Classical Modules, Simple Modules and Incidence Matrices

Peter Sin

University of Florida

Finite Groups, Representations, and Related Topics
Oxford, August, 2012
Outline

Classical Weyl modules

Classical polar spaces over finite fields

Weyl modules and Jantzen Sum Formula

Oppositeness in buildings
\[G = \text{SL}(n, k), \ k \text{ algebraically closed.} \]

\[V \text{ standard module, } P = \text{max parabolic subgroup stabilizing 1-dimensional subspace.} \]

Then \[G/P \cong \mathbf{P}(V), \] homogeneous coordinate ring is
\[S(V^*) = \bigoplus_{d \geq 0} S^d(V^*) \]

The modules \[S^d(V^*) \] are simple if \(k \) has characteristic 0.

In characteristic \(p > 0 \) \(S^d(V^*) \) are simple for \(d < p \).

The \(G \)-submodule lattice of every \(S^d(V^*) \) was described by Doty, Krop, (1980).

\[G = \text{Sp}(n, k), \ S^d(V^*) \text{ are simple for } d < p. \]

Submodule lattice of \(S^d(V^*) \) for certain \(d \geq p \) by Lahtonen, (1990).
\(G = \text{SL}(n, k), \) \(k \) algebraically closed.

\(V \) standard module, \(P = \text{max parabolic subgroup stabilizing 1-dimensional subspace.} \)

Then \(G/P \cong \mathbf{P}(V) \), homogeneous coordinate ring is
\[
S(V^*) = \bigoplus_{d \geq 0} S^d(V^*)
\]
The modules \(S^d(V^*) \) are simple if \(k \) has characteristic 0.

In characteristic \(p > 0 \) \(S^d(V^*) \) are simple for \(d < p \).

The \(G \)-submodule lattice of every \(S^d(V^*) \) was described by Doty, Krop, (1980).

\(G = \text{Sp}(n, k), \) \(S^d(V^*) \) are simple for \(d < p \).

Submodule lattice of \(S^d(V^*) \) for certain \(d \geq p \) by Lahtonen, (1990).
\(G = \text{SL}(n, k), \ k \) algebraically closed.

\(V \) standard module, \(P=\text{max parabolic subgroup stabilizing} \)

\(\text{1-dimensional subspace}. \)

Then \(G/P \cong P(V) \), homogeneous coordinate ring is
\[
S(V^*) = \bigoplus_{d \geq 0} S^d(V^*)
\]

The modules \(S^d(V^*) \) are simple if \(k \) has characteristic 0.

In characteristic \(p > 0 \) \(S^d(V^*) \) are simple for \(d < p \).

The \(G \)-submodule lattice of every \(S^d(V^*) \) was described
by Doty, Krop, (1980).

\(G = \text{Sp}(n, k), \ S^d(V^*) \) are simple for \(d < p \).

Submodule lattice of \(S^d(V^*) \) for certain \(d \geq p \) by
\(G = \text{SL}(n, k), \ k \text{ algebraically closed.} \)

\(\mathcal{V} \) standard module, \(P=\text{max} \) parabolic subgroup stabilizing 1-dimensional subspace.

Then \(G/P \cong P(\mathcal{V}), \) homogeneous coordinate ring is
\[S(\mathcal{V}^*) = \bigoplus_{d \geq 0} S^d(\mathcal{V}^*) \]

The modules \(S^d(\mathcal{V}^*) \) are simple if \(k \) has characteristic 0.

In characteristic \(p > 0 \) \(S^d(\mathcal{V}^*) \) are simple for \(d < p. \)

The \(G \)-submodule lattice of every \(S^d(\mathcal{V}^*) \) was described by Doty, Krop, (1980).

\(G = \text{Sp}(n, k), \ S^d(\mathcal{V}^*) \) are simple for \(d < p. \)

Submodule lattice of \(S^d(\mathcal{V}^*) \) for certain \(d \geq p \) by Lahtonen, (1990).
$G = \text{SL}(n, k)$, k algebraically closed.

V standard module, $P=\text{max}$ parabolic subgroup stabilizing 1-dimensional subspace.

Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d \geq 0} S^d(V^*)$

The modules $S^d(V^*)$ are simple if k has characteristic 0.

In characteristic $p > 0$ $S^d(V^*)$ are simple for $d < p$.

The G-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).

$G = \text{Sp}(n, k)$, $S^d(V^*)$ are simple for $d < p$.

Submodule lattice of $S^d(V^*)$ for certain $d \geq p$ by Lahtonen, (1990).
$G = SL(n, k)$, k algebraically closed.

V standard module, $P = \text{max parabolic subgroup stabilizing 1-dimensional subspace.}$

Then $G/P \cong P(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d \geq 0} S^d(V^*)$

The modules $S^d(V^*)$ are simple if k has characteristic 0.

In characteristic $p > 0$ $S^d(V^*)$ are simple for $d < p$.

The G-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).

$G = Sp(n, k)$, $S^d(V^*)$ are simple for $d < p$.

Submodule lattice of $S^d(V^*)$ for certain $d \geq p$ by Lahtonen, (1990).
$G = \text{SL}(n, k)$, k algebraically closed.

V standard module, $P = \text{max}$ parabolic subgroup stabilizing 1-dimensional subspace.

Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d \geq 0} S^d(V^*)$

The modules $S^d(V^*)$ are simple if k has characteristic 0.

In characteristic $p > 0$ $S^d(V^*)$ are simple for $d < p$.

The G-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).

$G = \text{Sp}(n, k)$, $S^d(V^*)$ are simple for $d < p$.

Submodule lattice of $S^d(V^*)$ for certain $d \geq p$ by Lahtonen, (1990).
$G = \text{SL}(n,k)$, k algebraically closed.

- V standard module, $P=\text{max}$ parabolic subgroup stabilizing 1-dimensional subspace.

Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d \geq 0} S^d(V^*)$

- The modules $S^d(V^*)$ are simple if k has characteristic 0.

- In characteristic $p > 0$ $S^d(V^*)$ are simple for $d < p$.

- The G-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).

$G = \text{Sp}(n,k)$, $S^d(V^*)$ are simple for $d < p$.

