Classical Modules, Simple Modules and Incidence Matrices

Peter Sin

University of Florida

Finite Groups, Representations, and Related Topics Oxford, August, 2012

Outline

Classical Weyl modules

Classical polar spaces over finite fields

Weyl modules and Jantzen Sum Formula

Oppositeness in buildings

- ▶ G = SL(n, k), k algebraically closed.
- ► *V* standard module, *P*=max parabolic subgroup stabilizing 1-dimensional subspace.
- ▶ Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d \geq 0} S^d(V^*)$
- ▶ The modules $S^d(V^*)$ are simple if k has characteristic 0.
- ▶ In characteristic p > 0 $S^d(V^*)$ are simple for d < p.
- ▶ The *G*-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).
- ▶ $G = \operatorname{Sp}(n, k)$, $S^d(V^*)$ are simple for d < p.
- ▶ Submodule lattice of $S^d(V^*)$ for certain $d \ge p$ by Lahtonen, (1990).

- ▶ G = SL(n, k), k algebraically closed.
- ► *V* standard module, *P*=max parabolic subgroup stabilizing 1-dimensional subspace.
- ▶ Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d>0} S^d(V^*)$
- ▶ The modules $S^d(V^*)$ are simple if k has characteristic 0.
- ▶ In characteristic p > 0 $S^d(V^*)$ are simple for d < p.
- ▶ The *G*-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).
- ▶ $G = \operatorname{Sp}(n, k)$, $S^d(V^*)$ are simple for d < p.
- ▶ Submodule lattice of $S^d(V^*)$ for certain $d \ge p$ by Lahtonen, (1990).

- ▶ G = SL(n, k), k algebraically closed.
- V standard module, P=max parabolic subgroup stabilizing 1-dimensional subspace.
- ▶ Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d>0} S^d(V^*)$
- ▶ The modules $S^d(V^*)$ are simple if k has characteristic 0.
- ▶ In characteristic p > 0 $S^d(V^*)$ are simple for d < p.
- ▶ The *G*-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).
- ▶ $G = \operatorname{Sp}(n, k)$, $S^d(V^*)$ are simple for d < p.
- Submodule lattice of $S^d(V^*)$ for certain $d \ge p$ by Lahtonen, (1990).

- ▶ G = SL(n, k), k algebraically closed.
- V standard module, P=max parabolic subgroup stabilizing 1-dimensional subspace.
- ▶ Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d>0} S^d(V^*)$
- ▶ The modules $S^d(V^*)$ are simple if k has characteristic 0.
- ▶ In characteristic p > 0 $S^d(V^*)$ are simple for d < p.
- ▶ The *G*-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).
- ▶ $G = \operatorname{Sp}(n, k)$, $S^d(V^*)$ are simple for d < p.
- ▶ Submodule lattice of $S^d(V^*)$ for certain $d \ge p$ by Lahtonen, (1990).

- ▶ G = SL(n, k), k algebraically closed.
- V standard module, P=max parabolic subgroup stabilizing 1-dimensional subspace.
- ▶ Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d>0} S^d(V^*)$
- ▶ The modules $S^d(V^*)$ are simple if k has characteristic 0.
- ▶ In characteristic p > 0 $S^d(V^*)$ are simple for d < p.
- ▶ The *G*-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).
- ▶ $G = \operatorname{Sp}(n, k)$, $S^d(V^*)$ are simple for d < p.
- Submodule lattice of $S^d(V^*)$ for certain $d \ge p$ by Lahtonen, (1990).

- ▶ G = SL(n, k), k algebraically closed.
- V standard module, P=max parabolic subgroup stabilizing 1-dimensional subspace.
- ▶ Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d>0} S^d(V^*)$
- ▶ The modules $S^d(V^*)$ are simple if k has characteristic 0.
- ▶ In characteristic p > 0 $S^d(V^*)$ are simple for d < p.
- ► The *G*-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).
- ▶ $G = \operatorname{Sp}(n, k)$, $S^d(V^*)$ are simple for d < p.
- Submodule lattice of $S^d(V^*)$ for certain $d \ge p$ by Lahtonen, (1990).

- ▶ G = SL(n, k), k algebraically closed.
- V standard module, P=max parabolic subgroup stabilizing 1-dimensional subspace.
- ▶ Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d>0} S^d(V^*)$
- ▶ The modules $S^d(V^*)$ are simple if k has characteristic 0.
- ▶ In characteristic p > 0 $S^d(V^*)$ are simple for d < p.
- ► The *G*-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).
- ▶ $G = \operatorname{Sp}(n, k)$, $S^d(V^*)$ are simple for d < p.
- ▶ Submodule lattice of $S^d(V^*)$ for certain $d \ge p$ by Lahtonen, (1990).

- ▶ G = SL(n, k), k algebraically closed.
- V standard module, P=max parabolic subgroup stabilizing 1-dimensional subspace.
- ▶ Then $G/P \cong \mathbf{P}(V)$, homogeneous coordinate ring is $S(V^*) = \bigoplus_{d>0} S^d(V^*)$
- ▶ The modules $S^d(V^*)$ are simple if k has characteristic 0.
- ▶ In characteristic p > 0 $S^d(V^*)$ are simple for d < p.
- ► The *G*-submodule lattice of every $S^d(V^*)$ was described by Doty, Krop, (1980).
- ▶ $G = \operatorname{Sp}(n, k)$, $S^d(V^*)$ are simple for d < p.
- Submodule lattice of $S^d(V^*)$ for certain $d \ge p$ by Lahtonen, (1990).

▶ G simple algebraic group over k, λ dominant weight

- ▶ $V(\lambda)$, P= max parabolic stabilizing highest weight vector.
- ▶ G/P embeds into $\mathbf{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- ▶ When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called *classical Weyl modules*.
- ▶ $G = Spin_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbf{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- ► The characters of Weyl modules are given by Weyl's Character Formula.
- ▶ Weyl modules are simple in characteristic zero, so assume char k = p > 0.

