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Abstract. This paper studies the permutation representation of the
symplectic group Sp(2m, Fq), where q is odd, on the 1-spaces of its nat-
ural module. The complete submodule lattice for the modulo ℓ reduction
of this permutation module is known for all odd primes ℓ not dividing q.

In this paper we determine the complete submodule lattice for the mod
2 reduction. Similar results are then obtained for the orthogonal group
O(5, Fq).

1. Introduction

Let p be an odd prime and let q = pf . Throughout the following V will be
a 2m-dimensional Fq-vector space equipped with a non-singular alternating
bilinear form ( , ). We shall assume m > 2 to avoid trivial exceptions. For
1 6 r 6 m, let Lr denote the set of r-dimensional isotropic subspaces of V.
Then L1 is the set of all 1-dimensional subspaces of V, and Lm is the set
of all maximal isotropic subspaces of V. The group G := Sp(2m, Fq) acts
transitively with rank 3 on L1.

Let F be any field of characteristic coprime to p, and let FLr denote
the FG-permutation module on Lr. We ask for its submodule lattice in the
case where r = 1. This has been determined in [9] by Liebeck in all cases
except when char F = 2. In [2] Bagchi et al have conjectured the submodule

structure of FL1

2 for the special case where m = 2.
In this paper we determine the complete FG-submodule lattice of FL1,

where F is a field of characteristic 2. Our approach is to first restrict the
action of G to that of a maximal parabolic subgroup. The composition
factors of this restricted action are determined and using a recent result [5],
we are then able to determine the composition factors for the action of the
full group. This puts us in a position to obtain the submodule lattice (see
Theorem 2.13). Taking m = 2 in our work, we see that the conjecture in [2]
is correct only if q ≡ ±3 mod 8.

In fact, for the case m = 2, Bagchi et al also conjectured in [2] the

submodule structure of FL2

2 . We are able to use our results along with results
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[10] of White and [9] of Liebeck to show that this conjecture is true only if
q ≡ ±3 mod 8 (see Theorem 3.1 and its corollary).

For simplicity, we will always work over an algebraically closed field of
characteristic 2, which we denote by k.

We mention here that other rank 3 permutation modules for finite classical
groups will be treated in a forthcoming paper.

2. the submodule structure of kL1

2.1. Restriction to a maximal parabolic subgroup. Fix a symplectic
basis e1, . . . , em, f1, . . . , fm for V over Fq, so that

(ei, ej) = (fi, fj) = 0 and (ei, fj) = −(fj, ei) =

{
1 if i = j
0 if i 6= j

Let M := 〈e1, . . . , em〉 and P := 〈f1, . . . , fm〉 be maximal isotropic subspaces
of V.

Let GM denote the set-wise stabilizer of M in G. Then

GM = S ⋊ L(1)

where

S =

{(
I A
0 I

) ∣∣ A = At, A ∈ Hom(P,M)

}
(2)

and

L =

{(
g 0
0 g−t

) ∣∣ g ∈ GL(M)

}
.(3)

Here I is the m × m identity matrix and 0 is the m × m zero matrix.

To determine the kG-composition factors of kL1 we will first need to
determine the composition factors of ResG

GM
kL1 . We start by noting that

GM has two orbits on L1 :

O1 :=
{
ω ∈ L1

∣∣ ω ⊂ M
}

and

O2 :=
{
ω ∈ L1

∣∣ ω * M
}

.

Now for any subset X ⊆ L1, we will let kX denote the k-span of the
elements of X. Then we have the following decomposition of ResG

GM
kL1 as

a direct sum of kGM -submodules:

ResG
GM

kL1 = kO1 ⊕ kO2.(4)

Thus, to determine the composition factors of ResG
GM

kL1 we may sepa-
rately study the summands in (4).

The first summand is easily handled:
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For v ∈ V, write v =

(
x
y

)
, where x ∈ M and y ∈ P. Then

〈v〉 ∈ O2 if and only if y 6= 0.(5)

With this notation, the computation
(

I A
0 I

)(
x
y

)
=

(
x + Ay

y

)
(6)

shows that S acts trivially on O1, i.e. S acts trivially on kO1 . ¿From (1),
(2), and (3) we see that the induced action of GM/S ≃ GL(M) on kO1 is
the usual action of GL(M) on the 1-spaces of M. Thus, the kGM -submodule
lattice of kO1 is known from [8]. Explicitly, if we put

1O1
:=

∑

ω∈O1

ω ∈ kO1

and

K := 〈ω − α | ω,α ∈ O1〉k ,

where 〈 〉k denotes k-span, then we have

Lemma 2.1. (a) If m is odd, then K is simple and

kO1 = 〈1O1
〉k ⊕ K

(b) If m is even, then kO1 is uniserial with composition series

kO1

|
K
|

〈1O1
〉k

|
{0}

In the situation of Lemma 2.1.b, put K′ := K/ 〈1O1
〉k .