- Submodule lattice of $S^d(V^*)$ for certain $d \geq p$ by Lahtonen, (1990).
Simple algebraic groups

- G simple algebraic group over k, λ dominant weight
- $V(\lambda)$, $P =$ max parabolic stabilizing highest weight vector.
- G/P embeds into $\mathbf{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called classical Weyl modules.
- $G = \text{Spin}_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbf{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- The characters of Weyl modules are given by Weyl's Character Formula.
- Weyl modules are simple in characteristic zero, so assume $\text{char } k = p > 0$.
Simple algebraic groups

- G simple algebraic group over k, λ dominant weight
- $V(\lambda)$, P = max parabolic stabilizing highest weight vector.
- G/P embeds into $\mathbb{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called classical Weyl modules.
- $G = Spin_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbb{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- The characters of Weyl modules are given by Weyl’s Character Formula.
- Weyl modules are simple in characteristic zero, so assume $\text{char } k = p > 0$.
Simple algebraic groups

- G simple algebraic group over k, λ dominant weight
- $V(\lambda)$, $P= \text{max parabolic stabilizing highest weight vector}$.
- G/P embeds into $\mathbf{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called classical Weyl modules.
- $G = \text{Spin}_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbf{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- The characters of Weyl modules are given by Weyl’s Character Formula.
- Weyl modules are simple in characteristic zero, so assume $\text{char} \ k = p > 0$.
Simple algebraic groups

- G simple algebraic group over k, λ dominant weight
- $V(\lambda)$, $P=\text{max parabolic stabilizing highest weight vector.}$
- G/P embeds into $\mathbb{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0 \lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called classical Weyl modules.
- $G = \text{Spin}_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbb{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- The characters of Weyl modules are given by Weyl’s Character Formula.
- Weyl modules are simple in characteristic zero, so assume $\text{char } k = p > 0$.

Simple algebraic groups

- G simple algebraic group over k, λ dominant weight
- $V(\lambda)$, P = max parabolic stabilizing highest weight vector.
- G/P embeds into $\mathbb{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called classical Weyl modules.
- $G = Spin_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbb{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- The characters of Weyl modules are given by Weyl’s Character Formula.
- Weyl modules are simple in characteristic zero, so assume $\text{char } k = p > 0$.
Simple algebraic groups

- G simple algebraic group over k, λ dominant weight
- $V(\lambda)$, $P=$ max parabolic stabilizing highest weight vector.
- G/P embeds into $\mathbb{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called classical Weyl modules.
- $G = \text{Spin}_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbb{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- The characters of Weyl modules are given by Weyl’s Character Formula.
- Weyl modules are simple in characteristic zero, so assume char $k = p > 0$.
G simple algebraic group over k, λ dominant weight

$V(\lambda)$, P = max parabolic stabilizing highest weight vector.

G/P embeds into $\mathbf{P}(V(\lambda))$, homogeneous coordinate ring is

$$S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$$

(Ramanan-Ramanathan, 1985).

When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called classical Weyl modules.

$G = Spin_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbf{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$

The characters of Weyl modules are given by Weyl’s Character Formula.

Weyl modules are simple in characteristic zero, so assume $\text{char } k = p > 0$.
This talk is about results describing the G-submodule lattice of $V(r\omega_1)$, for $r \leq p - 1$, when G is a classical group or of type E_6.

The characters of the simple modules $L(r\omega_1)$ for all r can then be computed by Steinberg’s Tensor Product Theorem.
This talk is about results describing the G-submodule lattice of $V(r\omega_1)$, for $r \leq p - 1$, when G is a classical group or of type E_6.

The characters of the simple modules $L(r\omega_1)$ for all r can then be computed by Steinberg’s Tensor Product Theorem.
Outline

Classical Weyl modules

Classical polar spaces over finite fields

Weyl modules and Jantzen Sum Formula

Oppositeness in buildings
Finite Polar Spaces

- V a vector space over \mathbb{F}_q, $q = p^t$ with nonsingular form $b(-, -)$.
- b may be alternating or symmetric or hermitian.
- $P = \{\text{singular 1-dimensional subspaces}\}$, “points”
- $P^* = \{p^\perp \mid p \in P\}$, “polar hyperplanes”.
Finite Polar Spaces

- V a vector space over \mathbb{F}_q, $q = p^t$ with nonsingular form $b(\cdot, \cdot)$.
- b may be alternating or symmetric or hermitian.
- $P = \{\text{singular 1-dimensional subspaces}\}$, “points”
- $P^* = \{p^\perp \mid p \in P\}$, “polar hyperplanes”.
Finite Polar Spaces

- V a vector space over \mathbb{F}_q, $q = p^t$ with nonsingular form $b(-, -)$.
- b may be alternating or symmetric or hermitian.
- $P = \{\text{singular 1-dimensional subspaces}\}$, “points”
- $P^* = \{p^\perp \mid p \in P\}$, “polar hyperplanes”.
Finite Polar Spaces

- V a vector space over \mathbb{F}_q, $q = p^t$ with nonsingular form $b(-,-)$.
- b may be alternating or symmetric or hermitian.
- $P = \{\text{singular 1-dimensional subspaces}\}$, “points”
- $P^* = \{p^\perp \mid p \in P\}$, “polar hyperplanes”.
An ovoid is a set of points of such that each max. tot. singular subspace contains exactly one point of the set. Any ovoid must have size

\[N := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}} \]

An general problem is to determine which polar spaces have ovoids.

Let \(A \) be the 0-1 incidence matrix with rows indexed by \(P \) and columns indexed by \(P^* \) and entry 1 iff the point lies on the hyperplane.

(Moorhouse) An ovoid determines an identity \(N \times N \) submatrix of \(A \).

\(A \) may be considered over any field. If for some prime \(\ell \) we have \(\text{rank}_\ell A < N \), then ovoids do not exist.

The smallest rank occurs when \(\ell = p \).

(Moorhouse, 2006) What is \(\text{rank}_p A \)?
Ovoids

- An *ovoid* is a set of points of such that each max. tot. singular subspace contains exactly one point of the set. Any ovoid must have size

$$N := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}}$$

- An general problem is to determine which polar spaces have ovoids.
- Let A be the 0-1 incidence matrix with rows indexed by P and columns indexed by P^* and entry 1 iff the point lies on the hyperplane.
- (Moorhouse) An ovoid determines an identity $N \times N$ submatrix of A.
- A may be considered over any field. If for some prime ℓ we have $\text{rank}_\ell A < N$, then ovoids do not exist.
- The smallest rank occurs when $\ell = p$.
- (Moorhouse, 2006) What is $\text{rank}_p A$?
An ovoid is a set of points of such that each max. tot. singular subspace contains exactly one point of the set. Any ovoid must have size

\[N := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}} \]

An general problem is to determine which polar spaces have ovoids.

Let \(A \) be the 0-1 incidence matrix with rows indexed by \(P \) and columns indexed by \(P^* \) and entry 1 iff the point lies on the hyperplane.

(Moorhouse) An ovoid determines an identity \(N \times N \) submatrix of \(A \).

