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Abstract. There is a Paley graph for each prime power q such that q ≡ 1 (mod 4).
The vertex set is the field Fq and two vertices x and y are joined by an edge if and
only if x − y is a nonzero square of Fq. We compute the Smith normal forms of the
adjacency matrix and Laplacian matrix of a Paley graph.

1. Introduction

Let Γ be a finite, simple, undirected and connected graph and let A be the adjacency
matrix of Γ with respect to some fixed but arbitrary ordering of the vertex set of Γ. Let D
be the diagonal matrix whose (i, i)-entry is the degree of the ith vertex. Then L = D−A
is called the Laplacian matrix of Γ. The matrices A and L represent endomorphisms
(which will also be denoted by A and L) of the free abelian group on the vertex set.
The structure of their cokernels as abelian groups is independent of the above ordering.
The cokernel of A is called the Smith group S(Γ), since its computation is equivalent to
finding the Smith normal form of the matrix A. The endomorphism L maps the sum of
all vertices to zero, so the cokernel of L is not a torsion group. The torsion subgroup
K(Γ) of the cokernel of L is called the critical group of Γ. It is known by Kirchhoff’s
matrix-tree theorem that the order of K(Γ) is equal to the number of spanning trees of
Γ.

The critical group of a graph arises in several contexts, for example in arithmetic geom-
etry [10], in statistical physics [6] and in combinatorics [2]. There are also interpretations
of the critical group in discrete dynamics (chip-firing games and abelian sandpile models,
cf. [9]). We refer the reader to [11] for a discussion of these and other connections.

So far, there are very few families of graphs for which the critical groups have been
found, so it is of some interest to compute the Smith and critical groups for some well-
known families of graphs.

In this note we treat the Paley graphs. Let q = pt be a fixed prime power with q ≡ 1
(mod 4). The Paley graph Paley(q) is defined by taking the field Fq as vertex set, with
two vertices x and y joined by an edge if and only if x− y is a nonzero square in Fq. The
degree of each vertex is k = q−1

2
. Let A denote the adjacency matrix and L = kI−A the

Laplacian matrix. Our main result is the computation of S(Paley(q)) and K(Paley(q)).
There has been some earlier work in this direction. The structure of the S(Paley(q)) was
correctly conjectured in [13, Ex. 4–8]. In [11] the critical group of a conference graph on
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a square-free number of vertices was calculated, and Paley(q) is such a graph when q is
a prime. The p-rank of the Laplacian of Paley(q) was first computed in [4].

Here is a brief outline of our method. We view Paley(q) as a Cayley graph, with the
regular action of the additive group of Fq. Then, in §2, we follow a standard method, ap-
plying the discrete Fourier transform while keeping track of coefficient rings, to compute
the Smith group and also the p-complementary part of the critical group.

A different approach is needed to compute the p-part of K(Paley(q)). In §3 we study
the permutation action of the group S of nonzero squares on Fq by multiplication and
on the free R-module RFq with basis Fq over a suitable extension ring R. The isotypic
component of an R-free RS-module M with respect to a character χ : S → R× is
defined to be the submodule {m ∈ M | sm = χ(s)m for all s ∈ S}. The RS-module
RFq decomposes into isotypic components of rank 2 (except for one of rank 3). Since
S preserves adjacency, these isotypic components are A-invariant. In the computation
of the restriction of A to each isotypic component, certain Jacobi sums arise naturally
and the main problem is reduced to determining the p-adic valuations of these Jacobi
sums. The classical theorem of Stickelberger on Gauss sums gives the valuation for
individual sums, but there remains the problem of counting the number of sums with a
given valuation. This counting problem is solved by the transfer matrix method in §4.
It is also possible to count directly, but the chosen method has the advantages of being
systematic and of yielding immediately the rationality of the generating function.

2. Eigenvalues and p′-torsion

It is well known and easily checked that Paley(q) is a strongly regular graph and that

its eigenvalues are k = q−1
2

, r =
−1+

√
q

2
and s =

−1−√q
2

, with multiplicities 1, q−1
2

and
q−1

2
, respectively. (See, for example, [8.1.1][3]). Hence,

|S(Paley(q))| = det(A) = k

(
k

2

)k
,

where A is the adjacency matrix of Paley(q). It follows that gcd(|S(Paley(q))|, q) = 1.
Therefore we can use the diagonalization of A by the character table of (Fq,+) to find
the Smith normal form of A.