We will indicate the composition factors of kO1 informally by writing

kO1 =

{
k + K if m is odd

(2)k + K′ if m is even
(7)

Of course, here k denotes the simple trivial module.

To determine the kGM -composition factors of the second summand in
(4), we will once again begin by restricting the action of GM to that of
its normal subgroup S, i.e. first we will determine the composition factors

of ResGM
S kO2 . We will then use Clifford’s theorem along with a result of

Higman’s (see [6]) to recover the GM -composition factors.
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2.2. The composition factors of ResGM
S kO2. Using elementary linear

algebra we see that given any non-zero y ∈ P and any z ∈ M we can
always find a symmetric transformation A ∈ Hom(P,M) which sends y to
z. Therefore, it follows from (6) that the S-orbits on O2 are indexed by the

1-spaces in P. Explicitly, let 〈y1〉 , . . . ,

〈
y qm

−1

q−1

〉
be a list of the 1-spaces in

P. Then the S-orbits on O2 are the sets

O〈yi〉 :=

{〈(
x
yi

)〉 ∣∣ x ∈ M,

}
.

Thus, we have the following decomposition of ResGM
S kO2 as a direct sum

of kS-submodules:

ResGM
S kO2 =

qm
−1

q−1⊕

i=1

k
O〈yi〉(8)

Let Syi 6 S be the stabilizer of

〈(
0
yi

)〉
∈ O〈yi〉. So

Syi =

{(
I A
0 I

)
∈ S

∣∣ Ayi = 0

}
.

Then

k
O〈yi〉 = IndS

Syi
k,

so that by (8) we may write

ResGM
S kO2 =

qm
−1

q−1⊕

i=1

IndS
Syi

k.(9)

We now pause to establish a correspondence between the irreducible kS-
characters and the symmetric bilinear forms on M. This correspondence will

be the key to determining the composition factors of ResGM
S kO2 .

We start by noting that

P ≃ V/M = V/M⊥ ≃ M∗,

(where M∗ denotes the dual space of M) so we may identify P with M∗.
If we also identify M with (M∗)∗, then we can identify Hom(P,M) with
Hom(M∗, (M∗)∗), i.e. we may regard Hom(P,M) as the set of all bilinear
forms on M∗.

The correspondence
(

I A
0 I

)
7→ A(10)
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then identifies S with the set of symmetric bilinear forms on M∗. Under this
identification Syi corresponds to the set of all symmetric bilinear forms on
M∗ which have yi in their radical, i.e. Syi corresponds to the symmetric
bilinear forms on (Ker yi)

∗.
Now let ζ be a primitive p-th root of unity in algebraically closed k. The

corresondence

f(·) 7→ ζTraceFq/Fp(f(·))(11)

allows us to identify the linear functionals on the Fq-vector space S with the
irreducible k-characters of the elementary abelian p-group S. Since S is the
set of symmetric bilinear forms on M∗, we see that S∗ is the set of symmetric
bilinear forms on M. Thus, we may identify the irreducible characters of S
with the symmetric bilinear forms on M.

Remark 2.2. Let N be an irreducible submodule of IndS
Syi

k and let f ∈ S∗

be the linear functional which corresponds under (11) to the character of N.
By Frobenius reciprocity, we know that Syi acts trivially on N. This means
that TraceFq/Fp

(f(A)) = 0 for every A ∈ Syi , from which it follows that
f(A) = 0 for all A ∈ Syi . But as Syi is the set of symmetric bilinear forms
on (Ker yi)

∗, this means that the symmetric bilinear form on M which
corresponds to f must be isotropic on the hyperplane Ker yi ⊂ M.

Thus, the irreducible characters in IndS
Syi

k are the symmetric bilinear

forms on M which are isotropic on Ker yi. Again using Frobenius reciprocity,
we see that each such form occurs with multiplicity one. In particular, the
zero form (which corresponds to the trivial character) occurs exactly once
in each IndS

Syi
k. In fact, it is easily seen that the unique trivial submodule

of IndS
Syi

k is

Ti :=
〈
1O〈yi〉

〉

k
(12)

where

1O〈yi〉
:=

∑

ω∈O〈yi〉

ω ∈ k
O〈yi〉 .(13)

Now let B be a non-zero symmetric bilinear form on M which has an
isotropic hyperplane. Then B has either rank 1 or 2. If B has rank 1, then
the radical of B, denoted by Rad B, is the unique isotropic hyperplane for
B. If B has rank 2 then M/Rad B is hyperbolic and therefore has precisely
two isotropic lines for the form induced from B, i.e. M has precisely two
isotropic hyperplanes for B.

