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The Cartan invariants and decomposition numbers of the endomorphism algebra
of the permutation module on the cosets of a Sylow p-subgroup of a finite group
of Lie type in characteristic p are computed. © 1992 Academic Press, Inc.

INTRODUCTION

Let G be a finite group with a split BN-pair of characteristic p. We shall
be interested in (right) modules over the group algebra over a complete
discrete valuation ring @ of characteristic zero, its field of quotients K and
its residual field k. We shall assume that £ has characteristic p, and that K
and k are splitting fields for all subgroups of G. For any O-lattice L, we use
the notations Ly:=L ® K and L:=L ® , k. Let Y=ind, 4(C) be the
permutation ('G-lattice on the right cosets of the Sylow p-subgroup U of G,
and E=Endys(Y). Then Y, =ind, ;(K) and ¥ =ind, 5(k). Moreover, E
is an O-form of End x(Y) and E=End,;(Y). In this paper we shall com-
pute the Cartan invariants of E, and the decomposition numbers of the tri-
ple (E, Ex, E) in terms of the Weyl group associated to G. Some earlier
work in this direction has been done by Norton [12], who computed the
Cartan matrix and blocks of End,(ind 5 ;(k)), which is an algebra direct
summand of E, and by Carter [4], who described the decomposition
numbers in type A4,, again for the subalgebras obtained by replacing the
subgroup U by its normaliser B. Recently, Cabanes [27] has determined the
extension groups and blocks of E. He has also given a different description
of the Cartan invariants. The approach in all of these papers is via the well-
known description of the algebra by generators and relations [2, Sect. 2.
We shall instead exploit the fact that E is the endomorphism ring of a
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module about which much is known [5, 14, 17]. The operation of E on the
left of Y defines an (£, kG)-bimodule structure on Y. It is well known [8,
Prop. 6.3] that the restrictions of the functors Hom,4( Y, -) and (-) ® s ¥
are inverse k-equivalences between the full subcategory add Y of finitely
generated right kG-modules with indecomposable direct summands
isomorphic to those of Y and the category of finitely generated projective
right E-modules. (Corresponding equivalences also hold over ¢ and K.) It
is also known [17] that E is a Frobenius algebra. It follows that the
Cartan invariants are nothing other than the intertwining numbers between
the various indecomposable direct summands of ¥. Since these summands
are trivial source modules, the calculation of their intertwining numbers is
reduced to that of the inner products of the ordinary characters afforded by
lifts to characteristic zero of these modules. We shall compute these using
an induction formula, proved by N. Tinberg [17] for characters and
extended to the Green ring in [14]. There, we computed these numbers for
the submodule ind 5 ;(k), and observed a duality phenomenon. This case
had previously been calculated in [12]. In Section 4, we prove that at least
for the summands of the permutation module on the cosets of the subgroup
B, this duality is the restriction of the one studied by Curtis [6] and Alvis
[1]. This follows from the formula we shall obtain for the decomposition
numbers of the triple (E, Ex, E). This formula is the same as one which
appears in work of Stanley [157], and so the decomposition numbers have
the combinatorial description given to this formula there. In particular, for
type A;, our calculation of the decomposition numbers explains why the
same numbers appear in [15, 4].

1. PRELIMINARIES

We recall some notation and basic facts (cf. [3]); thus we have sub-
groups B, N, H, U, with Ue Syl (G), B=UH, H being abelian of order
prime to p, H=Bn N=aN, and a Weyl group

W=N/H=<{w,|ieR>,

where R is the set of fundamental roots corresponding to B in the root
system @ on which W operates. For each subset S of @ we denote by W
the subgroup of W generated by the elements w,, se S.