\(A \) may be considered over any field. If for some prime \(\ell \) we have \(\text{rank}_\ell A < N \), then ovoids do not exist.

The smallest rank occurs when \(\ell = p \).

(Moorhouse, 2006) What is \(\text{rank}_p A \)?
Ovoids

- **An ovoid** is a set of points of such that each max. tot. singular subspace contains exactly one point of the set. Any ovoid must have size

\[N := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}} \]

- An general problem is to determine which polar spaces have ovoids.
- Let \(A \) be the 0-1 incidence matrix with rows indexed by \(P \) and columns indexed by \(P^* \) and entry 1 iff the point lies on the hyperplane.
- (Moorhouse) An ovoid determines an identity \(N \times N \) submatrix of \(A \).
- \(A \) may be considered over any field. If for some prime \(\ell \) we have \(\text{rank}_\ell A < N \), then ovoids do not exist.
- The smallest rank occurs when \(\ell = p \).
- (Moorhouse, 2006) What is \(\text{rank}_p A \)NavLink
Ovoids

- An *ovoid* is a set of points of such that each max. tot. singular subspace contains exactly one point of the set. Any ovoid must have size

\[N := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}} \]

- An general problem is to determine which polar spaces have ovoids.

- Let \(A \) be the 0-1 incidence matrix with rows indexed by \(P \) and columns indexed by \(P^* \) and entry 1 iff the point lies on the hyperplane.

- (Moorhouse) An ovoid determines an identity \(N \times N \) submatrix of \(A \).

- \(A \) may be considered over any field. If for some prime \(\ell \) we have \(\text{rank}_\ell A < N \), then ovoids do not exist.

- The smallest rank occurs when \(\ell = p \).

- (Moorhouse, 2006) What is \(\text{rank}_p A \)?
An ovoid is a set of points of such that each max. tot. singular subspace contains exactly one point of the set. Any ovoid must have size

\[
N := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}}
\]

An general problem is to determine which polar spaces have ovoids.

Let \(A \) be the 0-1 incidence matrix with rows indexed by \(P \) and columns indexed by \(P^* \) and entry 1 iff the point lies on the hyperplane.

(Moorhouse) An ovoid determines an identity \(N \times N \) submatrix of \(A \).

\(A \) may be considered over any field. If for some prime \(\ell \) we have \(\text{rank}_\ell A < N \), then ovoids do not exist.

The smallest rank occurs when \(\ell = p \).

(Moorhouse, 2006) What is \(\text{rank}_p A \)?
Ovoids

- An *ovoid* is a set of points of such that each max. tot. singular subspace contains exactly one point of the set. Any ovoid must have size

\[N := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}} \]

- An general problem is to determine which polar spaces have ovoids.
- Let \(A \) be the 0-1 incidence matrix with rows indexed by \(P \) and columns indexed by \(P^* \) and entry 1 iff the point lies on the hyperplane.
- (Moorhouse) An ovoid determines an identity \(N \times N \) submatrix of \(A \).
- \(A \) may be considered over any field. If for some prime \(\ell \) we have \(\text{rank}_\ell A < N \), then ovoids do not exist.
- The smallest rank occurs when \(\ell = p \).
- (Moorhouse, 2006) What is \(\text{rank}_p A \)?
Permutation modules

- $G(q)$ = group of linear transformations preserving $b(-, -)$.
- $k[P], kG(q)$-permutation module on P.
- $k[P] \cong k.1 \oplus Y_P$,
- head(Y_P) \cong soc(Y_P), a simple module L.
Permutation modules

- \(G(q) \) = group of linear transformations preserving \(b(-, -) \).
- \(k[P], kG(q) \)-permutation module on \(P \).
- \(k[P] \cong k.1 \oplus Y_P \),
- \(\text{head}(Y_P) \cong \text{soc}(Y_P) \), a simple module \(L \).
Permutation modules

- $G(q) =$ group of linear transformations preserving $b(−, −)$.
- $k[P]$, $kG(q)$-permutation module on P.
- $k[P] ≅ k.1 ⊕ Y_P$,
- head$(Y_P) ≅$ soc(Y_P), a simple module L.
Permutation modules

- $G(q) = \text{group of linear transformations preserving } b(-, -)$.
- $k[P], kG(q)$-permutation module on P.
- $k[P] \cong k.1 \oplus Y_P$,
- head(Y_P) \cong soc(Y_P), a simple module L.
The incidence matrix A corresponds to a $kG(q)$-module homomorphism

$$
\phi \in \text{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^\perp} p'.
$$

$$
\text{Im} \phi = k.1 \oplus L.
$$

Outcome: $\text{rank}_p A = 1 + \text{dim } L.$
Identifying the simple module L

$L \cong L((q - 1)\omega)$,

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

By Steinberg’s Tensor Product Theorem,

$L((q - 1)\omega) = L((p - 1)\omega) \otimes L((p - 1)\omega)^{(p)} \cdots \otimes L((p - 1)\omega)^{(p^{t-1})}$

Conclusion: $\text{rank}_p A = 1 + (\dim L((p - 1)\omega))^t$.

Note that for even-dimensional orthogonal groups, the p-rank is independent of Witt index.

Ovoids \leadsto p-ranks \leadsto simple modules $L((p - 1)\omega)$

\leadsto Weyl modules $V((p - 1)\omega)$, $\omega = \omega_1$ or $\omega_1 + \omega_\ell$.
Identifying the simple module L

$L \cong L((q - 1)\omega),$

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

By Steinberg’s Tensor Product Theorem,

$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$

Conclusion: $\text{rank}_p A = 1 + (\dim L((p - 1)\omega))^t.$

Note that for even-dimensional orthogonal groups, the p-rank is independent of Witt index.

Ovoids \leadsto p-ranks \leadsto simple modules $L((p - 1)\omega)$ \leadsto Weyl modules $V((p - 1)\omega), \omega = \omega_1$ or $\omega_1 + \omega_\ell.$
Identifying the simple module L

▶

\[L \cong L((q - 1)\omega), \]

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

▶ By Steinberg’s Tensor Product Theorem,

\[L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})} \]

▶ Conclusion: $\text{rank}_p A = 1 + (\dim L((p - 1)\omega))^t$.

▶ Note that for even-dimensional orthogonal groups, the p-rank is independent of Witt index.

▶

Ovoids \leadsto \(p \)-ranks \leadsto simple modules $L((p - 1)\omega)$

\leadsto Weyl modules $V((p - 1)\omega)$, $\omega = \omega_1$ or $\omega_1 + \omega_\ell$.
Identifying the simple module L

\[
L \cong L((q-1)\omega),
\]

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

By Steinberg’s Tensor Product Theorem,

\[
L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}
\]

Conclusion: $\text{rank}_p A = 1 + (\dim L((p-1)\omega))^t$.