In light of (9), the above then gives us all of the composition factors of

ResGM
S kO2. We record this information as

Lemma 2.3. Under the identification in (11), ResGM
S kO2 has the following

composition factors:
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(a) The zero form, i.e. the trivial character, which occurs with multiplicity
qm−1
q−1 .

(b) The rank 1 symmetric bilinear forms, where each occurs with multiplicity
1.
(c) The rank 2 symmetric bilinear forms having isotropic hyperplane, where
each occurs with multiplicty 2.

2.3. The kGM -composition factors of kO2. We start by examining the
S-fixed points of kO2 . Define

T :=

qm
−1

q−1⊕

i=1

Ti(14)

where the Ti are as in (12). Now it is easily seen from (1) that GM/S ≃
GL(M) permutes the vectors in (13) in the usual way that GL(M) acts on
the 1-spaces of M∗, i.e. in the usual way that GL(M) acts on the hyperplanes
of M. Thus, if we let Lm−1 denote the set of hyperplanes in M, then the
kGM -module T can be naturally identified with the kGL(M)-module kLm−1 .

It is well-known that the permutation modules on the 1-spaces and the
hyperplanes, respectively, of M are isomorphic over a field of characteristic
zero. Therefore, from a general principle of modular representation the-
ory (see [4], Theorem 17.7) we know that kLm−1 and kO1 have the same
composition factors. Therefore, it follows from (7) that

T =

{
k + K if m is odd

(2)k + K′ if m is even
(15)

We remark here that it can actually be shown that kLm−1 and kO1 are
isomorphic for G.

To find the remaining composition factors, we now consider the action
of GM on the irreducible characters of S. We start by observing that as S
acts trivially on its characters, we need only consider the induced action of
GM/S ≃ GL(M). Now GL(M) acts by congruence transformations on S.
Therefore, if we view the elements of S∗ as symmetric matrices, then the
action of GL(M) is again by congruence transformations. We then see that
under correspondence (11), GL(M) acts by congruence transformations on
the characters of S.

There are two GL(M) congruence classes of rank 1 symmetric bilinear
forms, represented by

diag(1, 0, . . . , 0)(16)

and

diag(α, 0, . . . , 0)(17)
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where α is a non-square in F×
q (see [1]). The stabilizer of both classes is

{(
±1 0
∗ ∗

)}

which has index qm−1
2 in GL(M).

Let B1 denote the congruence class of (16) and Bα denote the congruence
class of (17). Let W1 denote the external direct sum of the S-characters
which correspond to the forms in B1, and let W2 denote the external direct
sum of the S-characters which correspond to the forms in Bα. Then it follows
from Lemma 2.3.b and Clifford’s Theorem [4] that kO2 has composition
factors, call them W1 and W2, which when restricted to S are isomorphic
to W1 and W2, respectively. Note that

dimk W1 = dimk W2 =
qm − 1

2
(18)

but W1 ≇ W2.

Now, there is one congruence class of rank 2 symmetric bilinear forms
having isotropic hyperplane, represented by

(
( 0 1

1 0 ) 0

0 0

)
.(19)

The stabilizer in GL(M) of this class is
{(

C 0
∗ ∗

)}

where C is a 2×2 monomial matrix. This subgroup has index q(qm−1)(qm−1−1)
2(q−1)

in GL(M).
Let D denote the external direct sum of the S-characters which correspond

to these forms. Note that dimk D = q(qm−1)(qm−1−1)
2(q−1) . It then follows from

Lemma 2.3.c and Clifford’s Theorem that exactly one of the following cases
holds for kO2 :

Case A: kO2 has precisely two composition factors, call them D1 and D−1,
which when restricted to S are isomorphic to D.

Case B: kO2 has a single composition factor, call it D0, which when re-
stricted to S is isomorphic to D ⊕ D.

We now show that the former is true. We start by establishing some
notation which we will use throughout the remainder of the paper:

For any field F, we let FLr denote, as usual, the FG-permutation module
on Lr. Let

ηr,s : FLr → FLs

be the FG-module homomorphism which sends each isotropic r-space to the
(formal) sum of the isotropic s-spaces which are incident with it.
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Define

1 :=
∑

ω∈L1

ω ∈ FL1.

For ω ∈ L1 put

∆(ω) := {α ∈ L1 | α * ω⊥},

and define an element s∆(ω) ∈ FL1 as follows:

s∆(ω) :=
∑

α∈∆(ω)

α.(20)

Define a non-singular symmetric bilinear form [−,−]F by demanding that

the elements of L1 form an orthonormal basis. For any subset S ⊆ FL1 put

S⊥ :=
{
v ∈ kL1 | [v, s]F = 0, for all s ∈ S

}

Note that we have used the same notation for orthogonal complements in
V, but no confusion should arise. Note also that if S is a FG-submodule of
FL1, then so is S⊥.