Let S be the set of nonzero squares in Fq. We can view Paley(q) as a Cayley graph
with connecting set S. Let X be the complex character table of the additive group of Fq
where the elements are ordered in the same way as for the rows and columns of A. The
entries of X lie in the ring Z[ζ], where ζ is a complex primitive p-th root of unity. As

was first observed in [12], we have the character orthogonality relation 1
q
XX

t
= I and

(1)
1

q
XAX

t
= diag(ψ(S))ψ,

where ψ runs over the additive characters of Fq and ψ(S) =
∑

y∈S ψ(y). Thus, the ψ(S)
are the eigenvalues of A. Since the eigenvalues of A are all prime to p, the structure
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of S(Paley(q)) can be completely determined from (1). (See [14, §3.2], or [5, §2], where
the same argument is used for difference sets.) It suffices to determine the structure of
the `-Sylow subgroup for each prime ` different from p. Such an ` is unramified in Z[ζ],
and (1) can be interpreted as expressing the equivalence of matrices with entries in the
localized ring Z[ζ](`). This latter ring is a principal ideal domain and the list of exact
powers of ` dividing the ψ(S) is precisely the list of elementary divisors of A with respect
to the prime ` (or `-elementary divisors for short).

By applying the above to each ` 6= p, and noting that r and s are coprime, with
rs = 1−q

4
, we obtain the following result.

Theorem 2.1. The Smith group of Paley(q) is isomorphic to Z/2µZ⊕ (Z/µZ)2µ, where
µ = q−1

4
.

From the eigenvalues of A, we easily obtain those of L = kI−A (the Laplacian matrix

of Paley(q)), namely 0, with multiplicity 1, and
(q+
√
q)

2
and

(q−√q)
2

, each with multiplicity
q−1

2
. It follows from Kirchhoff’s matrix-tree theorem that

|K(Paley(q))| = 1

q

(
q +
√
q

2

)k (q −√q
2

)k
= q

q−3
2 µk,

where µ = q−1
4

.
The `-elementary divisors of L for primes ` 6= p can be found in exactly the same

way as we found the elementary divisors of A. We can therefore determine the subgroup
K(Paley(q))p′ which is complementary to the Sylow p-subgroup of K(Paley(q)).

Theorem 2.2. Let K(Paley(q)) = K(Paley(q))p ⊕ K(Paley(q))p′ be the decomposition
of the critical group of Paley(q) into its Sylow p-subgroup and p-complement. Then
K(Paley(q))p′ ∼= (Z/µZ)2µ, where µ = q−1

4
.

The p-elementary divisors of L remain to be computed and the rest of the paper is
devoted to this task.

3. Character sums and invariants

We will adopt the same notation as in §2. In order to find the p-elementary divisors
of L, we will view the entries of L as coming from some p-adic local ring. Let q = pt and
K = Qp(ξq−1) be the unique unramified extension of degree t over Qp, the field of p-adic
numbers, where ξq−1 is a primitive (q− 1)th root of unity in K. Let R = Zp[ξq−1] be the
ring of integers in K. Then pR is the unique maximal ideal of R and R/pR ∼= Fq. Let
T : F×q → R× be the Teichmüller character of Fq. Then T is an R-valued multiplicative
character of Fq of order q − 1. Hence T generates the cyclic group Hom(F×q , R×).

Let RFq be the free R-module with basis indexed by the elements of Fq. For clarity, we
write the basis element corresponding to x ∈ Fq as [x]. Then F×q acts on RFq , permuting

the basis by field multiplication, so that RFq decomposes as the direct sum R[0]⊕RF×q of
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a trivial module with the regular module for F×q . The regular module RF×q decomposes
further into the direct sum of nonisomorphic RF×q -submodules of R-rank 1, affording the

characters T i, i = 0, 1, . . . , q − 2. A basis element for the component affording T i is

ei =
∑
x∈F×q

T i(x−1)[x].

Here the subscript i is read modulo q−1. So RFq has basis {ei | i = 1, . . . , q−2}∪{e0, [0]},
where we have separated out the basis for the F×q -fixed points.

Next consider the action of the subgroup S of squares in F×q on RF×q . Then for 0 ≤ i ≤
q−2, T i and T i+k are equal on S. For 0 < i ≤ k−1, let Mi be the R-submodule spanned
by {ei, ei+k}. Then Mi is the isotypic component for the character T i|S. The submodule
of S-fixed points on RFq has basis {[0], e0, ek}, but since e0 + [0] = 1 =

∑
x∈Fq

[x], we will

use the basis {1, [0], ek} instead. Let M0 denote this submodule of R-rank 3. Then we
have the decomposition

(2) RFq = M0 ⊕M1 ⊕ · · · ⊕Mk−1

We can view A and L as endomorphisms of RFq , with

A([x]) =
∑
s∈S

[x+ s], x ∈ Fq

and

L([x]) = k[x]−
∑
s∈S

[x+ s], x ∈ Fq.