- ▶ *G* simple algebraic group over k, λ dominant weight
- ▶ $V(\lambda)$, P= max parabolic stabilizing highest weight vector.
- ▶ G/P embeds into $\mathbf{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- ▶ When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called *classical Weyl modules*.
- ▶ $G = Spin_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbf{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- ► The characters of Weyl modules are given by Weyl's Character Formula.
- ▶ Weyl modules are simple in characteristic zero, so assume char k = p > 0.

- ▶ *G* simple algebraic group over k, λ dominant weight
- ▶ $V(\lambda)$, P= max parabolic stabilizing highest weight vector.
- ▶ G/P embeds into $\mathbf{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- ▶ When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called *classical Weyl modules*.
- ▶ $G = Spin_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbf{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- ► The characters of Weyl modules are given by Weyl's Character Formula.
- ▶ Weyl modules are simple in characteristic zero, so assume char k = p > 0.

- ▶ *G* simple algebraic group over k, λ dominant weight
- ▶ $V(\lambda)$, P= max parabolic stabilizing highest weight vector.
- ▶ G/P embeds into $\mathbf{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- ▶ When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called *classical Weyl modules*.
- ▶ $G = Spin_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbf{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- ► The characters of Weyl modules are given by Weyl's Character Formula.
- ▶ Weyl modules are simple in characteristic zero, so assume char k = p > 0.

- ▶ *G* simple algebraic group over k, λ dominant weight
- ▶ $V(\lambda)$, P= max parabolic stabilizing highest weight vector.
- ▶ G/P embeds into $\mathbf{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- ▶ When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called *classical Weyl modules*.
- ▶ $G = Spin_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbf{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- ► The characters of Weyl modules are given by Weyl's Character Formula.
- ▶ Weyl modules are simple in characteristic zero, so assume char k = p > 0.

- ▶ *G* simple algebraic group over k, λ dominant weight
- ▶ $V(\lambda)$, P= max parabolic stabilizing highest weight vector.
- ▶ G/P embeds into $\mathbf{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- ▶ When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called *classical Weyl modules*.
- ▶ $G = Spin_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbf{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- ► The characters of Weyl modules are given by Weyl's Character Formula.
- ▶ Weyl modules are simple in characteristic zero, so assume char k = p > 0.

- ▶ *G* simple algebraic group over k, λ dominant weight
- ▶ $V(\lambda)$, P= max parabolic stabilizing highest weight vector.
- ▶ G/P embeds into $\mathbf{P}(V(\lambda))$, homogeneous coordinate ring is $S = \bigoplus_{d \geq 0} H^0(d(-w_0\lambda)) = \bigoplus_{d \geq 0} V(d\lambda)^*$ (Ramanan-Ramanathan, 1985).
- ▶ When $\lambda = \omega_1$, the $V(r\omega_1)$ will be called *classical Weyl modules*.
- ▶ $G = Spin_n(k, f)$, $V(\omega_1)$ is the orthogonal module, G/P embedded as a quadric in $\mathbf{P}(V(\omega_1))$, $S = S(V(\omega_1)^*)/(f)$, $V(r\omega_1)^* \cong S^r(V(\omega_1)^*)/(S^{r-2}(V(\omega_1)^*) \cdot f)$
- The characters of Weyl modules are given by Weyl's Character Formula.
- ▶ Weyl modules are simple in characteristic zero, so assume char k = p > 0.

- ▶ This talk is about results describing the *G*-submodule lattice of $V(r\omega_1)$, for $r \le p-1$, when *G* is a classical group or of type E_6 .
- ▶ The characters of the simple modules $L(r\omega_1)$ for all r can then be computed by Steinberg's Tensor Product Theorem.

- ▶ This talk is about results describing the *G*-submodule lattice of $V(r\omega_1)$, for $r \le p-1$, when *G* is a classical group or of type E_6 .
- ▶ The characters of the simple modules $L(r\omega_1)$ for all r can then be computed by Steinberg's Tensor Product Theorem.

Outline

Classical Weyl modules

Classical polar spaces over finite fields

Weyl modules and Jantzen Sum Formula

Oppositeness in buildings

- ▶ V a vector space over \mathbb{F}_q , $q = p^t$ with nonsingular form b(-,-).
- ▶ *b* may be alternating or symmetric or hermitian.
- ▶ P = {singular 1-dimensional subspaces}, "points"
- ▶ $P^* = \{p^{\perp} \mid p \in P\}$, "polar hyperplanes".

- ▶ V a vector space over \mathbb{F}_q , $q = p^t$ with nonsingular form b(-,-).
- ▶ b may be alternating or symmetric or hermitian.
- ► *P* = {singular 1-dimensional subspaces}, "points"
- ▶ $P^* = \{p^{\perp} \mid p \in P\}$, "polar hyperplanes".

- ▶ V a vector space over \mathbb{F}_q , $q = p^t$ with nonsingular form b(-,-).
- b may be alternating or symmetric or hermitian.
- ► *P* = {singular 1-dimensional subspaces}, "points"
- ▶ $P^* = \{p^{\perp} \mid p \in P\}$, "polar hyperplanes".

- ▶ V a vector space over \mathbb{F}_q , $q = p^t$ with nonsingular form b(-,-).
- b may be alternating or symmetric or hermitian.
- ▶ P = {singular 1-dimensional subspaces}, "points"
- ▶ $P^* = \{p^{\perp} \mid p \in P\}$, "polar hyperplanes".

```
N := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}}
```

- An general problem is to determine which polar spaces have ovoids.
- ▶ Let *A* be the 0-1 incidence matrix with rows indexed by *P* and columns indexed by *P** and entry 1 iff the point lies on the hyperplane.
- ► (Moorhouse) An ovoid determines an identity N × N submatrix of A.
- ▶ A may be considered over any field. If for some prime ℓ we have $\operatorname{rank}_{\ell} A < N$, then ovoids do not exist.
- ▶ The smallest rank occurs when $\ell = p$.
- ► (Moorhouse, 2006) What is rank_p A?


```
N := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}}
```