For each subset J < R, we have a standard parabolic subgroups N, of N
and G,= (B, N,) of G such that G, =B and G,=G, and a parabolic
subgroup W,=<w;|ieJ). It follows from the remarks after [3, p. 60,
Corollary 2.6.2] that it is possible to pick coset representatives n,,, we W
so that each lies in the kernel of every character y: G,— k* of every
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standard parabolic subgroup to which it belongs. We shall fix such a choice
throughout. Let wy, be the longest element of W and let U, be the sub-
group Un U™R™. If ¥ is a root system with base 4 and Weyl group W,
we define for J€ Lc 4,

X(¥),={weW,|w (J)>0},

Z(¥), = {we W, | w=(J)>0,w {(L\J)<0).

The set X(¥), is a set of right coset representatives of W,, in W, and the
set X(¥),n X(¥);" is a set of (W,,, W,x) double coset representatives in
W, [3, Proposition 2.7.3]. The set {n, | we X(®),} is a set of right coset
representatives of G, in G, and for J, K< R, the set

{n. | weX(®),nX(@)x'}

is a set of representatives for (G,, G ) double cosets in G and for (N,, N)
in N [3, Proposition 2.8.1]. We shall identify the group of K-characters
and the group of k-characters of H via the natural map @ — k, and denote
the group by H. No confusion will arise since we shall be interested in the
action of W on these groups by A*(h)= A(n,hn_"'), where A is a (K- or)
k-character of H, and the map above is clearly a W-map. Let X, be the
root subgroup corresponding to the root a (see [3, p. 50]), and for ie R,
denote by H, the subgroup Hn {(X;, X_,;>. For Ae Hom(H, k*), we define
the set M(A)={ieR| ily=1}.

Let W, be the stabilizer of A and W(4) the (normal) subgroup of W,
generated by its reflections. Then W{(1) is the Weyl group of a root system
@, = @ with base R, containing M(4) (but the inclusion R, < R need not
hold). Moreover, W, is the semidirect product of W(1) with the subgroup
C,:={weW,|w(R;)=R,}. These facts are due to Kilmoyer [10] and
Howlett-Kilmoyer [9] and can be found in [3, Proposition 10.6.3].

Curtis [5] has shown that the module ¥ has the following decomposi-
tion into pairwise nonisomorphic indecomposable direct summands:

Y= Y(x J)

(/)

Here the indices (x, J) run through all pairs consisting of an element y of
H and a subset J of M(y). Let L, be a kB-module affording x. Then [5],
L, extends (uniquely) to G,,,,, and we have the following formula in the
Green ring of kG [14, Theorem 2]:

Y, N= Y (=1)*"indg, 6(L,). (*)

JS K M(y)



270 PETER SIN

Finally, we shall use “( , )” for the usual inner product of (ordinary)
characters, and if « is a character of a subgroup D of a group 4, we shall
write o} for the induced character.

2. COMPUTATION OF THE CARTAN INVARIANTS

We denote the projective indecomposable E-modules by
E(y, J) :=Hom4( Y, Y(y, J)).
Thus, we have
E=&® E(x, J)),
(x.J)

where the indices run over all admissible pairs as above.
The Cartan invariants are given by

Cokninn= dim,(Homg(E(y, J), E(%, K))).

Suppose A and y are elements of H with y= 1" for some element we W.
Then clearly W(yx)= W(A)" and so there is an element w’' e W(y) such that
ww(R;)=R,. For each subset K< R; we let K :=w'w(K). Then K’
depends on the choice of w but different choices give sets which are
conjugate by an element of C;. The aim of this section is to prove:

THEOREM 1. (a) If yx and i are not W-conjugate then all of the
C k.0 are zero.

(b) If x and i are W-conjugate, then
Corrnwn= 2 2P0 0 Z(Py) saisye xel-
ceCy
The following result is well known and stems from an idea of Steinberg

(16, Lemma 2.2]].