Since the action of S preserves adjacency the maps A and L are RS-module endo-
morphisms. It follows that A and L map each isotypic component Mi to itself, for
0 ≤ i ≤ k − 1, and so they preserve the decomposition (2). Thus, with respect to the
basis of RFq formed from the bases of the Mi, the matrices of the maps A and L have
block diagonal form, with a (2× 2)-block for each Mi, for 1 ≤ i ≤ k − 1, and a (3× 3)-
block for M0. We are therefore reduced to computing the elementary divisors of L|Mi

and determining for a given p-power its total multiplicity, as i varies.
The next two lemmas compute L on each of the Mi. The character T k = T−k of F×q

is the quadratic character and we denote it by χ. Following the convention of Ax [1],
T 0 is the character that maps all elements of Fq to 1, while T q−1 maps 0 to 0 and all
other elements to 1. Moreover nonprincipal characters take the value 0 at 0. With these
conventions the characteristic function of S is

(3)
1

2
(χ+ T 0 − δ0),
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where δ0 is 1 at 0 and zero elsewhere. Also we will need Jacobi sums, which we define
below. For any two integers a, b, we define the Jacobi sum J(T a, T b) by

J(T a, T b) =
∑
x∈Fq

T a(x)T b(1− x).

From the above definition and our convention on T 0 and T q−1, we see that if a 6≡ 0 (mod
q − 1), then

J(T a, T 0) = 0, and J(T a, T q−1) = −1.

Lemma 3.1. Suppose 0 ≤ i ≤ q − 2 and i 6= 0, k. Then

L(ei) =
1

2
(qei − J(T−i, χ)ei+k)

Proof. We have

A(ei) =
∑
x∈F×q

T i(x−1)
∑
y∈S

[x+ y]

=
1

2

∑
x∈F×q

T i(x−1)
∑
y∈Fq

(χ(y) + T 0(y)− δ0(y))[x+ y]

=
1

2

∑
x∈F×q

T i(x−1)
∑
y∈Fq

χ(y)[x+ y]

+
1

2

∑
x∈F×q

T i(x−1)
∑
y∈Fq

[x+ y]− 1

2

∑
x∈F×q

T i(x−1)[x].

The second sum is zero and the third is −1
2
ei. For the first sum, we have

(4)

∑
x∈F×q

T i(x−1)
∑
y∈Fq

χ(y)[x+ y] =
∑
z∈Fq

∑
x∈F×q

T i(x−1)χ(z − x)[z].

Then if z 6= 0, we have T i(x−1)χ(z − x) = T i(z−1)χ(z)T−i((x/z))χ(1 − (x/z)). The
sum over x of these terms is the same over F×q or Fq and is equal to

T i(z−1)χ(z)J(T−i, χ) = T i+k(z−1)J(T−i, χ).

If z = 0 then
∑

x∈F×q T
i(x−1)χ(−x) = 0. Thus, the outer sum over all z ∈ Fq can be taken

over F×q and is equal to J(T−i, χ)ei+k. The lemma now follows since L = kI − A. �

Lemma 3.2. (i) L(1) = 0.
(ii) L(ek) = 1

2
(1− q([0]− ek)).

(iii) L([0]) = 1
2
(q[0]− ek − 1).
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Proof. (i) is obvious and (iii) is straightforward. (ii) is proved by the same calculation as
in the previous lemma, using the fact that J(χ, χ) = −χ(−1) = −1. The only difference
in the calculation is that in equation (4) the z = 0 term is (q − 1)[0] instead of zero.

�

Corollary 3.3. The Laplacian matrix L is equivalent over R to the diagonal matrix with
diagonal entries J(T−i, T k), for i = 1, . . . , q − 2 and i 6= k, two 1s and one zero.

In view of Corollary 3.3, to compute the p-elementary divisors of L, we will need to
know the p-adic valuations of Jacobi sums. Using Stickelberger’s theorem on Gauss sums
[16] (see [7, p. 636] for further reference) and the well-known relation between Gauss and
Jacobi sums, we have

Theorem 3.4. Let a and b be integers such that a 6≡ 0 (mod q − 1), b 6≡ 0 (mod q − 1),
and a+ b 6≡ 0 (mod q− 1). For any integer x, we use s(x) to denote the sum of digits in
the expansion of the least nonnegative residue of x modulo (q − 1) as a base p number.
Then

νp(J(T−a, T−b)) =
s(a) + s(b)− s(a+ b)

p− 1
,

where νp(J(T−a, T−b)) is the p-adic valuation of J(T−a, T−b). In other words, the number
of times that p divides J(T−a, T−b) is equal to the number of carries in the addition a+ b
(mod q − 1).