Note that for even-dimensional orthogonal groups, the p-rank is independent of Witt index.

Ovoids \leadsto p-ranks \leadsto simple modules $L((p-1)\omega)$

\leadsto Weyl modules $V((p-1)\omega)$, $\omega = \omega_1$ or $\omega_1 + \omega_\ell$.
Identifying the simple module L

\[L \cong L((q - 1)\omega), \]

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

By Steinberg’s Tensor Product Theorem,

\[L((q - 1)\omega) = L((p - 1)\omega) \otimes L((p - 1)\omega)^{(p)} \cdots \otimes L((p - 1)\omega)^{(p^{t-1})} \]

Conclusion: $\text{rank}_p A = 1 + (\dim L((p - 1)\omega))^t$.

Note that for even-dimensional orthogonal groups, the p-rank is independent of Witt index.

Ovoids \rightsquigarrow p-ranks \rightsquigarrow simple modules $L((p - 1)\omega)$

\rightsquigarrow Weyl modules $V((p - 1)\omega)$, $\omega = \omega_1$ or $\omega_1 + \omega_\ell$.
Outline

Classical Weyl modules

Classical polar spaces over finite fields

Weyl modules and Jantzen Sum Formula

Oppositeness in buildings
O. Arslan, P.S., (2011) treat the following groups and highest weights.

(B) G of type B_ℓ, ($\ell \geq 2$) $\lambda = r(\omega_1)$, $0 \leq r \leq p - 1$;

(D) G of type D_ℓ, ($\ell \geq 3$) $\lambda = r(\omega_1)$, $0 \leq r \leq p - 1$;

(A) G of type A_ℓ, ($\ell \geq 3$) $\lambda = r(\omega_1 + \omega_\ell)$, $0 \leq r \leq p - 1$;

For type A and type C, the Weyl modules $V(r\omega_1)$ are simple for $0 \leq r \leq p - 1$.
Theorem B

Let G be of type B_ℓ, $\ell \geq 2$. Let ω_1 be the highest weight of the standard orthogonal module of dimension $2\ell + 1$. Assume $0 \leq r \leq p - 1$. Then the following hold.

(a) $H^0(r\omega_1)$ is simple unless (i) $p = 2$ and $r = 1$ or (ii) $p > 2$ and there exists a positive odd integer m such that

$$r + 2\ell - 1 \leq mp \leq 2r + 2\ell - 2.$$

(b) If (i) holds then the quotient $H^0(\omega_1)/L(\omega_1)$ is the one-dimensional trivial module.

(c) If (ii) holds then m is unique and

$$H^0(r\omega_1)/L(r\omega_1) \cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 1 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.
Theorem B

Let G be of type B_{ℓ}, $\ell \geq 2$. Let ω_1 be the highest weight of the standard orthogonal module of dimension $2\ell + 1$. Assume $0 \leq r \leq p - 1$. Then the following hold.

(a) $H^0(r\omega_1)$ is simple unless (i) $p = 2$ and $r = 1$ or (ii) $p > 2$ and there exists a positive odd integer m such that

$$r + 2\ell - 1 \leq mp \leq 2r + 2\ell - 2.$$

(b) If (i) holds then the quotient $H^0(\omega_1)/L(\omega_1)$ is the one-dimensional trivial module.

(c) If (ii) holds then m is unique and

$$H^0(r\omega_1)/L(r\omega_1) \cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 1 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.
Theorem B

Let G be of type B_ℓ, $\ell \geq 2$. Let ω_1 be the highest weight of the standard orthogonal module of dimension $2\ell + 1$. Assume $0 \leq r \leq p - 1$. Then the following hold.

(a) $H^0(r\omega_1)$ is simple unless (i) $p = 2$ and $r = 1$ or (ii) $p > 2$ and there exists a positive odd integer m such that

$$r + 2\ell - 1 \leq mp \leq 2r + 2\ell - 2.$$

(b) If (i) holds then the quotient $H^0(\omega_1)/L(\omega_1)$ is the one-dimensional trivial module.

(c) If (ii) holds then m is unique and

$$H^0(r\omega_1)/L(r\omega_1) \cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 1 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.
Theorem D
Let G be of type D_{ℓ}, $\ell \geq 3$. Let ω_1 be the highest weight of the standard orthogonal module of dimension 2ℓ. Assume $0 \leq r \leq p - 1$. Then the following hold.

(a) Suppose that there exists a positive even integer m such that

$$r + 2\ell - 2 \leq mp \leq 2r + 2\ell - 3.$$

Then m is unique and

$$H^0(r\omega_1)/L(r\omega_1) \cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 2 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.

(b) Otherwise, $H^0(r\omega_1)$ is simple.
Theorem A
Let \(G \) be of type \(A_\ell, \ell \geq 3 \). Assume \(0 \leq r \leq p - 1 \). Then the following hold.

(a) Suppose that here exists a positive integer \(m \) such that

\[
 r + \ell \leq mp \leq 2r + \ell - 1.
\]

Then \(m \) is unique and

\[
 H^0(r(\omega_1 + \omega_\ell))/L(r(\omega_1 + \omega_\ell)) \cong H^0(r_1(\omega_1 + \omega_\ell)),
\]

where \(r_1 = mp - \ell - r \). Furthermore the module \(H^0(r_1(\omega_1 + \omega_\ell)) \) is simple.

(b) Otherwise, \(H^0(r(\omega_1 + \omega_\ell)) \) is simple.
The Jantzen filtration \(V(\lambda)^i, i > 0 \), of \(V(\lambda) \) satisfies

\[
V(\lambda)^1 = \text{rad} \, V(\lambda), \quad \text{so} \quad V(\lambda)/V(\lambda)^1 \cong L(\lambda).
\]

and

\[
\sum_{i>0} \text{Ch} \, (V(\lambda)^i) = - \sum_{\alpha>0} \sum_{\{m:0<mp<\langle \lambda+\rho,\alpha \vee \rangle \}} v_p(mp) \chi(\lambda - mp\alpha)
\]

\(\chi(\mu) \) are either 0 or \(\pm \) the character of a Weyl module of “lower” weight than \(\lambda \).