- An general problem is to determine which polar spaces have ovoids.
- ▶ Let *A* be the 0-1 incidence matrix with rows indexed by *P* and columns indexed by *P** and entry 1 iff the point lies on the hyperplane.
- ► (Moorhouse) An ovoid determines an identity N × N submatrix of A.
- ▶ A may be considered over any field. If for some prime ℓ we have $\operatorname{rank}_{\ell} A < N$, then ovoids do not exist.
- ▶ The smallest rank occurs when $\ell = p$.
- ► (Moorhouse, 2006) What is rank_p A?


```
\textit{N} := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}}
```

- An general problem is to determine which polar spaces have ovoids.
- ▶ Let A be the 0-1 incidence matrix with rows indexed by P and columns indexed by P* and entry 1 iff the point lies on the hyperplane.
- ► (Moorhouse) An ovoid determines an identity N × N submatrix of A.
- ▶ A may be considered over any field. If for some prime ℓ we have $\operatorname{rank}_{\ell} A < N$, then ovoids do not exist.
- ▶ The smallest rank occurs when $\ell = p$.
- ► (Moorhouse, 2006) What is rank_p A?


```
\textit{N} := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}}
```

- An general problem is to determine which polar spaces have ovoids.
- ▶ Let A be the 0-1 incidence matrix with rows indexed by P and columns indexed by P* and entry 1 iff the point lies on the hyperplane.
- (Moorhouse) An ovoid determines an identity N × N submatrix of A.
- ▶ A may be considered over any field. If for some prime ℓ we have $\operatorname{rank}_{\ell} A < N$, then ovoids do not exist.
- ▶ The smallest rank occurs when $\ell = p$.
- ► (Moorhouse, 2006) What is rank_p A?


```
\textit{N} := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}}
```

- An general problem is to determine which polar spaces have ovoids.
- ▶ Let A be the 0-1 incidence matrix with rows indexed by P and columns indexed by P* and entry 1 iff the point lies on the hyperplane.
- (Moorhouse) An ovoid determines an identity N × N submatrix of A.
- ▶ A may be considered over any field. If for some prime ℓ we have $\operatorname{rank}_{\ell} A < N$, then ovoids do not exist.
- ▶ The smallest rank occurs when $\ell = p$.
- ► (Moorhouse, 2006) What is rank_p A?


```
\textit{N} := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}}
```

- An general problem is to determine which polar spaces have ovoids.
- ▶ Let A be the 0-1 incidence matrix with rows indexed by P and columns indexed by P* and entry 1 iff the point lies on the hyperplane.
- (Moorhouse) An ovoid determines an identity N × N submatrix of A.
- ▶ A may be considered over any field. If for some prime ℓ we have $\operatorname{rank}_{\ell} A < N$, then ovoids do not exist.
- ▶ The smallest rank occurs when $\ell = p$.
- ► (Moorhouse, 2006) What is rank_p A?


```
\textit{N} := \frac{\#\{\text{max. tot. sing. subspaces}\}}{\#\{\text{max. tot. sing. subspaces containing a given point}\}}
```

- An general problem is to determine which polar spaces have ovoids.
- ▶ Let A be the 0-1 incidence matrix with rows indexed by P and columns indexed by P* and entry 1 iff the point lies on the hyperplane.
- (Moorhouse) An ovoid determines an identity N × N submatrix of A.
- ▶ A may be considered over any field. If for some prime ℓ we have $\operatorname{rank}_{\ell} A < N$, then ovoids do not exist.
- ▶ The smallest rank occurs when $\ell = p$.
- ► (Moorhouse, 2006) What is rank_p A?

- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ k[P], kG(q)-permutation module on P.
- \blacktriangleright $k[P] \cong k.1 \oplus Y_P$,
- ▶ head(Y_P) \cong soc(Y_P), a simple module L.

- ▶ G(q) = group of linear transformations preserving b(-,-).
- \blacktriangleright k[P], kG(q)-permutation module on P.
- \blacktriangleright $k[P] \cong k.1 \oplus Y_P$,
- ▶ head(Y_P) \cong soc(Y_P), a simple module L.

- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ k[P], kG(q)-permutation module on P.
- $\blacktriangleright k[P] \cong k.1 \oplus Y_P,$
- ▶ head(Y_P) \cong soc(Y_P), a simple module L.

- ▶ G(q) = group of linear transformations preserving b(-,-).
- ▶ k[P], kG(q)-permutation module on P.
- $\blacktriangleright k[P] \cong k.1 \oplus Y_P,$
- ▶ head(Y_P) \cong soc(Y_P), a simple module L.

Incidence map

► The incidence matrix A corresponds to a kG(q)-module homomorphism

$$\phi \in \operatorname{End}_{kG(q)}(k[P]), \quad \phi(p) = \sum_{p' \in p^{\perp}} p'.$$

$$\operatorname{Im} \phi = k.\mathbf{1} \oplus L.$$

▶ Outcome: $\operatorname{rank}_{\rho} A = 1 + \dim L$.

$$L \cong L((q-1)\omega),$$

where $\omega=\omega_1$ in the orthogonal and symplectic cases, and $\omega_1+\omega_\ell$ in the unitary case.

By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

- ► Conclusion: rank_p $A = 1 + (\dim L((p-1)\omega))^t$.
- Note that for even-dimensional orthogonal groups, the p-rank is independent of Witt index.

Ovoids
$$\rightsquigarrow$$
 p-ranks \rightsquigarrow simple modules $L((p-1)\omega)$
 \rightsquigarrow Weyl modules $V((p-1)\omega)$, $\omega = \omega_1$ or $\omega_1 + \omega_\ell$.

$$L\cong L((q-1)\omega),$$

where $\omega=\omega_1$ in the orthogonal and symplectic cases, and $\omega_1+\omega_\ell$ in the unitary case.

By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

- ► Conclusion: rank_p $A = 1 + (\dim L((p-1)\omega))^t$.
- Note that for even-dimensional orthogonal groups, the p-rank is independent of Witt index.

