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SL(V)

» G = SL(n, k), k algebraically closed.

» V standard module, P=max parabolic subgroup stabilizing
1-dimensional subspace.

» Then G/P = P(V), homogeneous coordinate ring is
S(V*) = @gs0 SU(V*)

» The modules S9(V*) are simple if k has characteristic 0.

» In characteristic p > 0 SY(V*) are simple for d < p.

» The G-submodule lattice of every S?(V*) was described
by Doty, Krop, (1980).

» G = Sp(n, k), S(V*) are simple for d < p.

» Submodule lattice of S9(V*) for certain d > p by
Lahtonen, (1990).
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G simple algebraic group over k, A dominant weight
V()\), P= max parabolic stabilizing highest weight vector.
G/P embeds into P(V())), homogeneous coordinate ring
is S = @gs0 H(A(—W0))) = Dyso V(dN)*
(Ramanan-Ramanathan, 1985).

When X\ = wy, the V(rwy) will be called classical Weyl!
modules.
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Character Formula.



Simple algebraic groups

» G simple algebraic group over k, A dominant weight
» V(\), P= max parabolic stabilizing highest weight vector.
» G/P embeds into P(V()\)), homogeneous coordinate ring

is S = @ ys0 HO(d(—wo))) = Byso V(AN
(Ramanan-Ramanathan, 1985).

» When \ = wy, the V(rw) will be called classical Wey!
modules.

» G = Spinp(k, f), V(wq) is the orthogonal module, G/P
embedded as a quadric in P(V(w1)), S = S(V(w1)*)/(f),
V(rwi)* 22 8" (V(w1)")/(S3(V(w1)") - )

» The characters of Weyl modules are given by Weyl’s
Character Formula.

» Weyl modules are simple in characteristic zero, so assume
chark = p > 0.
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» This talk is about results describing the G-submodule
lattice of V(rwy), for r < p—1, when G is a classical group
or of type Eg.

» The characters of the simple modules L(rwy) for all r can
then be computed by Steinberg’s Tensor Product Theorem.
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» V avector space over Fq, g = p! with nonsingular form
b(—, ).

» b may be alternating or symmetric or hermitian.

» P = {singular 1-dimensional subspaces}, “points”

» P* = {p' | pec P}, “polar hyperplanes”.
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An ovoid is a set of points of such that each max. tot.
singular subspace contains exactly one point of the set.
Any ovoid must have size

N #{max. tot. sing. subspaces}
" #{max. tot. sing. subspaces containing a given point}

An general problem is to determine which polar spaces
have ovoids.

Let A be the 0-1 incidence matrix with rows indexed by P
and columns indexed by P* and entry 1 iff the point lies on
the hyperplane.

(Moorhouse) An ovoid determines an identity N x N
submatrix of A.

A may be considered over any field. If for some prime ¢ we
have rank, A < N, then ovoids do not exist.

The smallest rank occurs when ¢ = p.

(Moorhouse, 2006) What is rank, A ?
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Permutation modules

» G(q) = group of linear transformations preserving b(—, —).
» K[P], kG(q)-permutation module on P.

> k[Pl =2 k1 ® Yp,

» head(Yp) = soc(Yp), a simple module L.



Incidence map

» The incidence matrix A corresponds to a kG(q)-module
homomorphism

¢ € Endygq)(KIP]), d(p)= > p.

p/epJ_

Im¢p =k1@ L.
» Outcome: rank, A = 1 4-dim L.
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Identifying the simple module L

>
L=L((g—1)w),
where w = wq in the orthogonal and symplectic cases, and
wy + wy in the unitary case.
» By Steinberg’s Tensor Product Theorem,

L((g—1)w) = L((p—1)w)2L((p—1)w)P - - - @L((p—1)w)P" )

» Conclusion: rankp, A = 1 + (dim L((p — 1)w))*.

» Note that for even-dimensional orthogonal groups, the
p-rank is independent of Witt index.
>

Ovoids ~» p-ranks ~» simple modules L((p — 1)w)
~»  Weyl modules V((p — 1)w), w = wy OF wy + wy.
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Submodule structure of classical Weyl modules

O. Arslan, P.S., (2011) treat the following groups and
highest weights.

(B) Goftype By, (( >2) A =r(w1),0<r<p-1;
(D) Goftype Dy, (£ >3) A=r(wy),0<r<p-1;
(A) Goftype Ay, € >3) A=r(wy +w),0<r<p-—1;

For type A and type C, the Weyl modules V(rwq) are
simplefor0<r<p-—1.
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standard orthogonal module of dimension 2¢ + 1. Assume

0 <r < p—1. Then the following hold.