Now let Q2 denote the field of 2-adic numbers and let Q2 be its algebraic
closure. Then F will be the maximal unramified extension of Q2 in Q2 (see
[7], pg.37), and R will be the valuation ring of F . Note that F has residue
field k. ¿From [6] we have that

FL1 = 〈1〉F ⊕ M−1 ⊕ M1,(21)

where M±1 are irreducible FG-submodules with

dimF M−1 =
q(qm − 1)(qm−1 + 1)

2(q − 1)
(22)

and

dimF M1 =
q(qm + 1)(qm−1 − 1)

2(q − 1)
.(23)

Let M±1 be the reductions modulo 2 of M±1. Their restrictions to GM

must be collections of the composition factors described above. By (22)
and (23) the dimensions of the composition factors of M±1 add up to
q(qm±1)(qm−1∓1)

2(q−1) . Assume now that (m, q) 6= (2, 3). Then

q(qm ± 1)(qm−1 ∓ 1)

2(q − 1)
< 2(dimk D).(24)

So it cannot be that either ResG
GM

M±1 contains a composition factor which
when restricted to S is isomorphic to D ⊕ D. Thus, we deduce that Case
A holds. If (m, q) = (2, 3), then dimF M−1 = 2(dimk D). However, it is
easy to see (e.g. by considering degrees) that M−1 is the unique non-trivial
composition factor which is common to both FL1 and FL2. Since FL2 =
IndG

GM
F , it then follows from Frobenius reciprocity that GM (and hence
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S) has a non-zero fixed point on M−1. This then implies that ResG
GM

M−1

contains a trivial composition factor. Since S has no fixed points on D⊕D,
we deduce that Case A holds in this case as well. We mention here that it
will be shown in §2.4 (see (32)) that D1 ≃ D−1.

Hence, we have found all the kGM -composition factors of kO2 . Combining
this information with Lemma 2.1 and using the informal notation of (7) and
(15), we may now state

Lemma 2.4. (a) If m is odd, then

ResG
GM

kL1 = (2)k + (2)K + W1 + W2 + D1 + D−1.

(b) If m is even, then

ResG
GM

kL1 = (4)k + (2)K′ + W1 + W2 + D1 + D−1.

2.4. The kG-composition factors of kL1. Let F ,R,M±1, and M±1 be
as in §2.3. It follows from (24) and the remarks following it that each of
D±1 occurs in exactly one of ResG

GM
M±1, and that the D±1 do not occur

together. Thus, we may assume that our notation is chosen so that D±1 is
a composition factor of ResG

GM
M±1. Also, since

dimk M1 − dimk D1 =
q(qm + 1)(qm−1 − 1)

2(q − 1)
−

q(qm − 1)(qm−1 − 1)

2(q − 1)

=
qm − 1

q − 1
− 1

<
qm − 1

2
= dimk W1 = dimk W2,

we deduce upon inspection of Lemma 2.4 that

ResG
GM

M1 =

{
K + D1 (m odd)

k + K′ + D1 (m even)
(25)

Suppose for the sake of contradiction that M1 has a kG-composition fac-
tor, call it K, which when restricted to GM is isomorphic to K. Since S acts
trivially on K, it is contained in the kernel, call it J, of the representation
of G on K. Since S is not contained in the center of G, and since the center
of G is the only non-trivial normal subgroup of G, we deduce that J must
be all of G. But GM acts non-trivially on K, a contradiction. It follows that
M1 has no such composition factor for G, and therefore M1 is irreducible if
m is odd. If m is even, then similar reasoning allows us to conclude that
either M1 is irreducible or else M1 = k + X, with X irreducible. We now
show that the latter is true.
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Using the notation in (20), we define a kG-module homomorphism

ϕ : kL1 → kL1(26)

by

ω 7→ ω + s∆(ω),

where ω ∈ L1. Put

U := Im ϕ.(27)

Now define

U ′ := 〈u1 + u2 | u1, u2 ∈ U〉k .(28)

¿From [9] we have the following non-trivial fact:

Lemma 2.5. (Theorem 1.1 of [9]) Every kG-submodule of kL1 not con-
tained in 〈1〉k must contain U ′.

It is easily seen that

M1 ∩RL1

is an R-form of M1 and a pure RG-submodule of RL1. Therefore,

M1 ∩RL1

is a mod 2 reduction of M1 as well as a kG-submodule of kL1 . Since M1 ∩RL1

is certainly not contained in 〈1〉k , we see from Lemma 2.5 that

U ′ ⊆ M1 ∩RL1,

and therefore M1 contains the composition factors of U ′.
We require the following result:

Lemma 2.6. If m is even, then 〈1〉k ⊂ U ′.