Ovoids \rightsquigarrow *p*-ranks \rightsquigarrow simple modules $L((p-1)\omega)$

$$L\cong L((q-1)\omega),$$

where $\omega=\omega_1$ in the orthogonal and symplectic cases, and $\omega_1+\omega_\ell$ in the unitary case.

By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

- ► Conclusion: rank_p $A = 1 + (\dim L((p-1)\omega))^t$.
- Note that for even-dimensional orthogonal groups, the p-rank is independent of Witt index.

Ovoids \rightsquigarrow *p*-ranks \rightsquigarrow simple modules $L((p-1)\omega)$ \rightsquigarrow Weyl modules $V((p-1)\omega)$, $\omega = \omega_1$ or $\omega_1 + \omega_\ell$.

$$L\cong L((q-1)\omega),$$

where $\omega = \omega_1$ in the orthogonal and symplectic cases, and $\omega_1 + \omega_\ell$ in the unitary case.

By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

- ► Conclusion: rank_p $A = 1 + (\dim L((p-1)\omega))^t$.
- Note that for even-dimensional orthogonal groups, the p-rank is independent of Witt index.

Ovoids \rightsquigarrow *p*-ranks \rightsquigarrow simple modules $L((p-1)\omega)$ \rightsquigarrow Weyl modules $V((p-1)\omega)$, $\omega = \omega_1$ or $\omega_1 + \omega_\ell$.

$$L\cong L((q-1)\omega),$$

where $\omega=\omega_1$ in the orthogonal and symplectic cases, and $\omega_1+\omega_\ell$ in the unitary case.

By Steinberg's Tensor Product Theorem,

$$L((q-1)\omega) = L((p-1)\omega) \otimes L((p-1)\omega)^{(p)} \cdots \otimes L((p-1)\omega)^{(p^{t-1})}$$

- ► Conclusion: rank_p $A = 1 + (\dim L((p-1)\omega))^t$.
- Note that for even-dimensional orthogonal groups, the p-rank is independent of Witt index.

Ovoids
$$\rightsquigarrow$$
 p-ranks \rightsquigarrow simple modules $L((p-1)\omega)$ \rightsquigarrow Weyl modules $V((p-1)\omega)$, $\omega = \omega_1$ or $\omega_1 + \omega_\ell$.

Outline

Classical Weyl modules

Classical polar spaces over finite fields

Weyl modules and Jantzen Sum Formula

Oppositeness in buildings

Submodule structure of classical Weyl modules

- O. Arslan, P.S., (2011) treat the following groups and highest weights.
- (B) *G* of type B_{ℓ} , $(\ell \geq 2)$ $\lambda = r(\omega_1)$, $0 \leq r \leq p-1$;
- (D) G of type D_{ℓ} , $(\ell \geq 3)$ $\lambda = r(\omega_1)$, $0 \leq r \leq p-1$;
- (A) G of type A_{ℓ} , $(\ell \geq 3)$ $\lambda = r(\omega_1 + \omega_{\ell})$, $0 \leq r \leq p-1$; For type A and type C, the Weyl modules $V(r\omega_1)$ are simple for $0 \leq r \leq p-1$.

Theorem B

Let G be of type B_ℓ , $\ell \geq 2$. Let ω_1 be the highest weight of the standard orthogonal module of dimension $2\ell+1$. Assume $0 \leq r \leq p-1$. Then the following hold.

(a) $H^0(r\omega_1)$ is simple unless (i) p=2 and r=1 or (ii) p>2 and there exists a positive *odd* integer m such that

$$r + 2\ell - 1 \le mp \le 2r + 2\ell - 2$$
.

- (b) If (i) holds then the quotient $H^0(\omega_1)/L(\omega_1)$ is the one-dimensional trivial module.
- (c) If (ii) holds then m is unique and

$$H^0(r\omega_1)/L(r\omega_1)\cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 1 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.

Theorem B

Let G be of type B_ℓ , $\ell \geq 2$. Let ω_1 be the highest weight of the standard orthogonal module of dimension $2\ell+1$. Assume $0 \leq r \leq p-1$. Then the following hold.

(a) $H^0(r\omega_1)$ is simple unless (i) p=2 and r=1 or (ii) p>2 and there exists a positive *odd* integer m such that

$$r + 2\ell - 1 \le mp \le 2r + 2\ell - 2$$
.

- (b) If (i) holds then the quotient $H^0(\omega_1)/L(\omega_1)$ is the one-dimensional trivial module.
- (c) If (ii) holds then m is unique and

$$H^0(r\omega_1)/L(r\omega_1)\cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 1 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.

Theorem B

Let G be of type B_ℓ , $\ell \geq 2$. Let ω_1 be the highest weight of the standard orthogonal module of dimension $2\ell+1$. Assume $0 \leq r \leq p-1$. Then the following hold.

(a) $H^0(r\omega_1)$ is simple unless (i) p=2 and r=1 or (ii) p>2 and there exists a positive *odd* integer m such that

$$r + 2\ell - 1 \le mp \le 2r + 2\ell - 2$$
.

- (b) If (i) holds then the quotient $H^0(\omega_1)/L(\omega_1)$ is the one-dimensional trivial module.
- (c) If (ii) holds then m is unique and

$$H^0(r\omega_1)/L(r\omega_1)\cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 1 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.

Theorem D

Let G be of type D_{ℓ} , $\ell \geq 3$. Let ω_1 be the highest weight of the standard orthogonal module of dimension 2ℓ . Assume $0 \leq r \leq p-1$. Then the following hold.

(a) Suppose that there exists a positive even integer m such that

$$r + 2\ell - 2 \le mp \le 2r + 2\ell - 3.$$

Then m is unique and

$$H^0(r\omega_1)/L(r\omega_1)\cong H^0(r_1\omega_1),$$

where $r_1 = mp - 2\ell + 2 - r$. Furthermore the module $H^0(r_1\omega_1)$ is simple.