LEMMA 2. For A, ye H, K< M(4), and J < M(y), we have

(Xg,’ ig,() = (X%,’ A‘II:I/K)‘

Proof. We may take the same set of double coset representatives on
both sides (cf. Section 1)} and then by the Mackey formula, both sides are
equal to the number of these double coset representatives which map y
to A
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LEMMA 3. Suppose y and A are W-comjugate. Then for J< M(y) and
K< M(A) we have in the notation of Section 1,

(AN A= 2 1X(D,), 0 X(D ).
ceCy

Proof. We have
(XN A = (N, XN

By Clifford theory, the last inner product is equal to

(XNE AN

where N, is the stabiliser of x in N, which is clearly the inverse image in
N of W,. Now the result follows from the Mackey formula since the
elements cx, as ¢ and x run through C, and X(®,),n X(® ). respec-

tively, are a set of double coset representatives for (N,, Ng) in N,.

Proof of Theorem 1. By the remarks in the introduction, the Cartan
invariant C; g, (., is equal to the inner product of the characters of
Y(yx, J)x and Y(4, K)g. If y and 4 are not W-conjugate, then it follows from
the Mackey formula that (x$, A$)=0, proving (a). We suppose then that
x and A are W-conjugate. By the formula (x), this is

x (DS (=DTR E L Ag).
JeScM(y) KT M)

If y and 4 are not W-conjugate, then it follows by Lemmas 2 and 3, this
becomes

)IEDY Yo (=D ()T X(B,), A X(P) 5.

ceCy JeSeM(y) KcsTSM(x)*

Next, we note that if /& S and Q = T then
X(@)sn X(D) ' S X(P,),n X(P,)7!

Nl Nl

X(®)snX(D);' s X(D,), N X(@,),".

Thus, the contribution to the sum from an element we X(®,),n X(®,)
is zero unless w lies in none of the sets X(®,)sN X(P,);"' for J& S or
K’ T, in which case the contribution is 1. This proves Theorem 1.

CorOLLARY 4. dim E(x, J) = |W : Wy |Z(P asiyy) s -
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Proof. We sum the Cartan invariants C; x (., over all 1 in the
W-orbit of x and all subsets K< M(4). For fixed X and ce C, we have

Z ,Z((bx)M(x),JnZ(gbx)z‘_,f(lx)w,nc, = |Z{D ) ). 5

K< M(4)
Thus, ~
dimk E(17 J) = |W le lc)(l |Z(¢1)M(x),,l|~
Now,
lZ(¢x)M(x),J| = Z (_l)ls\jl [W(x): Wl
JS S M(x)
=W Wl Y (=) Wy, Wl
JeS<M(y)

=|W(y): WM(x)I IZ(¢M()())M(X),J|-

The result follows.

3. Duauity
We may now generalise [ 14, Theorem 8].

THEOREM 5. The mapping Y(yx, J) — Y(x, M(x)\J) defines an isometry
of order two on the subgroug of the character ring of G spanned by the
characters of {Y(x, N)x | xe H, J= M(y)}.

Proof. Let w, be the longest element of W(y) (see [3]). Then for each
ScR,, we have WP=W_, . Thus the sets X(®,),n X(®,);: and
X(D,),nX (dix):}m( x« of double coset representatives have the same size.
It follows that the sets Z(D,)u,s N Z(P ) sstaye ke and Z(D) a0 O
Z(D )~ miyer.—woky 8ls0 have the same size and now right multiplica-

tion by w, maps the latter set bijectively onto Z(®P, ), muns N
Z(D ) rriaye. muankye> SO the result follows from Theorem 1.

In Section 4, we shall give an alternative proof of Theorem 5 which will
give the connection with the Alvis—Curtis map.