By Theorem 3.4, the p-adic valuation of J(T−i, T k) for i 6= k is known to be equal

to c(i) := 1
p−1

(s(i) + t(p−1)
2
− s(i + k)), since s(k) = t(p−1)

2
. The number c(i) can be

interpreted as the number of carries, when adding the p-expansions of i and k, modulo
q− 1. This will be formulated precisely in the next section. It is already clear that there
are no elementary divisors of L greater than pt. It is also easy to see that the p-rank of
L (i.e., the number of times that p0 appears as an elementary divisor of L) equals (p+1

2
)t,

since a necessary and sufficient condition for there to be no carries is that each of the
p-digits of i be in the range from 0 to p−1

2
. This was already shown by Brouwer and van

Eijl [4, p.336]. Also, since c(i) + c(q − 1− i) = t, it follows from Corollary 3.3 that the
multiplicity of pt as an elementary divisor is (p+1

2
)t−2. It remains to find the multiplicity

of pλ for 1 ≤ λ ≤ t − 1. In order to find the multiplicity of pλ as an elementary divisor
of L, we have to count the number of i ranging from 1 to q − 2, i 6= k, such that adding
i to k involves exactly λ carries.

4. The Counting Problem

In order to finish our computations of the critical groups of Paley(q), we will solve the
following counting problem using the transfer matrix method. For a discussion of the
transfer matrix method and its various applications, we refer the reader to [15, Section
4.7].
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The Counting Problem. Let q = pt be an odd prime power and k = q−1
2

. For

1 ≤ λ ≤ t − 1, what is the number of i, 1 ≤ i ≤ q − 2, i 6= k such that adding i to q−1
2

modulo q − 1 involves exactly λ carries?

We express integers a, 0 ≤ a ≤ q − 1, in base p. That is, we write

a = at−1p
t−1 + at−2p

t−2 + · · ·+ a1p+ a0,

where 0 ≤ ai ≤ p−1 for all i. In what follows, we will simply write a = at−1at−2 · · · a1a0,
and call the ai’s the digits of a. Since we are going to add a with q−1

2
modulo q − 1,

we will use the modular p-ary add-with-carry algorithm described in [8, Theorem 4.1].
Let a = at−1at−2 · · · a1a0 and b = bt−1bt−2 · · · b1b0 be integers in {1, 2, . . . , q − 2} such
that a+ q−1

2
= b modulo q − 1. By the modular p-ary add-with-carry algorithm (cf. [8,

Theorem 4.1]) there is a unique carry sequence c = ct−1ct−2 · · · c1c0 with ci ∈ {0, 1} and
ct = c0 such that for all 0 ≤ i ≤ t− 1,

(5) ai +
p− 1

2
+ ci = bi + pci+1.

By the number of carries we shall mean the number of i with ci = 1.
We will use the transfer matrix method to solve the above counting problem. This

approach involves constructing a weighted digraph G, and changing the counting problem
to that of counting closed walks in G of certain length and weight. The above equations
motivate us to construct the digraph G on [p] × [2] (here [p] = {0, 1, . . . , p − 1} and
[2] = {0, 1}) as follows: The vertices of G are (α, γ) ∈ [p] × [2]. There is an arc from
(α, γ) to (α′, γ′) if and only if

(6) α +
p− 1

2
+ γ = β + pγ′

for some β ∈ [p]. Furthermore if there is an arc e from (α, γ) to (α′, γ′) we give the
arc label α and weight w(e) := γ′. By the weight of a walk in the digraph we shall
mean the sum of the weights of its arcs. Each walk of length t in G specifies an element
a = at−1at−2 · · · a0 ∈ {0, 1, . . . , q− 1} by taking the first arc label to be a0, the second to
be a1, etc. In terms of the digraph G, the discussion leading up to equation (5) means
that for each a ∈ {1, . . . , q − 2} \ { q−1

2
}, there is a unique closed walk of length t in

G whose arc labels specify a, and that the weight of this walk is equal to the number
of carries when adding q−1