(b) Otherwise, $H^0(r\omega_1)$ is simple.

Theorem A

Let G be of type A_{ℓ} , $\ell \geq 3$. Assume $0 \leq r \leq p-1$. Then the following hold.

(a) Suppose that here exists a positive integer m such that

$$r+\ell \leq mp \leq 2r+\ell-1$$
.

Then m is unique and

$$H^0(r(\omega_1 + \omega_\ell))/L(r(\omega_1 + \omega_\ell)) \cong H^0(r_1(\omega_1 + \omega_\ell)),$$

where $r_1 = mp - \ell - r$. Furthermore the module $H^0(r_1(\omega_1 + \omega_\ell))$ is simple.

(b) Otherwise, $H^0(r(\omega_1 + \omega_\ell))$ is simple.

- ▶ Jantzen (1977), p > h, Andersen (1983), all p.
- ▶ The *Jantzen filtration* $V(\lambda)^i$, i > 0, of $V(\lambda)$ satisfies

$$V(\lambda)^1 = \operatorname{rad} V(\lambda), \quad \text{so} \quad V(\lambda)/V(\lambda)^1 \cong L(\lambda).$$

$$\sum_{i>0} \operatorname{Ch}(V(\lambda)^{i}) = -\sum_{\alpha>0} \sum_{\{m: 0 < mp < \langle \lambda + \rho, \alpha^{\vee} \rangle \}} v_{p}(mp) \chi(\lambda - mp\alpha)$$

- $\triangleright \chi(\mu)$ are either 0 or \pm the character of a Weyl module of "lower" weight than λ .
- ▶ Iterate the process on these Weyl module terms.

- ▶ Jantzen (1977) , p > h, Andersen (1983), all p.
- ▶ The Jantzen filtration $V(\lambda)^i$, i > 0, of $V(\lambda)$ satisfies

$$V(\lambda)^1 = \operatorname{rad} V(\lambda), \quad \text{so} \quad V(\lambda)/V(\lambda)^1 \cong L(\lambda).$$

$$\sum_{i>0} \operatorname{Ch}(V(\lambda)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle \lambda + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(\lambda - mp\alpha)$$

- $\triangleright \chi(\mu)$ are either 0 or \pm the character of a Weyl module of "lower" weight than λ .
- ▶ Iterate the process on these Weyl module terms.

- ▶ Jantzen (1977), p > h, Andersen (1983), all p.
- ▶ The Jantzen filtration $V(\lambda)^i$, i > 0, of $V(\lambda)$ satisfies

$$V(\lambda)^1 = \operatorname{rad} V(\lambda), \quad \text{so} \quad V(\lambda)/V(\lambda)^1 \cong L(\lambda).$$

$$\sum_{i>0} \operatorname{Ch}(V(\lambda)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle \lambda + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(\lambda - mp\alpha)$$

- $\chi(\mu)$ are either 0 or \pm the character of a Weyl module of "lower" weight than λ .
- ▶ Iterate the process on these Weyl module terms.

- ▶ Jantzen (1977), p > h, Andersen (1983), all p.
- ▶ The Jantzen filtration $V(\lambda)^i$, i > 0, of $V(\lambda)$ satisfies

$$V(\lambda)^1 = \operatorname{rad} V(\lambda), \quad \text{so} \quad V(\lambda)/V(\lambda)^1 \cong L(\lambda).$$

$$\sum_{i>0} \operatorname{Ch}(V(\lambda)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle \lambda + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(\lambda - mp\alpha)$$

- $\chi(\mu)$ are either 0 or \pm the character of a Weyl module of "lower" weight than λ .
- Iterate the process on these Weyl module terms.

 $\sum_{i>0} \operatorname{Ch}(V(r\omega)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle r\omega + \rho, \alpha^{\vee} \rangle\}} v_p(mp) \chi(r\omega - mp\alpha)$

- Need to handle the weight combinatorics uniformly with respect to parameters r, p, ℓ .
- ▶ The sum formula *overestimates* composition multiplicities.
- Nearly all root multiples contribute nothing, i.e $\chi(\lambda mp\alpha) = 0$.
- ▶ The Weyl characters which do occur in the Sum formula are of the form Ch $V(r\omega)$.
- ► Theory of *good filtrations* (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory

$$\sum_{i>0} \operatorname{Ch}(V(r\omega)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle r\omega + \rho, \alpha^{\vee} \rangle\}} v_p(mp) \chi(r\omega - mp\alpha)$$

- Need to handle the weight combinatorics uniformly with respect to parameters r, p, ℓ .
- ▶ The sum formula *overestimates* composition multiplicities.
- Nearly all root multiples contribute nothing, i.e $\chi(\lambda mp\alpha) = 0$.
- ▶ The Weyl characters which do occur in the Sum formula are of the form Ch $V(r\omega)$.
- Theory of good filtrations (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory.

$$\sum_{i>0} \operatorname{Ch}(V(r\omega)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle r\omega + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(r\omega - mp\alpha)$$

- Need to handle the weight combinatorics uniformly with respect to parameters r, p, ℓ .
- ▶ The sum formula *overestimates* composition multiplicities.
- Nearly all root multiples contribute nothing, i.e $\chi(\lambda mp\alpha) = 0$.
- ▶ The Weyl characters which do occur in the Sum formula are of the form Ch $V(r\omega)$.
- Theory of good filtrations (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory.

$$\sum_{i>0} \operatorname{Ch}(V(r\omega)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle r\omega + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(r\omega - mp\alpha)$$

- Need to handle the weight combinatorics uniformly with respect to parameters r, p, ℓ .
- ▶ The sum formula *overestimates* composition multiplicities.
- Nearly all root multiples contribute nothing, i.e $\chi(\lambda mp\alpha) = 0$.
- ▶ The Weyl characters which do occur in the Sum formula are of the form Ch $V(r\omega)$.
- Theory of good filtrations (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory.