Iterate the process on these Weyl module terms.
Jantzen Sum Formula

- The Jantzen filtration $V(\lambda)^i$, $i > 0$, of $V(\lambda)$ satisfies

$$V(\lambda)^1 = \text{rad } V(\lambda), \quad \text{so } V(\lambda)/V(\lambda)^1 \cong L(\lambda).$$

and

$$\sum_{i>0} \text{Ch}(V(\lambda)^i) = - \sum_{\alpha>0} \sum_{\{m: 0 < mp < \langle \lambda + \rho, \alpha \vee \rangle\}} v_p(mp) \chi(\lambda - mp\alpha)$$

- $\chi(\mu)$ are either 0 or \pm the character of a Weyl module of "lower" weight than λ.
- Iterate the process on these Weyl module terms.
Jantzen Sum Formula

- Jantzen (1977), \(p > h \), Andersen (1983), all \(p \).

- The Jantzen filtration \(V(\lambda)^i \), \(i > 0 \), of \(V(\lambda) \) satisfies

\[
V(\lambda)^1 = \text{rad } V(\lambda), \quad \text{so } V(\lambda)/V(\lambda)^1 \cong L(\lambda).
\]

and

\[
\sum_{i>0} \text{Ch}(V(\lambda)^i) = - \sum_{\alpha>0} \sum_{\{m: 0 < mp < \langle \lambda + \rho, \alpha \vee \rangle\}} v_p(mp) \chi(\lambda - mp\alpha)
\]

\(\chi(\mu) \) are either 0 or \(\pm \) the character of a Weyl module of “lower” weight than \(\lambda \).

- Iterate the process on these Weyl module terms.
Jantzen Sum Formula

- The Jantzen filtration $V(\lambda)^i$, $i > 0$, of $V(\lambda)$ satisfies

$$V(\lambda)^1 = \text{rad } V(\lambda), \quad \text{so } \frac{V(\lambda)}{V(\lambda)^1} \cong L(\lambda).$$

and

$$\sum_{i > 0} \text{Ch}(V(\lambda)^i) = - \sum_{\alpha > 0} \sum_{\{m: 0 < mp < \langle \lambda + \rho, \alpha \vee \rangle\}} v_p(mp) \chi(\lambda - mp\alpha)$$

- $\chi(\mu)$ are either 0 or \pm the character of a Weyl module of “lower” weight than λ.
- Iterate the process on these Weyl module terms.
Remarks on the proofs of Theorems B, D and A

\[\sum_{i>0} \text{Ch}(V(r\omega)^i) = - \sum_{\alpha>0} \sum_{\{m: 0 < mp < \langle r\omega + \rho, \alpha \rangle\}} v_p(mp) \chi(r\omega - mp\alpha) \]

- Need to handle the weight combinatorics uniformly with respect to parameters \(r, p, \ell \).
- The sum formula overestimates composition multiplicities.
- Nearly all root multiples contribute nothing, i.e. \(\chi(\lambda - mp\alpha) = 0 \).
- The Weyl characters which do occur in the Sum formula are of the form \(\text{Ch} V(r\omega) \).
- Theory of good filtrations (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory.
Remarks on the proofs of Theorems B, D and A

\[
\sum_{i > 0} \text{Ch}(V(r\omega)^i) = - \sum_{\alpha > 0} \sum_{\{m : 0 < mp < \langle r\omega + \rho, \alpha \rangle \}} v_p(mp) \chi(r\omega - mp\alpha)
\]

- Need to handle the weight combinatorics uniformly with respect to parameters \(r, p, \ell \).
- The sum formula overestimates composition multiplicities.
- Nearly all root multiples contribute nothing, i.e \(\chi(\lambda - mp\alpha) = 0 \).
- The Weyl characters which do occur in the Sum formula are of the form \(\text{Ch} V(r\omega) \).
- Theory of good filtrations (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory.
Remarks on the proofs of Theorems B, D and A

\[\sum_{i>0} \text{Ch}(V(r\omega)^i) = - \sum_{\alpha>0} \sum_{\{m: 0 < mp < \langle r\omega + \rho, \alpha \rangle\}} v_p(mp) \chi(r\omega - mp\alpha) \]

- Need to handle the weight combinatorics uniformly with respect to parameters \(r, p, \ell \).
- The sum formula overestimates composition multiplicities.
- Nearly all root multiples contribute nothing, i.e. \(\chi(\lambda - mp\alpha) = 0 \).
- The Weyl characters which do occur in the Sum formula are of the form \(\text{Ch} V(r\omega) \).
- Theory of good filtrations (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory.
Remarks on the proofs of Theorems B, D and A

\[\sum_{i > 0} \text{Ch}(V(r\omega)^i) = - \sum_{\alpha > 0} \sum_{\{m: 0 < mp < \langle r\omega + \rho, \alpha \rangle\}} v_p(mp) \chi(r\omega - mp\alpha) \]

- Need to handle the weight combinatorics uniformly with respect to parameters \(r, p, \ell \).
- The sum formula overestimates composition multiplicities.
- Nearly all root multiples contribute nothing, i.e \(\chi(\lambda - mp\alpha) = 0 \).
- The Weyl characters which do occur in the Sum formula are of the form \(\text{Ch} V(r\omega) \).
- Theory of good filtrations (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory.
Remarks on the proofs of Theorems B, D and A

\[\sum_{i>0} \text{Ch}(V(r\omega)^i) = - \sum_{\alpha>0} \sum_{\{m:0<mp<\langle r\omega+\rho,\alpha \rangle\}} v_p(mp) \chi(r\omega-mp\alpha) \]

Need to handle the weight combinatorics uniformly with respect to parameters \(r, p, \ell \).

The sum formula overestimates composition multiplicities.

Nearly all root multiples contribute nothing, i.e \(\chi(\lambda - mp\alpha) = 0 \).

The Weyl characters which do occur in the Sum formula are of the form \(\text{Ch} V(r\omega) \).

Theory of good filtrations (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory.
Remarks on the proofs of Theorems B, D and A

\[
\sum_{i>0} \text{Ch}(V(r_\omega)^i) = - \sum_{\alpha>0} \sum_{\{m:0<mp<(r_\omega+\rho,\alpha^\vee)\}} v_p(mp)\chi(r_\omega-mp\alpha)
\]

▶ Need to handle the weight combinatorics uniformly with respect to parameters \(r, p, \ell \).
▶ The sum formula overestimates composition multiplicities.
▶ Nearly all root multiples contribute nothing, i.e \(\chi(\lambda - mp\alpha) = 0 \).
▶ The Weyl characters which do occur in the Sum formula are of the form \(\text{Ch} V(r_\omega) \).
▶ Theory of good filtrations (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory.
Outline

Classical Weyl modules

Classical polar spaces over finite fields

Weyl modules and Jantzen Sum Formula

Oppositeness in buildings
Oppositeness

Let \((\Delta(q), S)\) be the spherical Tits building of a finite group of Lie type.