4. DECOMPOSITION NUMBERS
We have

Y=@ Y,

xeH
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where Y* is the module induced from the one-dimensional representation
of B affording y. Let E* be the endomorphism ring of Y* It has a natural
basis {T, |we W,} (see [3, 10.8]). As before, we set Y% :=Y* ®, K and
E%* :=F*®, K. We need to recall some facts about the generic algebra
associated to E, (see [3]). It is an associative algebra A(t,) over the ring
K[t,] of polynomials over K in |R,| variables, one for each € R, with
basis {a,|we W,} and satisfying certain relations (see [3,p.357]). A
specialisation A(l,) of A(t,) is the algebra obtained from a homomorphism
K[t,]-K, t,—1,. It is known [3,10.6 and Theorem 10.8.5] that if one
chooses p,=|X,| then the algebra A(p,) is isomorphic to E% by an
isomorphism mapping the image of a, to T,. Also, the specialisation
1,/ 1 gives an isomorphism A(1)=~ KW, in which the image of a, is
mapped to w (y extends to W, by [9, Theorem 2.187).

Let F be an algebraic closure of the field of quotients of K[¢,]. By Tits’
theorem on specialisations of A(z,), the isomorphism classes of simple
modules of each of the algebras A(t,)r:= A(1,) ® k.1 F, E% and KW,
correspond bijectively via the above specialisations. They are therefore
indexed by the irreducible K-characters Irr(W,) of W,. For ¢ elrr(W ),
denote by V, the corresponding E%-module and by D, the corresponding
A(t,)r-module. Thus, the image of the primitive idempotent of A(z,)r
generating the right ideal isomorphic to Dy maps under the above
specialisations to those idempotents corresponding to the module V', and
the character ¢, respectively.

By the equivalances of categories considered in the introduction, the
simple KG-modules which occur as constituents of Y% are in natural bijec-
tion with the simple E%-modules, so they are also indexed by Irr(W,). We
write M, for the simple KG-module V, ®, Y%. Similarly, the simple
E-modules are in bijection with the simple KG-modules which are con-
stituents of Y. Since Y%=, Y% if and only if y and 4 are W-conjugate,
we see that the simple Eg-modules are indexed by the set

U Irre(w

where y is a set of representatives of W-orbits on H. Moreover, if the
simple module V' corresponds to ¢elrr(W),), then the restriction of V
to the subalgebra E* is just the module ¥, of the preceeding paragraph,
so we shall use the notation ¥, for both the E -module and its restriction,
bearing in mind that the two E-modules V,, gclrr(W,) and V., ¢" €
Irr(W?7) are the same.

We take an FE-invariant O-lattice V¢ in ¥, and consider the E-module
V,,, ® ¢ k. Let L(4, J) be the simple E-module in the head of E(/, J). Then
the decomposition number d (; ,, is the multiplicity of L(4,J) as a com-
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position factor of I7'¢ ® ¢ k. By “Brauer Reciprocity” (see [13]), dy (1, is
also the multiplicity of M in Y(A, J)x. Since Y% and Y} have no common
constituents if y and 4 are not W-conjugate, we see that d; (, ,, =0 in this
case. Thus, we only have to determine the multiplicities of the modules M,
in the modules Y(y, J)x when ¢ is an irreducible character of W,. The
following lemma is a slight extension of a well-known result [7, Proposi-
tion 8.4].

LEMMA 6. Let J= M(y) and ¢ €Irx(W,). Then (identifying KG-modules
with their characters) we have

(Xg,’ V¢) = (1 :lylix ¢)

Proof. The module Y% which affords x$ may be identified with the
right ideal of KG generated by

epi=1B"" ¥ 16 ")b.

beB

Under this identification we have E%X=¢,KGeyz, and a map feFE%
becomes identified with f(ey).
We show that the idempotent

ew, =\W,|7" Y w
we Wy
of KW, which generates the right ideal of KW corresponding to the
induced character 1% and the idempotent

e, =1G,17" Y g g

geGy

of E% corresponding to the induced character xg, are both specialisations
of the idempotent

e,:=< Y tw>l Y a,

we Wy we Wy

of the generic algebra A(t,)x,,, under the specialisations which give ¢ and
V4, respectively (for we W,,(,, the monomial ¢, is defined to be [],,¢,, with
the product taken over ;€ M(y) in a reduced expression w=w,, ---w, (cf.
[3, p. 3611])). It follows from this that the multiplicities in the statement are
both equal to the multiplicity of D, in the right ideal of A(t,) ® k1 F
generated by e,.

