5|N|.
If i € I, then by Lemma 2.1(b) and Lemma 2.2,
mass(xi Ai(x\{i}As0k)) = 5+ 2(I| - 1} + 3|J| + 5]K]|,

and this will equal 5|V| if and only if I = {i}, J = 0 and K = N \ {i}. In this case the
multiplicity in question will be 1. If i € K, then by Lemma 2.1(e) and Lemma 2.2,
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mass(hai(xr Mok ) = 5 + 211 + 3171+ S(IK| - 1).

The mass will be 5{M| if and only if ] = J = 0 and K = N. The terms of mass 5 in Az,
are 20y, XiAi4+1 and 3xi41A;. It is easily seen that x;Ajp10n (i) and xit1Ajony() have no
constituent oy, so it follows that the multiplicity of on in Ajon is 2. The lemma is proved.

LEMMA 2.5.
(a) C® S has simple head and socle, isomorphic to L.
(b) Hompg(L® S, C) = F
(c) C®L=5® M, where M has simple head and socle, isomorphic to C.

ProoF: The first two parts are corollaries of Lemma 2.4. To prove (¢), we note that by
(b), C ® L has both a submodule and a quotient isomorphic to S. But since S appears
only once as a composition factor of C ® L, by Lemma 2.1, it must be a direct summand.
A complementary summand M will then be a self-dual module with composition factors ¢
(twice), F (twice) and Cy. Since Homps(C ® L, F) = 0 and Hompg(C ® L,Cy) = 0, the
result follows.

LEMMA 2.6. Let i € I C N. Then C; ® Cy has at most two simple modules in each Loewy
layer. Furthermore, if I = {i,i+1,...,i4+r}, then the Loewy layers are

Cnii) @ (Cngsy ® Li), Cngiien} ® (Cngsiv1) ® Lig1), -,
F&®Ligr,Cigrd1, F® Ligr,. ..,
Cnii) ® (Crypsy @ Li).

PRroOF: It is enough to prove the result when I has the form {¢,i+1,...,i+r} because for
any I, the module C; ®Cy is a tensor factor of C;® Cy. We argue by induction on r. For the
case r = 0 we observe that Homps(C ® C, F) & F, that Hompg(C @ C,C;) = 0 and that
by Lemma 2.5(c) Hompe(C ® C, L) = F. The result then follows from Lemma 2.1(a) and
the fact that C @ C is self-dual. Let I' = {i+1,...i+r}. Then C;®C; = (C;  C;) ® Cy/
has a (descending) filtration with factors in the order

Cr & (Cr ® Li), Cin1®Crs, Cr®(Cr @ Li).

Induction applies to the middle factor which therefore has head isomorphic to Crnjiq1y &
(Crngi+1) © Liy1), and so the proof is completed by the fact that C; @ C; is self dual and
the equation

Hompg(C: @ Cr, Crn(i+1} ® (Cragis1) @ Lity))
= Hompg(Cr, Cn(i+1) ® (Cn\{i+1} ® Lig1)) = 0.

§3. THE MAIN CASE

The aim of this section is to show that H'(G,C;® L; ® Sk) = 0 unless /U J and I\ are
both very small, cutting the proof of the main theorem down to a manageable size.

The first lemma appears in [6] and will provide the basis of our inductive arguments. For
two FG-modules A and B, we let d(A, B) = dimg Extlm(A, B) and if they are simple, we
let X(A4, B) be an FG-module with a unique maximal submodule isomorphic to a direct
sum of d(A, B) copies of B and the quotient by this submodule isomorphic to 4. It is
determined up to isomorphism by these properties.

Lemma 3.1, Let D be any FG-module and E a simple quotient of B® D. Then

Homre(X(A,B)® D,E)=0 implies d(A,B)< d(A® D, E).
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We shall apply this where A ® D is simple. Most frequently, we shall check the premise
Hompg(X(A4,B) ® D, E) = 0 simply by checking that A is not a composition factor of
D*®QF.

LemMMA 3.2. Let (I,J,K) be a tripleand T C N. If [T| > |K|+ 2, then Extk¢(S7.Cr &
L;® SK) = 0.