Two types \(I, J \subseteq S\) are opposite if \(I^{w_0} = J\).

If \(w_0 = -1\) then every type is its own opposite.

Assume \(I\) and \(J\) are opposite types. We say the cosets \(gP_I\) and \(hP_J\) of the parabolic subgroups are opposite iff \(P_ig^{-1}hP_J = P_iw_0P_J\).

Oppositeness map:

\[
\eta : \text{ind}_{P_I}^{G(q)}(k) \rightarrow \text{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J
\]

By Carter and Lusztig (1976) \(\text{Im} \eta\) is a simple module of the form

\[
L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \otimes \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}
\]

The complements of the points vs. polar hyperplanes relations for classical groups are oppositeness relations, with \(\omega_I = \omega\).
Let \((\Delta(q), S)\) be the spherical Tits building of a finite group of Lie type.

Two types \(I, J \subseteq S\) are opposite if \(I^{w_0} = J\).

If \(w_0 = -1\) then every type is its own opposite.

Assume \(I\) and \(J\) are opposite types. We say the cosets \(gP_I\) and \(hP_J\) of the parabolic subgroups are opposite iff \(P_I g^{-1} hP_J = P_I w_0 P_J\).

Oppositeness map:

\[
\eta : \text{ind}_{P_I}^{G(q)}(k) \rightarrow \text{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_I w_0 P_J} hP_J
\]

By Carter and Lusztig (1976) \(\text{Im } \eta\) is a simple module of the form

\[
L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}
\]

The complements of the points vs. polar hyperplanes relations for classical groups are oppositeness relations, with \(\omega_I = \omega\).
Oppositeness

- Let \((\Delta(q), S)\) be the spherical Tits building of a finite group of Lie type.
- Two types \(I, J \subseteq S\) are opposite if \(Iw_0 = J\).
- If \(w_0 = -1\) then every type is its own opposite.
- Assume \(I\) and \(J\) are opposite types. We say the cosets \(gP_I\) and \(hP_J\) of the parabolic subgroups are opposite iff \(P_ig^{-1}hP_J = P_Iw_0P_J\).
- Oppositeness map:
 \[
 \eta : \text{ind}^{G(q)}_{P_I}(k) \to \text{ind}^{G(q)}_{P_J}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J
 \]
- By Carter and Lusztig (1976) \(\text{Im} \eta\) is a simple module of the form
 \[
 L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}
 \]
- The complements of the points vs. polar hyperplanes relations for classical groups are oppositeness relations, with \(\omega_I = \omega\).
Let \((\Delta(q), S)\) be the spherical Tits building of a finite group of Lie type.

Two types \(I, J \subseteq S\) are opposite if \(I^w_0 = J\).

If \(w_0 = -1\) then every type is its own opposite.

Assume \(I\) and \(J\) are opposite types. We say the cosets \(gP_I\) and \(hP_J\) of the parabolic subgroups are opposite iff \(P_Ig^{-1}hP_J = P_Iw_0P_J\).

Oppositeness map:

\[
\eta : \text{ind}_{P_I}^{G(q)}(k) \rightarrow \text{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J
\]

By Carter and Lusztig (1976) \(\text{Im} \, \eta\) is a simple module of the form

\[
L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \otimes \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}
\]

The complements of the points vs. polar hyperplanes relations for classical groups are oppositeness relations, with \(\omega_I = \omega\).
Oppositeness

- Let $\Delta(q), S$ be the spherical Tits building of a finite group of Lie type.
- Two types $I, J \subseteq S$ are opposite if $I^{w_0} = J$.
- If $w_0 = -1$ then every type is its own opposite.
- Assume I and J are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_I g^{-1} hP_J = P_I w_0 P_J$.
- Oppositeness map:
 $$\eta : \text{ind}_{P_I}^{G(q)}(k) \rightarrow \text{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_I w_0 P_J} hP_J$$
- By Carter and Lusztig (1976) $\text{Im} \eta$ is a simple module of the form
 $$L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}$$
- The complements of the points vs. polar hyperplanes relations for classical groups are oppositeness relations, with $\omega_I = \omega$.
Oppositeness

Let \((\Delta(q), S)\) be the spherical Tits building of a finite group of Lie type.

Two types \(I, J \subseteq S\) are opposite if \(I^w_0 = J\).

If \(w_0 = -1\) then every type is its own opposite.

Assume \(I\) and \(J\) are opposite types. We say the cosets \(gP_I\) and \(hP_J\) of the parabolic subgroups are opposite iff \(P_I g^{-1} hP_J = P_I w_0 P_J\).

Oppositeness map:

\[
\eta : \text{ind}_{P_I}^G(q)(k) \rightarrow \text{ind}_{P_J}^G(q)(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_I w_0 P_J} hP_J
\]

By Carter and Lusztig (1976) \(\text{Im} \, \eta\) is a simple module of the form

\[
L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p^t-1)} \otimes \cdots \otimes L((p-1)\omega_I)^{(p-1)}
\]

The complements of the points vs. polar hyperplanes relations for classical groups are oppositeness relations, with \(\omega_I = \omega\).
Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.

Two types $I, J \subseteq S$ are opposite if $I^{w_0} = J$.

If $w_0 = -1$ then every type is its own opposite.

Assume I and J are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_I g^{-1} hP_J = P_I w_0 P_J$.

Oppositeness map:

$$\eta : \text{ind}_{P_I}^{G(q)}(k) \to \text{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_I w_0 P_J} hP_J$$

By Carter and Lusztig (1976) $\text{Im} \eta$ is a simple module of the form

$$L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}$$

The complements of the points vs. polar hyperplanes relations for classical groups are oppositeness relations, with $\omega_I = \omega$.
Classical Weyl modules for E_6

- $G = E_6(q)$, group of linear automorphisms preserving a certain cubic form on a 27-dimensional vector space $V(\omega_1)$.
- The geometry of this space has been studied in great detail. (Dickson, Aschbacher, Buekenhout, Cohen, Cooperstein, Pasini.)
- Objects of type 1 are singular points of $V(\omega_1)$ and objects of the opposite type 6 are distinguished hyperplanes. A singular point $\langle \nu \rangle$ is opposite a distinguished hyperplane H if and only if $\nu \notin H$.

```
\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_5 \quad \alpha_6
```

```
\alpha_4
```
Classical Weyl modules for E_6

- $G = E_6(q)$, group of linear automorphisms preserving a certain cubic form on a 27-dimensional vector space $V(\omega_1)$.

- The geometry of this space has been studied in great detail. (Dickson, Aschbacher, Buekenhout, Cohen, Cooperstein, Pasini.)