It is clear that e; maps to ey,,. In order to prove that e, maps to e;,, we
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note first that when p, is substituted for 7, in 3. w, ¢,, it becomes |G, : B|.
So we must show that

ec,=1G,:B" ¥ T,

we Wy

When we W,,,,, the basis element T, of E% is the map sending e, to
|U,| egn, (see [3,10.8]), and using the fact that y(n,)=1 (see Section 1)
this may be seen to be the map which sends e, to

1BI7' ) xg e
geBn,B
It then follows from the Bruhat decomposition G;=J,,c w, Bn,, B, and the
above identifications that e, is the specialisation of e,.
THEOREM 7. For ye H, J< M(y), and pelrr(W,) we have
dyony= 2 (=D ).
J=S< My

Proof. From the discussion at the beginning of this section, we have

g .= (Yl ks V).

The result now follows by applying the formula (*) and Lemma 6.
Next we point out the connection with Alvis—Curtis duality:

THEOREM 8. Let ¢ be the sign character of W. Then

Ao, 0.0) = g (MO0
Proof. Write J* for M(x)\J. By Theorem 7, it suffices to prove
YO (D)= Y (=T
Je S M(yx) JreTce M(y)

Clearly, we need only prove the same equation with W, replaced by W,,,,,
which is a Coxeter group. We may therefore use Solomon’s formula for ¢
[3, Prop. 6.2.1],

ewy= Y (~1)@1
QsS

The left hand side of the desired equation becomes

Y (=DEVYEY (—1)e g,

JeSeM(y) [oX=N)
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For each subset Q the term l%’m appears for each T containing QU J*
with a sign, so that the coefficient of 1},* is zero unless Q 2 J*, in which
case we must have T'= M(y). This shows that the desired equation holds.

Remarks. (1) Curtis [6, Theorem 1.7] has proved that under his
duality map a constituent M, of Y} is mapped to M. Thus, the above
theorem shows that for these characters our duality map coincides with his.

(2) Another way to prove that our map gives an isometry, without
computing the Cartan invariants, would be to show that it is the composi-
tion of the following isometries. Let f be the isometry of Lemma 2 and m
multiplication by ¢ (considered as a character of N). Then one can show
using the argument in the proof of Theorem 8, that the map Y(y, J)+—
Y(x, M(x\J)) is f~'mf.

(3) In the case y=1, write d,, for the decomposition number
ds . JER, plrr W. The formula for d, , reduces to

Y (=1 ¢).
JeScR

This formula has been studied by Stanley [15], for Weyl groups of types
A and B/C, in another connection. He gives the following interesting com-
binatorial interpretations: In type A, W is the symmetric group of degree
n=|R|+ 1 and Irr W is indexed by partitions of n. The number d, , is then
the number of standard Young tableaux whose underlying partition is the
one corresponding to ¢ and whose “descent set” is J. In type B, Irr W is
indexed by pairs (A4, B) of partitions such that |4| 4+ |B|=n, and d, , is
then the number of pairs of standard tableaux of shape (4, B) with
“descent set” J. Carter [4], computed the decomposition numbers of E}
for type 4 and obtained the same answer, so Theorem 7 explains why the
answer was the same. Furthermore, the well-known equation D'D=C
relating the decomposition and Cartan matrices can be described in terms
of the Robinson—Schensted map in type 4 [4, p. 101], and a generalisation
of this defined in [ 15, p. 145] for type B. A description of the multiplicities
(1}, ¢) for type B also appears in [11]. Some of the decomposition
numbers have been obtained independently by Khammash [18].
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