Proof. Let M ∈ Lm. Then an easy computation shows that
∑

ω⊆M
ω∈L1

ω + s∆(ω) = 1.(29)

Now the number of 1-spaces in M is qm−1
q−1 , which is an even number since

m is even. Thus we may group the summands in the left-hand side of (29)
into pairs. The result then follows from the definition (28) of U ′.

Since M1 ∩RL1 has at most 2 composition factors, it follows from Lemma
2.6 that

M1 ∩RL1 = U ′.

We may summarize the above as
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Lemma 2.7. M1 and U ′ have the same composition factors.
(a) If m is odd, then U ′ is simple.
(b) If m is even, then U ′ is uniserial with composition series

U ′

|
〈1〉k
|

{0}

In the situation of Lemma 2.7.b, we put U ′/ 〈1〉k := X. In the situation
of Lemma 2.7.a, we will use X ′ to denote the composition factor isomorphic
to U ′.

In view of Lemma 2.7, we have only to determine the composition factors
of M−1. We do this now:

A simple matrix computation shows that

ϕ2 = 0.(30)

Thus,

U ⊆ Ker ϕ,(31)

where U is as in (27).
Since ϕ is symmetric, we see that Ker ϕ = U⊥. It then follows that

U ≃ kL1/Ker ϕ = kL1/U⊥ ≃ U∗,

i.e. U is self-dual. So from the structure of U ′ given in Lemma 2.7 we deduce

Lemma 2.8. (a) If m is odd, then

U = 〈1〉k ⊕ U ′.

(b) If m is even, then U is uniserial with composition series

U
|

U ′

|
〈1〉k
|

{0}

We next observe that M−1 has the same composition factors as kL1/U.
But since U ⊂ U⊥, and since kL1/U⊥ ≃ U, we see that kL1/U contains the
composition factors of U. We pause now to note that this implies that D1
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is a composition factor of ResG
GM

M−1. Since D−1 is the only composition

factor of ResG
GM

M−1 of the same dimension as D1, we deduce that

D1 ≃ D−1,(32)

as was promised in §2.3.
It remains to determine the kG-composition factors of U⊥/U. By inspect-

ing Lemma 2.4, we see that

ResG
GM

U⊥/U = W1 + W2.

We now show that M−1 has kG-composition factors, call them W1 and W2,
which when restricted to GM are isomorphic to W1 and W2. We will need
to consider the conformal symplectic group

CSp(2m, q) :=
{
T ∈ GL(V ) | ∃ α ∈ F×

q so that (Tv, Tw) = α(v,w), ∀v,w ∈ V
}

.

For brevity, we put Γ := CSp(2m, q). Then Γ ≃ G ⋊ F×
q and it is easy to see

that U is a module for Γ. Therefore, U⊥/U is also a kΓ-module.
We claim that U⊥/U is simple for Γ. Suppose not. Then it follows that

U⊥/U has kΓ-composition factors, call them Ŵ1 and Ŵ2, which when re-
stricted to GM are isomorphic to W1 and W2, respectively, and (hence) when
restricted to S are isomorphic to W1 and W2, respectively. Since W1 and
W2 are not isomorphic as kS-modules, we see that the following result then
leads to a contradiction:

Lemma 2.9. The kS-modules W1 and W2 are conjugate for Γ.

Proof. Let β ∈ Fq be a non-square and consider the element g̃ ∈ Γ whose
matrix representation with respect to the basis in §2.1 is

g̃ :=

(
βI 0
0 I

)
∈ NΓ(S),

where NΓ(S) denotes the normalizer of S in Γ. If h :=

(
I A
0 I

)
∈ S, then

an easy computation shows that

g̃hg̃−1 =

(
I βA
0 I

)
,

i.e. g̃ acts as multiplication by β on S. It then follows that g̃ acts (on the
left) on S∗ as multiplication by β−1. Under the identification in (11), this
means that g̃ acts as multiplication by β−1 on the characters of S. Taking
β = α, where α is as in (17), it is now easy to see that the conjugate by
g̃ of the form in (17) is the form in (16). The result now follows from the
construction of the W ′

is in §2.3.

Thus, U⊥/U is simple for Γ, and it follows from Clifford’s theorem that
U⊥/U is semi-simple for G. Now, either U⊥/U is a simple kG-module, or
else U⊥/U ≃ W1 ⊕ W2, where W1 and W2 are simple kG-modules which
when restricted to GM are isomorphic to W1 and W2, respectively.
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Consider the following result from [5]:

Lemma 2.10. (Theorem 2.1, [5])

Any irreducible kG-module of dimension less than (qm−1)(qm−q)
2(q+1) is either the

trivial module, or a Weil module of dimension (qm±1)
2 .