Þ

$$\sum_{i>0} \operatorname{Ch}(V(r\omega)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle r\omega + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(r\omega - mp\alpha)$$

- Need to handle the weight combinatorics uniformly with respect to parameters r, p, ℓ .
- ▶ The sum formula *overestimates* composition multiplicities.
- Nearly all root multiples contribute nothing, i.e $\chi(\lambda mp\alpha) = 0$.
- ▶ The Weyl characters which do occur in the Sum formula are of the form Ch $V(r\omega)$.
- ► Theory of *good filtrations* (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory

Þ

$$\sum_{i>0} \operatorname{Ch}(V(r\omega)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle r\omega + \rho, \alpha^{\vee} \rangle\}} v_p(mp) \chi(r\omega - mp\alpha)$$

- Need to handle the weight combinatorics uniformly with respect to parameters r, p, ℓ .
- ▶ The sum formula *overestimates* composition multiplicities.
- Nearly all root multiples contribute nothing, i.e $\chi(\lambda mp\alpha) = 0$.
- ▶ The Weyl characters which do occur in the Sum formula are of the form Ch $V(r\omega)$.
- Theory of good filtrations (Donkin, Wang, Mathieu) reduces certain computations to the complex case, and then we can apply formulae from classical invariant theory.

Outline

Classical Weyl modules

Classical polar spaces over finite fields

Weyl modules and Jantzen Sum Formula

Oppositeness in buildings

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ If $w_0 = -1$ then every type is its own opposite.
- Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_{JI} = P_Iw_0P_{JI}$.
- ► Oppositeness map:

$$\eta: \operatorname{ind}_{P_J}^{G(q)}(k) \to \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subset qP_Iw_0P_J} hP_J$$

▶ By Carter and Lusztig (1976) $\operatorname{Im} \eta$ is a simple module of the form

$$L((q-1)\omega_l) = L((p-1)\omega_l) \otimes L((p-1)\omega_l)^{(p)} \cdots \otimes L((p-1)\omega_l)^{(p^{t-1})}$$

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types I, $J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ If $w_0 = -1$ then every type is its own opposite.
- Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_J}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

By Carter and Lusztig (1976) Im η is a simple module of the form

$$L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}$$

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ If $w_0 = -1$ then every type is its own opposite.
- Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) \to \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

▶ By Carter and Lusztig (1976) $\operatorname{Im} \eta$ is a simple module of the form

$$L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}$$

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ If $w_0 = -1$ then every type is its own opposite.
- ▶ Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) \to \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_Iw_0P_J} hP_J$$

▶ By Carter and Lusztig (1976) Im η is a simple module of the form

$$L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}$$

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ If $w_0 = -1$ then every type is its own opposite.
- ▶ Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_J}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_I w_0 P_J} hP_J$$

By Carter and Lusztig (1976) Im η is a simple module of the form

$$L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}$$

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types $I, J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ If $w_0 = -1$ then every type is its own opposite.
- ▶ Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_I}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_I w_0 P_J} hP_J$$

▶ By Carter and Lusztig (1976) $\text{Im } \eta$ is a simple module of the form

$$L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}$$

- Let $(\Delta(q), S)$ be the spherical Tits building of a finite group of Lie type.
- ▶ Two types I, $J \subseteq S$ are *opposite* if $I^{w_0} = J$.
- ▶ If $w_0 = -1$ then every type is its own opposite.
- ▶ Assume *I* and *J* are opposite types. We say the cosets gP_I and hP_J of the parabolic subgroups are opposite iff $P_Ig^{-1}hP_J = P_Iw_0P_J$.
- Oppositeness map:

$$\eta: \operatorname{ind}_{P_J}^{G(q)}(k) o \operatorname{ind}_{P_J}^{G(q)}(k), \quad gP_I \mapsto \sum_{hP_J \subseteq gP_I w_0 P_J} hP_J$$

▶ By Carter and Lusztig (1976) $\text{Im } \eta$ is a simple module of the form

$$L((q-1)\omega_I) = L((p-1)\omega_I) \otimes L((p-1)\omega_I)^{(p)} \cdots \otimes L((p-1)\omega_I)^{(p^{t-1})}$$

Classical Weyl modules for E_6

- ▶ $G = E_6(q)$, group of linear automorphisms preserving a certain cubic form on a 27-dimensional vector space $V(\omega_1)$.
- The geometry of this space has been studied in great detail. (Dickson, Aschbacher, Buekenhout, Cohen, Cooperstein, Pasini.)
- ▶ Objects of type 1 are singular points of $V(\omega_1)$ and objects of the opposite type 6 are distinguished hyperplanes. A singular point $\langle v \rangle$ is opposite a distinguished hyperplane H if and only $v \notin H$.

Classical Weyl modules for E_6

- ▶ $G = E_6(q)$, group of linear automorphisms preserving a certain cubic form on a 27-dimensional vector space $V(\omega_1)$.
- The geometry of this space has been studied in great detail. (Dickson, Aschbacher, Buekenhout, Cohen, Cooperstein, Pasini.)
- ▶ Objects of type 1 are singular points of $V(\omega_1)$ and objects of the opposite type 6 are distinguished hyperplanes. A singular point $\langle v \rangle$ is opposite a distinguished hyperplane H if and only $v \notin H$.

Classical Weyl modules for E_6

- ▶ $G = E_6(q)$, group of linear automorphisms preserving a certain cubic form on a 27-dimensional vector space $V(\omega_1)$.
- The geometry of this space has been studied in great detail. (Dickson, Aschbacher, Buekenhout, Cohen, Cooperstein, Pasini.)
- ▶ Objects of type 1 are singular points of $V(\omega_1)$ and objects of the opposite type 6 are distinguished hyperplanes. A singular point $\langle v \rangle$ is opposite a distinguished hyperplane H if and only $v \notin H$.

Structure of $V(r\omega_1)$, $0 \le r \le p-1$

- ▶ Oppositeness module $L((q-1)\omega_1)$ leads to Weyl modules $V(r\omega_1)$, and some others.
- ▶ If $0 \le r \le p-4$ the Weyl module $V(r\omega_1)$ is simple.
- ▶ Results for r = p 3, r = p 2, r = p 1 are similar in form, so just look at r = p 1.