(a) HO(rwq) is simple unless (i) p=2and r =1 or (i) p > 2
and there exists a positive odd integer m such that

r+20—1<mp<2r+2¢{-2.

(b) If (i) holds then the quotient HO(w¢)/L(w1) is the
one-dimensional trivial module.

(c) If (ii) holds then mis unique and
HO(rwi)/L(rwy) = HO(rwi),

where ry = mp — 2¢ + 1 — r. Furthermore the module
HO(rjwy) is simple.



Theorem D

Let G be of type D,, £ > 3. Let wy be the highest weight of the
standard orthogonal module of dimension 2¢. Assume

0 <r < p—1. Then the following hold.

(a) Suppose that there exists a positive even integer m such
that
r+20-2<mp<2r+2¢-3.

Then m is unique and
HO(rwy)/L(rwy) = HO(rwy),

where r = mp — 2( + 2 — r. Furthermore the module
HO(rywq) is simple.
(b) Otherwise, H(rw1) is simple.



Theorem A
Let G be of type Ay, £ > 3. Assume 0 < r < p—1. Then the

following hold.
(a) Suppose that here exists a positive integer m such that

r+0<mp<2r+/¢-—1.
Then m is unique and
HO(r(w1 + we))/L(r(wr + we)) = HO(r (w1 + we)),

where r = mp — ¢ — r. Furthermore the module
HO(ri (w1 + wy)) is simple.
(b) Otherwise, HO(r(wy + wy)) is simple.
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» Jantzen (1977) , p > h, Andersen (1983), all p.
» The Jantzen filtration V(\)', i > 0, of V() satisfies

VIO =rad V()), so V(\)/V(\)' = L(N).

and
o ch(v())==>" > Vo(mp)x (A — mpa)
i>0 a>0 {m:0<mp< (A +p,aV)}

» x(u) are either 0 or + the character of a Weyl module of
“lower” weight than .

» lterate the process on these Weyl module terms.
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Remarks on the proofs of Theorems B, D and A

> ch(V(rw))=->" > Vp(mp)x(rw—mpe)

i>0 a>0 {m:0<mp<(rw+p,av)}

» Need to handle the weight combinatorics uniformly with
respect to parameters r, p, ¢.

» The sum formula overestimates composition multiplicities.

» Nearly all root multiples contribute nothing, i.e
X(A — mpa) = 0.

» The Weyl characters which do occur in the Sum formula
are of the form Ch V(rw).

» Theory of good filtrations (Donkin, Wang, Mathieu)
reduces certain computations to the complex case, and
then we can apply formulae from classical invariant theory.
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» Let (A(q), S) be the spherical Tits building of a finite group
of Lie type.

» Two types /, J C S are opposite if [0 = J.

If wg = —1 then every type is its own opposite.

» Assume [ and J are opposite types. We say the cosets gP,
and hP; of the parabolic subgroups are opposite iff
P/g*1 hP; = PiwgP,.

» Oppositeness map:

n:indg P (k) — ind3 V(k), gPj Y hPy
hP;CgPwoP,

v

» By Carter and Lusztig (1976) Imn is a simple module of
the form

L((g—1)wi) = L((p—1)w,)®L((p_1)w,)(P) .. ~®L((p—1)w,)(pt71)



Oppositeness

» Let (A(q), S) be the spherical Tits building of a finite group
of Lie type.
» Two types /, J C S are opposite if [0 = J.
If wg = —1 then every type is its own opposite.
» Assume [ and J are opposite types. We say the cosets gP,
and hP; of the parabolic subgroups are opposite iff
P/g*1 hPJ = P/WOPJ.
» Oppositeness map:
0 indg @ (k) — indg P(k), gPr— Y. hPy
hP,CgPiwoPy
» By Carter and Lusztig (1976) Imn is a simple module of
the form
L((g—1)wr) = L((p—1)wn)L((p—1)wn) P - - @ L((p—1)wy) ")

» The complements of the points vs. polar hyperplanes
relations for classical groups are oppositeness relations,
with w; = w.

v
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Classical Weyl modules for Eg

» G = Eg(q), group of linear automorphisms preserving a
certain cubic form on a 27-dimensional vector space
V(wq).

» The geometry of this space has been studied in great
detail. (Dickson, Aschbacher, Buekenhout, Cohen,
Cooperstein, Pasini.)