This result shows that we must have U⊥/U ≃ W1 ⊕ W2, where W1 and

W2 are irreducible Weil modules of dimension qm−1
2 . Hence, we now have all

of the kG-composition factors of kL1.

If we let V1 and V2 be submodules such that U ⊂ V1, V2 ⊂ U⊥ and
V1/U ≃ W1 and V2/U ≃ W2, then the above arguments yield the following
filtration of kL1 :

kL1

|
U⊥

��
V1 V2

��
U
|

{0}

(33)

2.5. The kG-submodule lattice of kL1. By the minimality of U ′ (see
Lemma 2.5) it suffices to determine the submodule structure of (U ′)⊥/U ′.
We start by defining submodules C and C+ as follows:

C := Im ηm,1

and

C+ := 〈x + y | x, y ∈ C〉k .

We will need the following results:

Lemma 2.11. (a) C+ ( C
(b) HomkG(kLm ,Wi) = {0}, for i = 1, 2.
(c) C has no quotient isomorphic to Wi, for i = 1, 2.
(d) HomkG(kLm , k) ≃ k
(e) C+ is the unique maximal submodule of C.

Proof. An easy computation shows that

[ω + s∆(ω), ηm,1(M)]k = 1,

for all ω ∈ L1 and all M ∈ Lm. From the definition of C+, we then deduce
that C⊥ ( (C+)⊥. Now (a) follows by taking orthogonal complements.

We have ResG
S Wi ≃ Wi, for i = 1, 2. But from our construction of the Wi

in §2.3, we know that they are fixed point free for S. Therefore, GM has no
13



fixed points on the ResG
GM

Wi ≃ Wi, i.e.

HomkGM
(k,ResG

GM
Wi) = {0},

for i = 1, 2. Since
kLm = IndG

GM
k,

the assertions in (b) follow from Frobenius reciprocity. Since C is a ho-
momorphic image of kLm , we see that (c) is an immediate consequence of
(b).

Again by Frobenius reciprocity, we have

HomkG(kLm , k) ≃ HomkGM
(k, k) ≃ k.

This proves part (d).
It follows from (a) and (d) that C+ is the unique maximal submodule of

C with trivial quotient. ¿From Lemma 2.5, we have U ′ ⊆ C. Using the inner
product computation at the start of the proof, we have C ⊆ (U ′)⊥. Thus,

U ′ ⊆ C ⊆ (U ′)⊥.

Since
(U ′)⊥/(U ′) = k + k + W1 + W2,

we know that any maximal submodule of C with non-trivial quotient must
have quotient W1 or W2, which is impossible by (c). Then (e) follows.

Since C+ is not orthogonal to C, we get

C ∩ C⊥ ( C,

and hence
C ∩ C⊥ ( C+.

by Lemma 2.11.e. Thus, the quotient C/(C∩C⊥) has at least 2 composition
factors. Furthermore, C/(C∩C⊥) has a unique maximal submodule, namely
C+/(C ∩ C⊥).

Lemma 2.12. (a) C/(C ∩ C⊥) is self-dual.
(b) C/(C ∩ C⊥) has a unique maximal submodule and a unique simple sub-
module. Both the head and socle of C/(C ∩ C⊥) are trivial.

Proof. The form induced by [−,−]k on the quotient C/(C ∩ C⊥) is non-
singular and therefore induces an isomorphism between C/(C ∩C⊥) and its
dual. Since the form is G-invariant, this is actually a kG-isomorphism, and
(a) follows. Part (b) then follows immediately from the remarks following
Lemma 2.11.

In light of Lemma 2.9, it follows from Clifford’s theorem that any kΓ-
module having at least one of the Wi as a composition factor for G must
have the other as well. Since C and C⊥ are modules for Γ, we deduce from
Lemma 2.12 that either

14



C/(C ∩ C⊥) = k + k(34)

or

C/(C ∩ C⊥) = k + k + W1 + W2.(35)

Suppose by way of contradiction that (34) holds. By Lemma 2.12.b it
must then be the case that C/(C ∩ C⊥) is uniserial. But as G is perfect, it
has no module which is a non-split extension of the simple trivial module
by itself. So (35) holds and it follows that C = (U ′)⊥ and C+ = U⊥.

We may now state our main result:

Theorem 2.13. Using the above notation, kL1 has the following submodule
lattice:

m even

kL1

k

〈1〉⊥

X

C

k

C+

W2

{{{
{{

{ W1

CC
CC

CC

V1

W1
AA

AA
AA

V2

W2}}
}}

}}

(C+)⊥

k

C⊥

X

〈1〉

k

{0}

m odd

kL1

X′

��
��

��
��

�
k

==
==

==
==

=

C

k
;;

;;
;;

;;
; 〈1〉⊥

X′

��
��

��
��

�

C+

W2

��
��

��
��

�
W1

??
??