- Objects of type 1 are singular points of $V(\omega_1)$ and objects of the opposite type 6 are distinguished hyperplanes. A singular point $\langle v \rangle$ is opposite a distinguished hyperplane H if and only if $v \notin H$.

[Diagram showing the root system of E_6]
G = E_6(q), group of linear automorphisms preserving a certain cubic form on a 27-dimensional vector space \(V(\omega_1) \).

The geometry of this space has been studied in great detail. (Dickson, Aschbacher, Buekenhout, Cohen, Cooperstein, Pasini.)

Objects of type 1 are singular points of \(V(\omega_1) \) and objects of the opposite type 6 are distinguished hyperplanes. A singular point \(\langle \nu \rangle \) is opposite a distinguished hyperplane \(H \) if and only if \(\nu \notin H \).
Structure of $V(r\omega_1)$, $0 \leq r \leq p - 1$

- Oppositeness module $L((q - 1)\omega_1)$ leads to Weyl modules $V(r\omega_1)$, and some others.
- If $0 \leq r \leq p - 4$ the Weyl module $V(r\omega_1)$ is simple.
- Results for $r = p - 3$, $r = p - 2$, $r = p - 1$ are similar in form, so just look at $r = p - 1$.
Structure of $V(r\omega_1), 0 \leq r \leq p - 1$

- Oppositeness module $L((q - 1)\omega_1)$ leads to Weyl modules $V(r\omega_1)$, and some others.
- If $0 \leq r \leq p - 4$ the Weyl module $V(r\omega_1)$ is simple.
- Results for $r = p - 3$, $r = p - 2$, $r = p - 1$ are similar in form, so just look at $r = p - 1$.
Structure of $V(r\omega_1)$, $0 \leq r \leq p - 1$

- Oppositeness module $L((q - 1)\omega_1)$ leads to Weyl modules $V(r\omega_1)$, and some others.
- If $0 \leq r \leq p - 4$ the Weyl module $V(r\omega_1)$ is simple.
- Results for $r = p - 3$, $r = p - 2$, $r = p - 1$ are similar in form, so just look at $r = p - 1$.
(i) If $p \leq 5$ the the Weyl module $V((p - 1)\omega_1)$ is simple.

(ii) If $p = 7$, there is an exact sequence

$$0 \to V(3\omega_6) \to V(6\omega_1) \to L(6\omega_1) \to 0.$$

(iii) For $p \geq 11$ there is an exact sequence

$$0 \to V((p - 11)\omega_1 + 2\omega_2) \to V((p - 10)\omega_1 + \omega_2 + \omega_5) \to V((p - 9)\omega_1 + \omega_3 + \omega_6) \to V((p - 8)\omega_1 + \omega_4 + 2\omega_6) \to V((p - 7)\omega_1 + 3\omega_6) \to V((p - 1)\omega_1) \to L((p - 1)\omega_1) \to 0.$$

(First and last nonzero terms simple, other terms have two composition factors.)
Let $J(\lambda)$ denote the Jantzen sum

$$
\sum_{i>0} \chi(V(\lambda)^i) = - \sum_{\alpha>0} \sum_{\{m:0<mp<\langle\lambda+\rho,\alpha^\vee\rangle\}} v_p(mp) \chi(\lambda - mp\alpha)
$$

$$
J((p-1)\omega_1) = \chi((p-7)\omega_1+3\omega_6) - \chi((p-8)\omega_1+\omega_4+2\omega_6) + \chi((p-9)\omega_1+\omega_3+\omega_6) - \chi((p-10)\omega_1+\omega_2+\omega_5) + \chi((p-11)\omega_1+2\omega_2)
$$

$$
J((p-11)\omega_1+2\omega_2) = 0.
$$

$$
J((p-10)\omega_1+\omega_2+\omega_5) = \text{Ch} L((p-11)\omega_1+2\omega_2).
$$

$$
J((p-9)\omega_1+\omega_3+\omega_6) = \chi((p-10)\omega_1+\omega_2+\omega_5) - \chi((p-11)\omega_1+2\omega_2)
$$

$$
= \text{Ch} L((p-10)\omega_1+\omega_2+\omega_5). \quad (2)
$$
Let $J(\lambda)$ denote the Jantzen sum
\[
\sum_{i>0} \text{Ch}(V(\lambda)^i) = -\sum_{\alpha>0} \sum_{\{m:0<mp<\langle\lambda+\rho,\alpha^\vee\rangle\}} v_p(mp) \chi(\lambda - mp\alpha)
\]

\[
J((p-1)\omega_1) = \chi((p-7)\omega_1 + 3\omega_6) - \chi((p-8)\omega_1 + \omega_4 + 2\omega_6) + \chi((p-9)\omega_1 + \omega_3 + \omega_6) - \chi((p-10)\omega_1 + \omega_2 + \omega_5) + \chi((p-11)\omega_1 + 2\omega_2) \quad (1)
\]

\[
J((p-11)\omega_1 + 2\omega_2) = 0.
\]

\[
J((p-10)\omega_1 + \omega_2 + \omega_5) = \text{Ch} L((p-11)\omega_1 + 2\omega_2).
\]

\[
J((p-9)\omega_1 + \omega_3 + \omega_6) = \chi((p-10)\omega_1 + \omega_2 + \omega_5) - \chi((p-11)\omega_1 + 2\omega_2)
= \text{Ch} L((p-10)\omega_1 + \omega_2 + \omega_5). \quad (2)
\]
Let $J(\lambda)$ denote the Jantzen sum

$$\sum_{i>0} \text{Ch}(V(\lambda)^i) = - \sum_{\alpha>0} \sum_{\{m: 0<m \rho<\langle \lambda+\rho,\alpha \rangle\}} v_p(mp) \chi(\lambda - mp\alpha)$$

$$J((p-1)\omega_1) = \chi((p-7)\omega_1 + 3\omega_6) - \chi((p-8)\omega_1 + \omega_4 + 2\omega_6) + \chi((p-9)\omega_1 + \omega_3 + \omega_6) - \chi((p-10)\omega_1 + \omega_2 + \omega_5) + \chi((p-11)\omega_1 + 2\omega_2) \quad (1)$$

$$J((p-11)\omega_1 + 2\omega_2) = 0.$$

$$J((p-10)\omega_1 + \omega_2 + \omega_5) = \text{Ch} L((p-11)\omega_1 + 2\omega_2).$$