ProoF: Since the result is true when T° = N, we shall argue by downward induction on
|T'|. We may also assume that K C T, since S is self-dual so

Extpg (Sr,Cr ® Ly ® Sk) ® Exthe(Sruk,Cr ® Ls ® Srak).
Suppose first that U J ;i_ T. Pick r € (JUJ)\T. If r € I, we shall prove

(3.2.1) d(S7, Cr ® Ly ® Sk} < d(Stuis), Civiry @ Lyugr) ® Sk)
and if » € J we shall prove
(3.2.2) d(Sr,Cr® Ly ® Sk} £ d(S7uir), Cruir) @ Liviry © Sk).

The result will then follow by induction. Suppose r € I. then by Lemma 2.5(a), (C; @ L, &
Sk) ® Sy has a quotient isomorphic to Cr\(r}) ® Liu{r) ® Sk. Therefore (3.2.1) will follow
from Lemma 3.1 if we prove

Hompg(X(Sr,Cr® L1 ® 85k), 5 @ (Cryir} ® Lyugr) ® Sk)) =0

This is immediate from Lemma 2.3 and the hypothesis |T| > {K| + 2. The proof of (3.2.2)
if r € J is similar. We may therefore assume that TUJ UK CT. For r € N\ T we shall
prove

(3.2.3) d(S7,C1® L1 ® Sk) < d(Stu(r),C1 ® Ls ® Skuir})s
and apply induction. To use Lemma 3.1, we must show
Homrg(X(S7,C1 ® L1 ®Sk), 5 ® (C1 ® L1 ® Skuir})) =0,

which is true because by Lemma 2.3, the right hand module has no composition factor Sr.
The lemma is proved.

LEMMA 3.3. Let I and J be disjoint subsets of N such that {IU J| > 2. Then
Exthe(Sr,Cy® Ly) = 0.

Proor: If {T} > 2 then the preceding lemma applies. This is so if T 2 I U J. Therefore,
we may assume there exists r € N \ T. We shall find disjoint subsets I’ and J' such that
rvJ'=TIu/J and

(33.1) d(Sr, Cr ® L) £ d(Sruir), Crr ® L),

Iteration of this process will bring us back to the case |T}| > 2.

Case A. r € I. Here, S, ®(C1® L;) has a simple quotient Cn\r} ® Lu¢r}, and by Lemma
3.1, (3.3.1) will follow from

(3.3.2) Hompg(X(Sr,Cr® L1),5r & (Cr\ir} ® Lyugr))) = 0.

In order to establish (3.3.2), we consider the factors (ignoring multiplicities) in a filtration
of 5, ® (Cnyr} ® Liugry) = (8- ® L) ® Cry(r) @ Ly induced by a composition series of
S, ® L,. By Lemma 2.1, these are

(1) C,-+1 ®(Cl\{r} ® Llu{r}),
(2) C,-.H [ (Cl ® LJ))
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(8) Crs1@(Cn(r) @ Ly),
{4) Cr42®(Cniry ® L1),
(5) L4y ® (Civir) @ Lu),
(6) Lra1 ® (Cr® L),

together with simple factors Cpygry ® Lyugr), Cr ® Ly and Cry(r) ® Ly. It will suffice to
check that there are no (nonzero) homomorphisms from X(Sr,Cr @ L) into any of these
filtration factors. This is clear for the simple ones.

(1). We have

dimp Hompg (X (St,Cr ® L1),Cra1 ® (Ciiry ® Liugs}))
= dimr Hompg{(X(S7,Cr ® L;) ® Cr11,Cr\{r} ® Lsu(ry)
< dimp Hompe (St @ Cri1, Cr\(r} @ Liv(ry)
"+ dimp Hompg((Cr ® L1) ® Cri1, Cnir) ® Lyu(r) )

Now ST ®Cr 41 has a simple head by Lemma 2.4, and it is not isomorphic to Cr\ (-} ® Ly -y,
so the first term on the right of the inequality is zero. If r + 1 ¢ J U J then it is obvious
that the second term is also zero. If r 4+ 1 € I, then without any difficulty, it can be scen
using Lemma 2.2 that

XrAIXr41 = X2 X0 (r+1) AT = (2Aegt + Xrg2 + 22X\ (r41) A

has no constituent xy\{r)Asu{r}. The same kind of argument works if instead r + 1 € J.
(2) We have

dimp Hompg (X(ST,Cr ® L1),Cr41 ® (C1 ® L))
= dimr Hompg(X(S7,C1 ® L1) ® Cr41,Cr® Ly)
< dimp Hompg (St ® Crga, Cr ® L)
+dimp Hompg((C1 @ L)) © Cray . Cr @ L),

Now Hompg (ST ® Cr41,C1 ® L) = 0, since by Lemma 2.4 87 @ C; 41 is either simple or
has head isomorphic to Lr41 ® St\{r4+1}, Which, since [TU J| > 1, is different from C; ® L,.
The last term of the inequality above is clearly zeroif r+1¢ JUJ. If »+ 1 € I, then using
Lemma 2.2, it is straightforward to verify that x;As is not a constituent of

X1ArXrt1 = X XN (413 A7 = (2hri1 + Xeg2 + DX} A0

Likewise, if r + 1 € J, then xr4+1xrA7 has no constituent xrA;.