??
??

?

V1

W1 ;;
;;

;;
;;

V2

W2
��

��
��

��
�

(C+)⊥

X′

��
��

��
��

k

==
==

==
==

=

〈1〉

k ;;
;;

;;
;;

C⊥

X′

��
��

��
��

�

{0}

Proof. Let N be a kG-submodule of kL1 . Assume N 6= {0} or 〈1〉. Then we
know from Lemma 2.5 that U ′ ⊆ N. If we assume that N 6= kL1 or 〈1〉⊥,
then we have that N⊥ 6= {0} or 〈1〉. But then from Lemma 2.5 we have

15



U ′ ⊆ N⊥, i.e. N ⊆ (U ′)⊥. Thus,

U ′ ⊆ N ⊆ (U ′)⊥.

¿From the remarks immediately following Lemma 2.12, we know that U ′ =
C⊥ and U⊥ = C+. Thus, if N 6= U ′ or (U ′)⊥, it follows from Lemma 2.12.b
that

U ⊆ N ⊆ U⊥.

But as U⊥/U ≃ W1 ⊕ W2, and since W1 ≇ W2, we see that V1 and V2 are

the only kG-submodules between U and U⊥, i.e. N = V1 or V2.

Although the dimensions of the submodules pictured above have been
given earlier, for convenience we recall here that

dimk C = 1 +
q(qm − 1)(qm−1 + 1)

2(q − 1)

and

dimk V1 = dimk V2 =
q2m − 1

2(q − 1)
.

It has already been noted (see the comments immediately following Lemma
2.9) that C+/(C+)⊥ is a simple kΓ-module. In the sequel, we shall denote
this simple quotient by W. Since all of the kG-submodules of kL1 except for
the Vi are also kΓ-submodules, we then have

Corollary 2.14. The pictures in Theorem 2.13 are the Hasse diagrams for
Γ = CSp(2m, q), except that the quotient W = C+/(C+)⊥ is irreducible.

By abuse of notation, we shall also denote by X and X ′ the Γ-composition
factors which when restricted to G are isomorphic to the composition factors
X and X ′, respectively, which are mentioned above. However, we caution the
reader that these G-modules need not have unique extensions to Γ-modules.

Remark 2.15. ¿From [5] we know that the Weil modules can be realized over
F2 if and only if q ≡ ±1 mod 8. If q ≡ ±3 mod 8, then the smallest field
of definition for the Weil modules is F4. With this insight, we may deduce
from Theorem 2.13 the complete kG-submodule lattice of FL1 for any field
F of characteristic 2. Explicitly, if q ≡ ±1 mod 8 and F is arbitrary, or if
q ≡ ±3 mod 8 and F4 ⊆ F, then the submodule lattice of FL1 is as pictured
in Theorem 2.13. However, if q ≡ ±3 mod 8 and F4 * F, then the submodule

lattice is as pictured in Theorem 2.13 except that the quotient C+/(C+)⊥

is irreducible.

Remark 2.16. In [2] (see pg. 353), Bagchi et al conjectured the submodule

lattice of FL1

2 for G. We now see from Theorem 2.13 and the preceding remark
that their conjectured structure is correct in all cases except when q ≡
±1 mod 8, in which case the Weil modules have been neglected. However,
their structure is correct for the conformal group Γ.
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3. the Sp(4, q)-submodule structure of kL2

Throughout this section we take m = 2, i.e. V is a 4-dimensional non-
singular symplectic Fq-vector space and G = Sp(4, q). So L1 is the set of
1-spaces in V, and L2 is the set of maximal isotropic subspaces in V. As
usual, k is an algebraically closed field of characteristic 2.

Let M ∈ L2 and define

Φ(M) :=
{
N ∈ L2 | dimFq M ∩ N = 1

}
.

Now let

sΦ(M) :=
∑

N∈Φ(M)

N ∈ kL2.

Define submodules C and P as follows:

C := 〈M | M ∈ L2〉k

and

P :=
〈
sΦ(M) | M ∈ L2

〉
k
.

Now put

C+ := 〈M + N | M,N ∈ L2〉k

and

P+ := 〈P1 + P1 | P1, P2 ∈ P〉k

Finally, denote Y := C⊥/P+. We now prove

Theorem 3.1. Using the above notation, kL2 has the following submodule
lattice for Γ = CSp(4, q) :

17



kL2

k

〈1〉⊥k

W

P+⊥

Y

{{
{{

{{
{{

{

k

C

k

P⊥

Y

{{
{{

{{
{{

X

C+

X

C+⊥

Y

{{
{{

{{
{{

k

P

k

C⊥

Y

{{
{{

{{
{{

P+

W

〈1〉k

k

{0}

Proof. That all the containments pictured above actually hold has been
proven in [2] by Bagchi et al. Furthermore, in the same paper the authors
have determined the dimensions of all the submodules pictured above, and
we will freely use that information here.