2
to a modulo q − 1. There are some other closed walks of

length t in G, namely those whose arc labels specify a = 0, q−1
2

or q− 1. We must check
that these walks have weights which are outside the range {1, 2, . . . , t − 1} for λ in our
counting problem. Once we have checked this, we will know that our counting problem is
equivalent to counting, for each 1 ≤ λ ≤ t− 1, the closed walks of length t and weight λ.
If a = 0, then ai = 0 for all i and there is just one closed walk, of weight 0. If a = q− 1,
then ai = p − 1 for all i and there is again just one closed walk, of weight t. Finally,
for a = q−1

2
there are two closed walks one of weight 0, where in equation (6) we take
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α = p−1
2

, β = p − 1 and γ = 0 for every arc, and the other of weight t, where we take

α = p−1
2

, β = 0 and γ = 1 for every arc.
Let B be the adjacency matrix of the digraph G. More precisely, the rows and columns

of B are both indexed by (α, γ) ∈ [p] × [2], and the entry ((α, γ), (α′, γ′)) of B is 0 if
there is no arc from (α, γ) to (α′, γ′); is 1 if there is an arc e from (α, γ) to (α′, γ′) and
w(e) = 0; is x if there is an arc e from (α, γ) to (α′, γ′) and w(e) = 1 (here x is an
indeterminate). Note that since (6) does not involve α′, the adjacency matrix B has
only two distinct rows, each repeated p times. More explicitly,

B =



p p

p+1
2

︷ ︸︸ ︷
1 · · · 1
...

...
1 · · · 1

︷ ︸︸ ︷
0 · · · 0
...

...
0 · · · 0

p−1
2


0 · · · 0
...

...
0 · · · 0

x · · · x
...

...
x · · · x

p−1
2


1 · · · 1
...

...
1 · · · 1

0 · · · 0
...

...
0 · · · 0

p+1
2


0 · · · 0
...

...
0 · · · 0

x · · · x
...

...
x · · · x


If Ψ = e1e2 · · · en is a walk in G, we define wt(Ψ) = xw(e1)+w(e2)+···+w(en). Let

CG(n) =
∑

Ψ

wt(Ψ),

where the sum is extended over all closed walks of length n in G. Then CG(n) =∑
m≥0 f(n,m)xm, where f(n,m) is the number of closed walks of length n and weight

m. Let
F (z, x) =

∑
n≥1

CG(n)zn.

By Corollary 4.7.3 of [15, p. 501], we have

F (z, x) = −
z ∂Q(z,x)

∂z

Q(z, x)
,

where Q(z, x) = det(I−zB). Using the above definition of B, we find that det(I−zB) =
1− p+1

2
(1 + x)z + pxz2. It follows that

F (z, x) =
U − 2V

1− U + V
=

(U − V )− V
1− (U − V )

,
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with U = p+1
2

(1 + x)z and V = pxz2. Extracting the coefficient of xmzn in F (z, x), we
obtain

f(n,m) =
∑
i

n

n− i

(
n− i
i

)(
n− 2i

m− i

)
(−p)i

(
p+ 1

2

)n−2i

.

Notice that f(n,m) = f(n, n−m).
Summing up we have the following:

Theorem 4.1. Let q = pt be a prime power congruent to 1 modulo 4. Then the number
of p-adic elementary divisors of L(Paley(q)) which are equal to pλ, 0 ≤ λ < t, is

f(t, λ) =

min{λ,t−λ}∑
i=0

t

t− i

(
t− i
i

)(
t− 2i

λ− i

)
(−p)i

(
p+ 1

2

)t−2i

.

The number of p-adic elementary divisors of L(Paley(q)) which are equal to pt is
(
p+1

2

)t−
2.

Example 4.2. In [11], K(Paley(25)) is calculated directly by a computer. Here as
an illustration of Theorem 4.1 we use the above formula to compute K(Paley(53)) and
K(Paley(54)):

f(3, 0) = 33 = 27.

f(3, 1) =

(
3

1

)
· 33 − 3

2

(
2

1

)(
1

0

)
· 5 · 3 = 36.

Therefore

K(Paley(53)) ∼= (Z/31Z)62 ⊕ (Z/5Z)36 ⊕ (Z/25Z)36 ⊕ (Z/125Z)25.

f(4, 0) = 34 = 81.

f(4, 1) =

(
4

1

)
· 34 − 4

3

(
3

1

)(
2

0

)
· 5 · 32 = 144.

f(4, 2) =

(
4

2

)
· 34 − 4

3

(
3

1

)(
2

1

)
· 5 · 32 +

4

2

(
2

2

)(
0

0

)
· 52 = 176.

Therefore

K(Paley(54)) ∼= (Z/156Z)312 ⊕ (Z/5Z)144 ⊕ (Z/25Z)176 ⊕ (Z/125Z)144 ⊕ (Z/625Z)79.
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