Structure of $V(r\omega_1)$, $0 \le r \le p-1$

- ▶ Oppositeness module $L((q-1)\omega_1)$ leads to Weyl modules $V(r\omega_1)$, and some others.
- ▶ If $0 \le r \le p-4$ the Weyl module $V(r\omega_1)$ is simple.
- ▶ Results for r = p 3, r = p 2, r = p 1 are similar in form, so just look at r = p 1.

Structure of $V(r\omega_1)$, $0 \le r \le p-1$

- ▶ Oppositeness module $L((q-1)\omega_1)$ leads to Weyl modules $V(r\omega_1)$, and some others.
- ▶ If $0 \le r \le p-4$ the Weyl module $V(r\omega_1)$ is simple.
- ▶ Results for r = p 3, r = p 2, r = p 1 are similar in form, so just look at r = p 1.

$$r = p - 1$$

- (i) If $p \le 5$ the the Weyl module $V((p-1)\omega_1)$ is simple.
- (ii) If p = 7, there is an exact sequence

$$0 \to \textit{V}(3\omega_6) \to \textit{V}(6\omega_1) \to \textit{L}(6\omega_1) \to 0.$$

(iii) For $p \ge 11$ there is an exact sequence

$$0 o V((p-11)\omega_1 + 2\omega_2) o V((p-10)\omega_1 + \omega_2 + \omega_5) \ o V((p-9)\omega_1 + \omega_3 + \omega_6) o V((p-8)\omega_1 + \omega_4 + 2\omega_6) \ o V((p-7)\omega_1 + 3\omega_6) o V((p-1)\omega_1) o L((p-1)\omega_1) o 0$$

(First and last nonzero terms simple, other terms have two composition factors.)

$$\sum_{i>0} \operatorname{Ch}(V(\lambda)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle \lambda + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(\lambda - mp\alpha)$$

$$J((p-1)\omega_{1}) = \chi((p-7)\omega_{1} + 3\omega_{6}) - \chi((p-8)\omega_{1} + \omega_{4} + 2\omega_{6}) + \chi((p-9)\omega_{1} + \omega_{3} + \omega_{6}) - \chi((p-10)\omega_{1} + \omega_{2} + \omega_{5}) + \chi((p-11)\omega_{1} + 2\omega_{2})$$
(1)

►
$$J((p-11)\omega_1+2\omega_2)=0.$$

$$J((p-10)\omega_1 + \omega_2 + \omega_5) = \operatorname{Ch} L((p-11)\omega_1 + 2\omega_2).$$

$$J((p-9)\omega_1 + \omega_3 + \omega_6) = \chi((p-10)\omega_1 + \omega_2 + \omega_5)$$
$$-\chi((p-11)\omega_1 + 2\omega_2)$$
$$= \operatorname{Ch} L((p-10)\omega_1 + \omega_2 + \omega_5). \quad (2)$$

$$\sum_{i>0} \operatorname{Ch}(V(\lambda)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle \lambda + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(\lambda - mp\alpha)$$

$$J((p-1)\omega_{1}) = \chi((p-7)\omega_{1} + 3\omega_{6}) - \chi((p-8)\omega_{1} + \omega_{4} + 2\omega_{6}) + \chi((p-9)\omega_{1} + \omega_{3} + \omega_{6}) - \chi((p-10)\omega_{1} + \omega_{2} + \omega_{5}) + \chi((p-11)\omega_{1} + 2\omega_{2})$$
(1)

$$J((p-11)\omega_1+2\omega_2)=0.$$

►
$$J((p-10)\omega_1 + \omega_2 + \omega_5) = \text{Ch } L((p-11)\omega_1 + 2\omega_2).$$

$$J((p-9)\omega_1 + \omega_3 + \omega_6) = \chi((p-10)\omega_1 + \omega_2 + \omega_5)$$
$$-\chi((p-11)\omega_1 + 2\omega_2)$$
$$= \operatorname{Ch} L((p-10)\omega_1 + \omega_2 + \omega_5). \quad (2)$$

$$\sum_{i>0} \operatorname{Ch}(V(\lambda)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle \lambda + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(\lambda - mp\alpha)$$

$$J((p-1)\omega_{1}) = \chi((p-7)\omega_{1} + 3\omega_{6}) - \chi((p-8)\omega_{1} + \omega_{4} + 2\omega_{6}) + \chi((p-9)\omega_{1} + \omega_{3} + \omega_{6}) - \chi((p-10)\omega_{1} + \omega_{2} + \omega_{5}) + \chi((p-11)\omega_{1} + 2\omega_{2})$$
(1)

►
$$J((p-11)\omega_1+2\omega_2)=0.$$

$$J((p-10)\omega_1 + \omega_2 + \omega_5) = \operatorname{Ch} L((p-11)\omega_1 + 2\omega_2).$$

$$J((p-9)\omega_1 + \omega_3 + \omega_6) = \chi((p-10)\omega_1 + \omega_2 + \omega_5)$$
$$-\chi((p-11)\omega_1 + 2\omega_2)$$
$$= \operatorname{Ch} L((p-10)\omega_1 + \omega_2 + \omega_5). \quad (2)$$

$$\sum_{i>0} \operatorname{Ch}(V(\lambda)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle \lambda + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(\lambda - mp\alpha)$$

$$J((p-1)\omega_{1}) = \chi((p-7)\omega_{1} + 3\omega_{6}) - \chi((p-8)\omega_{1} + \omega_{4} + 2\omega_{6}) + \chi((p-9)\omega_{1} + \omega_{3} + \omega_{6}) - \chi((p-10)\omega_{1} + \omega_{2} + \omega_{5}) + \chi((p-11)\omega_{1} + 2\omega_{2})$$
(1)