The proof that there are no nonzero homomorphisms from X (S, C;® L;) into the factors
(8) and (4) involves similar character calculations; it should be pointed out perhaps that
the standing hypothesis n > 2 is used in the proof for these two parts.

(5). 1t is safe to assume r+1 € JUJ. If r+ 1€ I, then (L, 41 @ Cris1) @ Cp\frrs1) ® Ly
has a filtration with factors (ignoring multiplicities) Sr41 @ Cr\(rr 41} @ Ly, Crifrrb1) @ L.
Cnir3®Ls and Crip2 @ (Cr\fr,r4+1) © Ls). Only the last may have a composition factor Sy
(since T U J| > 2) and from Lemma 2.3 it follows that this can happen only if T = {r +2}.
Moreover, by Lemma 2.3, Hompg(Sr42,Cri2 ® (Cry(rri1) © Ly)). is zero unless I =
{r,7+ 1} and J = {r + 2}. However, in this case we claim that the original space of maps,
Hompe(X(S7,Cr ® L), Lrsr ® (Cr\(r) © Ly)), is zero. Indeed, by direct computation,
we see that Cir,41) ® Lry2 is not a composition factor of Lyy1 ® Cry1 ® Lryo and that
Hompg(Sr42, Lrtt @ Cryt ® Lry2) = 0.
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Ifr+leJ,then Ly @ (C[\{r) L)) =(Ley1 ®Lrs1)® (Cnyr} ® Linirg1y) has a
filtration with factors Cn -} ® Li\(r41), CrograinN{ry ® Linir1) Cviry @ Ly, () Criz @
(Crogrniry ® Lavira1}), (i) Crpz®(Cniry ® L ir41)) and (i) Lrpa ®(Ci o} ® Lay(rs1) )

The first three are simple and not of the form Sz since |7 U J| > 2. As for the others, it
follows from Lemma 2.3 that they cannot have Sz as a composition factor unless 7 C {r+2},
so we assume this. Moreover, by considering masses, we see that C;y® Ly is not a composition
factor, so maps of X(S7,Cr ® L;) into (i),(ii) and (iii) must annihilate Cy @ L;. Now by
Lemma 2.5, S7 ® Cr4+3 will have a simple head isomorphic to either Crys or L,po. This
implies that there are no nonzero maps from X{Sr,Cr ® L;) to (i) and that there are none
to (ii) unless either (T, 1,J) = (0, {r,r+2}, {r+1})or (T\1,J) = ({r+2}, {»}, {r+1,7+2}).
In both these cases it is easy to check that there are no maps from X(St,C; ® Lj) into
the original module Lryy ® (Cpy(y ® Ls). In (i), if T = 9, there will be no maps from
X(S7,Cr ® Ly) to (iii) unless I = {r} and J = {r + 1,7 + 2}, in which case there are no
maps into the original module Lr4; ® (Ci\(r} ® Ls). Suppose finally that T = {r + 2}. IT
r+2 €I, we have

Hompg(Sr42, Lraa ® Ciiry ® Li\(r41})
= Hompg(Sr+2 ® Cra2, Cryfrir+2) ® Lyuir421\{r+1})

which will be zero unless I = {r,r + 2} and J = {r + 1}, in which case there will be no
maps from X(S;42,Cirri2} ® Lir41}) into the original module L,y & (Cryn @ Loyr). 1F
r+ 2 € J, we note that the only composition factors of Sy42 ® L.4» which have L,42 as a
tensor factor are Lyyg and Cry3®L,42. Therefore, there will be nonzero maps of S; 2@ Ly 42
to Cnge} ® Lingrgny only if (L, J) = ({r}, {r+ Lir+ 2}y or ({r,7 + 3}, {r+ L,r+ 2}). In
both cases one can check there are no maps from X(Sr,Cr ® L;)} into the original module
Lr+1 ® (cr-l-'.' ® Lr+l )

(6). This can be dealt with by calculations like those in (5).