» Objects of type 1 are singular points of V(w) and objects
of the opposite type 6 are distinguished hyperplanes. A
singular point (v) is opposite a distinguished hyperplane H
ifandonly v ¢ H.

a1 a2 Qa3 a5 Qg
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Structure of V(rwy),0<r<p-1

» Oppositeness module L((q — 1)wq) leads to Weyl modules
V(rwq), and some others.

» If 0 < r < p—4the Weyl module V(rwy) is simple.

» Resultsforr=p—3,r=p—2,r=p— 1 are similar in
form, so just look at r = p — 1.



(i) If p <5 the the Weyl module V((p — 1)w1) is simple.
(i) If p=7, there is an exact sequence

0 — V(3wg) — V(6wi) — L(Bwi) — 0.

(ii) For p > 11 there is an exact sequence

0— V(( —11)w1 +2w2)—> (( 10)UJ1 +WQ+w5)
= V((p—9)w1 + w3 +ws) — V((p — 8wt + ws + 2ws)
— V((p=7)w1+3wg) — V((p—1)w1) — L((p—1)w1) — 0

(First and last nonzero terms simple, other terms have two
composition factors.)
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» Let J()\) denote the Jantzen sum

Y Ch(V()) =~ > Vp(mp)x(A — mpa)

i>0 a>0 {m:0<mp<(A+p,aV)}
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Sum formula calculation

» Let J()\) denote the Jantzen sum

S == X v(mp)x(r - mpa)

i>0 a>0 {m:0<mp<(A+p,aV)}

J((p—1)w1) = x((p—7)w1+3we) — x((P—8)w1 +w4s+2ws)
+x((p = 9wt + w3z + we) — x((Pp — 10)wq + w2 + ws)
+x((p = 11w +2w2) (1)

» J((p—11)wy + 2wp) = 0.
» J((p—10)wy + w2 +ws) = Ch L((p — 11)wy + 2wp).



Sum formula calculation

» Let J()\) denote the Jantzen sum

S == X v(mp)x(r - mpa)

i>0 a>0 {m:0<mp<(A+p,aV)}

J((p—1)w1) = x((p—7)w1+3we) — x((P—8)w1 +w4s+2ws)
+x((p = 9wt + w3z + we) — x((Pp — 10)wq + w2 + ws)
+x((p = 11w +2w2) (1)

» J((p—11)wy + 2wp) = 0.
» J((p—10)wy + w2 +ws) = Ch L((p — 11)wy + 2wp).
>
J((p— 9w + w3 +we) = x((P — 10)wi + w2 + ws)
—x((p—11)wy + 2w2)
=ChL((p—10)w1 + w2 +ws). (2)



J((p — 8)wi + wa + 2we) = x((p — w1 + w3 + we)
— x((p = 10)wy + w2 + ws) + x((p — 11)w1 + 2wp)
=ChL((p—9)ws + w3 +we), (3)



J((p — 8)wi + wa + 2we) = x((p — w1 + w3 + we)
— x((p = 10)wy + w2 + ws) + x((p — 11)w1 + 2wp)
=ChL((p—9)ws + w3 +we), (3)

J((p = 7)w1 + 3we) = x((P — 8)w1 + wa + 2uwp)
= x((P = Qw1 + w3 + we) + x((P — 10)wi + wa + ws)
= x((p = 11)w1 + 2w»)
=ChL((p— 8)wi + ws + 2wg). (4)



J((p — 8)wi + wa + 2we) = x((p — w1 + w3 + we)
— x((p = 10)wy + w2 + ws) + x((p — 11)w1 + 2wp)
=ChL((p—9)ws + w3 +we), (3)

J((p — 7)w1 + Bws) = x((p — 8)w1 + wsg + 2ws)
— Xx((p = 9w1 + wz + we) + x((P — 10)w1 + w2 + ws)
= x((p = 11wy + 2wp)
= ChL((p—8)wy + w4 + 2wg). (4)

> J((p— 1)wr) = ChL((p — 7)ws + 3uw).



Simple modules for Eg

0— V((p—11)ws +2ws) — V((p — 10)wq + wo + ws)
— V((p — 9wt +ws +we) — V((p— 8w + ws + 2we)
— V((p—7)w1+3we) — V((p—1)wq) — L((p—1)w1) — 0
» The characters of the L(x) can then be found using Weyl’'s

Character Formula. For example, the p-rank of the
point-hyperplane oppositeness matrix is

. 1
dimL((p — 1)wy) = mp(l) +1)(p+3)
x (3p® — 12p” 4 39p° + 320p°
— 550p* + 1240p° + 2080p2 — 1920p + 1440)



Thank you for your attention!
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