►
$$J((p-11)\omega_1+2\omega_2)=0.$$

►
$$J((p-10)\omega_1 + \omega_2 + \omega_5) = \text{Ch } L((p-11)\omega_1 + 2\omega_2).$$

$$J((p-9)\omega_1 + \omega_3 + \omega_6) = \chi((p-10)\omega_1 + \omega_2 + \omega_5)$$
$$-\chi((p-11)\omega_1 + 2\omega_2)$$
$$= \operatorname{Ch} L((p-10)\omega_1 + \omega_2 + \omega_5). \quad (2)$$

$$\sum_{i>0} \operatorname{Ch}(V(\lambda)^i) = -\sum_{\alpha>0} \sum_{\{m:0 < mp < \langle \lambda + \rho, \alpha^{\vee} \rangle \}} v_p(mp) \chi(\lambda - mp\alpha)$$

$$J((p-1)\omega_{1}) = \chi((p-7)\omega_{1} + 3\omega_{6}) - \chi((p-8)\omega_{1} + \omega_{4} + 2\omega_{6}) + \chi((p-9)\omega_{1} + \omega_{3} + \omega_{6}) - \chi((p-10)\omega_{1} + \omega_{2} + \omega_{5}) + \chi((p-11)\omega_{1} + 2\omega_{2})$$
(1)

►
$$J((p-11)\omega_1+2\omega_2)=0.$$

►
$$J((p-10)\omega_1 + \omega_2 + \omega_5) = \text{Ch } L((p-11)\omega_1 + 2\omega_2).$$

$$J((p-9)\omega_1 + \omega_3 + \omega_6) = \chi((p-10)\omega_1 + \omega_2 + \omega_5)$$
$$-\chi((p-11)\omega_1 + 2\omega_2)$$
$$= \operatorname{Ch} L((p-10)\omega_1 + \omega_2 + \omega_5). \quad (2)$$

$$J((p-8)\omega_1 + \omega_4 + 2\omega_6) = \chi((p-9)\omega_1 + \omega_3 + \omega_6)$$

$$-\chi((p-10)\omega_1 + \omega_2 + \omega_5) + \chi((p-11)\omega_1 + 2\omega_2)$$

$$= \operatorname{Ch} L((p-9)\omega_1 + \omega_3 + \omega_6), \quad (3)$$

$$\begin{aligned}
 &U((p-7)\omega_1 + 3\omega_6) = \chi((p-8)\omega_1 + \omega_4 + 2\omega_6) \\
 &- \chi((p-9)\omega_1 + \omega_3 + \omega_6) + \chi((p-10)\omega_1 + \omega_2 + \omega_5) \\
 &- \chi((p-11)\omega_1 + 2\omega_2) \\
 &= \operatorname{Ch} L((p-8)\omega_1 + \omega_4 + 2\omega_6).
 \end{aligned}
 \tag{4}$$

►
$$J((p-1)\omega_1) = \operatorname{Ch} L((p-7)\omega_1 + 3\omega_6).$$

$$J((p-8)\omega_1 + \omega_4 + 2\omega_6) = \chi((p-9)\omega_1 + \omega_3 + \omega_6)$$

$$-\chi((p-10)\omega_1 + \omega_2 + \omega_5) + \chi((p-11)\omega_1 + 2\omega_2)$$

$$= \operatorname{Ch} L((p-9)\omega_1 + \omega_3 + \omega_6), \quad (3)$$

$$J((p-7)\omega_{1}+3\omega_{6}) = \chi((p-8)\omega_{1}+\omega_{4}+2\omega_{6})$$

$$-\chi((p-9)\omega_{1}+\omega_{3}+\omega_{6}) + \chi((p-10)\omega_{1}+\omega_{2}+\omega_{5})$$

$$-\chi((p-11)\omega_{1}+2\omega_{2})$$

$$= \operatorname{Ch} L((p-8)\omega_{1}+\omega_{4}+2\omega_{6}). \quad (4)$$

►
$$J((p-1)\omega_1) = \operatorname{Ch} L((p-7)\omega_1 + 3\omega_6).$$

$$J((p-8)\omega_1 + \omega_4 + 2\omega_6) = \chi((p-9)\omega_1 + \omega_3 + \omega_6)$$

$$-\chi((p-10)\omega_1 + \omega_2 + \omega_5) + \chi((p-11)\omega_1 + 2\omega_2)$$

$$= \operatorname{Ch} L((p-9)\omega_1 + \omega_3 + \omega_6), \quad (3)$$

$$J((p-7)\omega_{1}+3\omega_{6}) = \chi((p-8)\omega_{1}+\omega_{4}+2\omega_{6})$$

$$-\chi((p-9)\omega_{1}+\omega_{3}+\omega_{6}) + \chi((p-10)\omega_{1}+\omega_{2}+\omega_{5})$$

$$-\chi((p-11)\omega_{1}+2\omega_{2})$$

$$= \operatorname{Ch} L((p-8)\omega_{1}+\omega_{4}+2\omega_{6}). \quad (4)$$

►
$$J((p-1)\omega_1) = \operatorname{Ch} L((p-7)\omega_1 + 3\omega_6).$$

Simple modules for E_6

$$0 \to V((p-11)\omega_1 + 2\omega_2) \to V((p-10)\omega_1 + \omega_2 + \omega_5)$$

 $\to V((p-9)\omega_1 + \omega_3 + \omega_6) \to V((p-8)\omega_1 + \omega_4 + 2\omega_6)$
 $\to V((p-7)\omega_1 + 3\omega_6) \to V((p-1)\omega_1) \to L((p-1)\omega_1) \to 0$

▶ The characters of the $L(\mu)$ can then be found using Weyl's Character Formula. For example, the p-rank of the point-hyperplane oppositeness matrix is

$$\dim L((p-1)\omega_1) = \frac{1}{2^7 \cdot 3 \cdot 5 \cdot 11} p(p+1)(p+3)$$

$$\times (3p^8 - 12p^7 + 39p^6 + 320p^5$$

$$-550p^4 + 1240p^3 + 2080p^2 - 1920p + 1440)$$

Thank you for your attention!