This completes the proof of Case A.

Case B. r € J. The proof proceeds by arguments and calculations, of which we omit the
details, which are entirely analogous to those of Case A.

§4. COMPLETION OF THE PROOF

The results of the last section leave the groups H1(G,Cr ® L; ® Sk ), where [IUJ| < 2
and |K] <€ 2, to be determined. This is the only place where we shall need n > 6, the sole
reason being to apply Theorem 7.1 of [3], which gives sufficient conditions on n and the
weights v and p for the restriction map (1.1) to be an isomorphism. From this and the
structure of the Weyl modules V(v1), V(v2), V(1 + v2) and V(2v;) (found by elementary
computations) we obtain

Extrg(F, L) = Exthg(F, S) = Extbg(S,C)
= Extpg(S, L) = Ext}(C, L) = Exth(C1, C) = 0,
(4.0.1) Extpg(F,C) = F = Extpg(Ci, L)
as long as? n > 6. We now compute the remaining cohomology groups Ext}g(Sk,Cr® L;)
in the separate cases [I U J| = 0,1 and 2, back under the weaker assumption n > 2 .

4.1. JUJ = 0. Since G is simple, we have ExtLo(F, F) = 0, and Exthg(F, Si) is in the
list (4.0.1). The case |K| = 2 is covered by the following.

2This requirement is probably unnecessarily strong. For example we know from (5] that H1(G,C) & F for
all n.
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LEmMA 4.1. Exthg(Sp, So) =0 if|P| > Q)+ 2.

PROOF: We may assume P D Q. We argue by backwards induction on |P|, starting at the
injective module Sy. By means of Lemma 3.1, we shall show

d(Sp,Sq) < d(Spuir}r Squir}),

for » € N\ P, which will supply the inductive step. By Lemma 2.1, mass(S, ®S,) = 7 < 10,
so by Lemma 2.2, Sp is not a composition factor of S, ® Sgu(r}. Thus, Lemma 3.1 applies.

4.2. TUJ = {i}. The cases where K =0 and K = {i} occur in (4.0.1).
If || = 2, then Lemma 3.1 can be used in conjunction with some character calculations
to prove

d(Sk,Ci) < d(Skutiy» L) and d(Sk,L:) < d(Skugy Ci)

The result then follows from Lemma 3.2.
Suppose then that K = {k} for k # i. First, we shall show with the aid of Lemma 3.1
that

(4.2.1) d(Sk, Ci) < d(Sgi ey, Li)
and
(4.2.2) d(Sk, Li) < d(S{,'Ik),C.')‘

By Lemma 2.5(a), L; is 2 quotient of S; @ Cy, so (4.2.1) follows from the fact that Sy is
not a composition factor of $; ® L;. Similarly, C; is a quotient of 5; @ L;, and Sy is not a
composition factor of S; @ C;, proving (4.2.2). The following lemma shows that the right
hand members of (4.2.1) and (4.2.2) are zero, which finishes (4.2).

LeEMMA 4.2, Let i and k be distinct elements of R C N. Then
Ext}:‘G(SR,S}{\(i‘k} ®C))=0= Ext}G(S’n, Sr\{i k) © Li).

ProoF: The lemma will be proved by downward induction once we show that fort € N\ R
we have

(4.2.3) d(Sr, Sry(ik} ® Ci) S d(Srufry: Stru(eyntixy ® Ci)
and
(4.2.4) d(Sr, Sr\{i,k) ® Li) £ d(Srufs)) S(Ruft i k) © Li).

As usual, we wish to invoke Lemma 3.1. For (4.2.3) we need check only that op is not
a constituent of oZop\ (i, kyx: and for (4.2.4) that g is not a constituent of ofomy i 1A
Both of these are easily verified using Lemmma 2.2.