$$J((p-9)\omega_1 + \omega_3 + \omega_6) = \chi((p-10)\omega_1 + \omega_2 + \omega_5) - \chi((p-11)\omega_1 + 2\omega_2) = \text{Ch} L((p-10)\omega_1 + \omega_2 + \omega_5). \quad (2)$$
Let $J(\lambda)$ denote the Jantzen sum
\[
\sum_{i>0} \text{Ch}(V(\lambda)^i) = - \sum_{\alpha>0} \sum_{\{m:0<mp<\langle\lambda+\rho,\alpha^\vee\rangle\}} v_p(mp) \chi(\lambda - mp\alpha)
\]

\[
J((p-1)\omega_1) = \chi((p-7)\omega_1 + 3\omega_6) - \chi((p-8)\omega_1 + \omega_4 + 2\omega_6) + \chi((p-9)\omega_1 + \omega_3 + \omega_6) - \chi((p-10)\omega_1 + \omega_2 + \omega_5) + \chi((p-11)\omega_1 + 2\omega_2) \quad (1)
\]

\[
J((p-11)\omega_1 + 2\omega_2) = 0.
\]

\[
J((p-10)\omega_1 + \omega_2 + \omega_5) = \text{Ch} \ L((p-11)\omega_1 + 2\omega_2).
\]

\[
J((p-9)\omega_1 + \omega_3 + \omega_6) = \chi((p-10)\omega_1 + \omega_2 + \omega_5) - \chi((p-11)\omega_1 + 2\omega_2) = \text{Ch} \ L((p-10)\omega_1 + \omega_2 + \omega_5). \quad (2)
\]
Sum formula calculation

Let $J(\lambda)$ denote the Jantzen sum

$$
\sum_{i > 0} \text{Ch}(V(\lambda)^i) = - \sum_{\alpha > 0} \sum_{\{m:0 < mp < (\lambda + \rho, \alpha^\vee)\}} v_p(mp) \chi(\lambda - mp\alpha)
$$

$$
J((p-1)\omega_1) = \chi((p-7)\omega_1 + 3\omega_6) - \chi((p-8)\omega_1 + \omega_4 + 2\omega_6) + \chi((p-9)\omega_1 + \omega_3 + \omega_6) - \chi((p-10)\omega_1 + \omega_2 + \omega_5) + \chi((p-11)\omega_1 + 2\omega_2) \quad (1)
$$

$$
J((p-11)\omega_1 + 2\omega_2) = 0.
$$

$$
J((p-10)\omega_1 + \omega_2 + \omega_5) = \text{Ch} L((p-11)\omega_1 + 2\omega_2).
$$

$$
J((p-9)\omega_1 + \omega_3 + \omega_6) = \chi((p-10)\omega_1 + \omega_2 + \omega_5) - \chi((p-11)\omega_1 + 2\omega_2) = \text{Ch} L((p-10)\omega_1 + \omega_2 + \omega_5). \quad (2)
$$
\[J((p - 8)\omega_1 + \omega_4 + 2\omega_6) = \chi((p - 9)\omega_1 + \omega_3 + \omega_6) \\
- \chi((p - 10)\omega_1 + \omega_2 + \omega_5) + \chi((p - 11)\omega_1 + 2\omega_2) \\
= \text{Ch} \, L((p - 9)\omega_1 + \omega_3 + \omega_6), \quad (3) \]

\[J((p - 7)\omega_1 + 3\omega_6) = \chi((p - 8)\omega_1 + \omega_4 + 2\omega_6) \\
- \chi((p - 9)\omega_1 + \omega_3 + \omega_6) + \chi((p - 10)\omega_1 + \omega_2 + \omega_5) \\
- \chi((p - 11)\omega_1 + 2\omega_2) \\
= \text{Ch} \, L((p - 8)\omega_1 + \omega_4 + 2\omega_6). \quad (4) \]

\[J((p - 1)\omega_1) = \text{Ch} \, L((p - 7)\omega_1 + 3\omega_6). \]
\[J((p - 8)\omega_1 + \omega_4 + 2\omega_6) = \chi((p - 9)\omega_1 + \omega_3 + \omega_6) - \chi((p - 10)\omega_1 + \omega_2 + \omega_5) + \chi((p - 11)\omega_1 + 2\omega_2) = \text{Ch} L((p - 9)\omega_1 + \omega_3 + \omega_6), \quad (3) \]

\[J((p - 7)\omega_1 + 3\omega_6) = \chi((p - 8)\omega_1 + \omega_4 + 2\omega_6) - \chi((p - 9)\omega_1 + \omega_3 + \omega_6) + \chi((p - 10)\omega_1 + \omega_2 + \omega_5) - \chi((p - 11)\omega_1 + 2\omega_2) = \text{Ch} L((p - 8)\omega_1 + \omega_4 + 2\omega_6). \quad (4) \]

\[J((p - 1)\omega_1) = \text{Ch} L((p - 7)\omega_1 + 3\omega_6). \]
\[J((p - 8)\omega_1 + \omega_4 + 2\omega_6) = \chi((p - 9)\omega_1 + \omega_3 + \omega_6) \]

\[- \chi((p - 10)\omega_1 + \omega_2 + \omega_5) + \chi((p - 11)\omega_1 + 2\omega_2) \]

\[= Ch L((p - 9)\omega_1 + \omega_3 + \omega_6), \quad (3) \]

\[J((p - 7)\omega_1 + 3\omega_6) = \chi((p - 8)\omega_1 + \omega_4 + 2\omega_6) \]

\[- \chi((p - 9)\omega_1 + \omega_3 + \omega_6) + \chi((p - 10)\omega_1 + \omega_2 + \omega_5) \]

\[- \chi((p - 11)\omega_1 + 2\omega_2) \]

\[= Ch L((p - 8)\omega_1 + \omega_4 + 2\omega_6). \quad (4) \]

\[J((p - 1)\omega_1) = Ch L((p - 7)\omega_1 + 3\omega_6). \]
Simple modules for E_6

\[0 \to V((p-11)\omega_1 + 2\omega_2) \to V((p-10)\omega_1 + \omega_2 + \omega_5) \to V((p-9)\omega_1 + \omega_3 + \omega_6) \to V((p-8)\omega_1 + \omega_4 + 2\omega_6) \to V((p-7)\omega_1 + 3\omega_6) \to V((p-1)\omega_1) \to L((p-1)\omega_1) \to 0\]

The characters of the $L(\mu)$ can then be found using Weyl’s Character Formula. For example, the p-rank of the point-hyperplane oppositeness matrix is

\[
\dim L((p-1)\omega_1) = \frac{1}{2^7 \cdot 3 \cdot 5 \cdot 11} p(p+1)(p+3) \\
\times \left(3p^8 - 12p^7 + 39p^6 + 320p^5 - 550p^4 + 1240p^3 + 2080p^2 - 1920p + 1440\right)
\]
Thank you for your attention!