4.3. IUJ = {i,j}. Let us consider first the case |K| = 2. Let X = {k,{}. Then
Sk is not a composition factor of $; @ M for M € {C;j ® Li,C(i 53, L3}, by Lemma
2.3. Therefore by Lemmas 3.1 and 3.2 we have d(Sk, M) < d(Skupy, M') = 0, where
M e {C{i,j},Li®Cj,C.~®L1} is a simple quotient of S; @ M. Suppose next that A
contains a single element, say k. Arguments analogous to those of (4.2) enable one to show
(4.3.1) d(Sk,Cizy) < dSpipy €5 ® Li) < d(Spijry, Liijy),

(4.3.2) d(Sk, Ci ® Lj) € d(S(,63,Cig3) < A(Spugey, L ® C5) and

(4.3.3) d(Sk, Lyi,j3) < d(Si5.41 Ci © Li) < d(Spij k), Crig))-
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The right hand terms are all zero by Lemma 3.2.
Suppose now K = 0. If |¢ — j| > 2, our standard arguments yield

(4.3.49) d(F, Cyi,3y) < d(Si, Li ® Cj) < d(Sgi 33, Liigy)
and fori,j € RC N andte N\R,

(4.3.5) d(Sr, Sr\(i.j1) < d(Sruieys SRu{N G5} © L))

These imply d(F,Cy;j)) = 0. With appropriate modifications, one obtains chains of in-
equalities to prove d(F, Ly; j3) = 0.

If [ — j| = 1, then by Galois conjugation, we may assume {i,j} = {0,1}. The groups
Extpg (C1,C) and Extyg(Ci, L) appeared in (4.0.1). The standard argument shows

d(F,C® L) £d(S, Lio,1}) £ d(S(01}: C1® L)
< (810,121 C1OK @ 852) < -+ < d(Sn, C1® L® Swyoy) = 0.

In order to prove Exthg(Ly, L) = 0, we wish to show
(4.3.6) d(Ly,L) € d(S,C® L1) € d(Sy0,11,Cyo,1})
< d(S0,1,2),Clo,1} ® S2) € -+ L d(SN, Cro.11 ® Swy(o}) = 0.

The only difficulty arises in proving the first inequality in (4.3.6), so we will discuss this
further. Since d(S,C ® L) = d(S® Ly, C), we can try to apply Lemma 3.1 by showing

Hompg(X(L1,L),S®C) = Hompg(X(L1,L)® 5,C) = 0.

By Lemma 2.5(c), it suffices to show Hompg(X (L, L), (L& C)®C) = 0. Consideration of
the composition factors of C ® C (and the composition factors of their tensor products hy
L) further reduces the problem to proving

(4.3.7) Hompe(X(Ly,L),L® L) = 0.

Now L = V(1)) and it is well known (see for example [4]) 11.4.19) that V{¥1) ® V(1) has
a submodule isomorphic to V(2v,). The latter module has a simple head isomorphic to L,
and by elementary computations one sees that it also has C as a composition factor. But
Hompg(C1, L® L) = 0 which implies that V(2u,) has socle length at least 3. Therefore, the
unique composition factor of L ® L which is isomorphic to L; is not a composition factor of
soc?(L ® L) and so (4.3.7) is finally proved. Note that we used the injectivity of the map
(1.1) for this argument, which requires only n > 2 for the modules involved.

Finally we must turn to the case |i — j| = 2. Here, we may assume {i,5} = {0,2}. We
may also assume n > 3 or else we would be back in the case | ~ j| = 1. The vanishing of
Extpg(Ls,C), Extrg(Ca, L) and Exthg(Ls, L) is not difficult to prove by finding chains
of inequalities similar to (4.3.4) and (4.3.5). This requires nothing but the usual character
calculations, though the assumption n > 3 is used in this step. For example, a suitable
chain for Exthg (L, C) would be

d(L2,C) £ d(S® Lz, L) = d(S, L{o,2}) < d(Sy0,2}, C2® L)
< d(S{0,1,2},Co®LBS1) < -+ < d(Sn,C2© L ® Swy{o2)) = 0.

The only group left to be computed is Hl(G,C(g,z}) = Exthg(Cq, C). We shall show
d(Ca,C) < d(S,Ca ® L). It will then be routine to check

d(S, Cz Q L) S d(S(oyl},Cz ® L@S;)
L d(Sto1.21 L4102} ®81) < -+ < d(Siv  Lyo2) ® Swygozy) = 0.
We know by Lemma 2.5(c) that
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dimg Hompg(X(C2,C)® S, L) < dimp Hompe(X(C,,C),(C® L)& L).

Now of all the composition factors of L @ L only Cyo,1} has the property that its tensor
product with C has C» as a compostion factor. But it is clear from Lemma 2.6 that
Hompg(X(Ca, C),C®Cyo,13) = 0, hence also Hompa (X (C2, C)®S, L) = 0 and the desired
inequality follows from Lemma 3.1. This completes the proof for (4.3) and also the proof of
the main theorem.
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