The incidence map η1,2 : kL1 → kL2 induces an isomorphism kL1/C⊥ ≃ C.
By Corollary 2.14, we then have that C is uniserial with composition factors
as indicated in the picture above. The incidence map η2,1 : kL2 → kL1

induces an isomorphism kL2/C⊥ ≃ C. By Corollary 2.14, we then have
that kL2/C⊥ is uniserial with composition factors as indicated in the picture
above. We now see that ResΓG kL2 has the Weil modules, W1 and W2, as
composition factors, and that each occurs with multiplicity at least 2. Now
from [10] we know that kL2 has composition length 10 for G. It then follows
that Y (= C⊥/P+) is simple for G, and hence simple for Γ.

Now from Theorem 2.2 of [9], we know that every submodule of kL2 which
is not contained in 〈1〉k must contain P+. Thus, to verify the conjectured

structure, it suffices to prove that P+⊥/P+ is as pictured.
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Since P ∩ C⊥ = P+ we see that

P+⊥/P+ = (C/P+) ⊕ (C⊥/P+),(36)

i.e. the quotient P+⊥/P+ is the direct sum of a uniserial module and a
simple module.

It is determined in [2] that dimk (C⊥/P+) = q(q−1)2

2 , so that C⊥/P+ is
non-trivial. Since C/P+ has trivial socle and trivial head, we see that we
have have found all the submodules of P+⊥/P+. The result follows.

In the isomorphism kL1/C⊥ ≃ C, let V1 and V2 denote the images in C of
V1/C

⊥ and V2/C
⊥, respectively. Thus,

〈1〉k ⊂ V1,V2 ⊂ P+

and

P+/ 〈1〉k ≃ W1 ⊕ W2.

Let V3 := V⊥
1 and V4 := V⊥

2 . Thus,

〈1〉⊥k ⊃ V3,V4 ⊃ P+⊥

and

〈1〉⊥k /P+⊥ ≃ W1 ⊕ W2.

Corollary 3.2. The picture in Theorem 3.1 shows every kG-submodule of
kL2, except for the modules Vi, for i = 1 to 4.

Proof. By Theorem 2.2 of [9], we know that every submodule of kL2 which
is not contained in 〈1〉k must contain one of V1 or V2. Therefore, in light of
Theorem 3.1, it suffices to show that any submodule which properly contains
either V1 or V2 must contain the other one as well, i.e. must contain P+.

Let N be a kG-submodule of kL2 which properly contains V1 but does not
contain V2. Assume that N is chosen minimal with respect to this property,
i.e. assume no submodule of N has this property also. Denote by Ñ the
Γ-module generated by N.

Assume first that N ⊆ P+⊥. Since N properly contains V1, we have
P+ ( N + P+. Thus,

P+ ( N + P+ ⊆ P+⊥.

But we know that, in general, any kG-submodule A such that P+ ⊆ A ⊆
P+⊥ is actually a kΓ-submodule. Hence, N +P+ is a kΓ-submodule. Since
N + P+ ⊆ Ñ , we deduce

N + P+ = Ñ .

We have
(N + P+)/N ≃ P+/(P+ ∩ N)

= P+/V1

≃ W2.
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Therefore,

HomkG(ResΓG N + P+, ResΓG W ) 6= {0}.

Let H be the subgroup (of index 2) of Γ which is generated by G along with
all of the scalar matrices. We then have

HomkH(ResΓH N + P+, ResΓH W ) 6= {0}.

Now H acts trivially on HomkH(ResΓ
H N+P+, ResΓH W ), so we may consider

the induced action of the 2-group Γ/H on HomkH(ResΓH N +P+,ResΓH W ).
But the action of a 2-group on a vector space over a field of characteristic 2
always has a fixed point. Thus,

HomkΓ(N + P+, W ) 6= {0},

i.e. N +P+ has a quotient isomorphic to W. But from Theorem 3.1 we know
that no submodule of P+⊥ which contains P+ has such a quotient. Thus,
we have obtained a contradiction.

Now assume that N * P+⊥. Then (N + P+) * P+⊥ either. But

(N + P+)⊥ = N⊥ ∩ P+⊥

is, of course, a kG-submodule of P+⊥. From the first part, we know all such
submodules. Obviously, we cannot have P+ ⊆ (N + P+)⊥, so it must be
the case that (N + P+)⊥ = {0}, 〈1〉k ,V1, or V2.

Consider the following composition series for N + P+ :

{0} ⊂ 〈1〉k ⊂ V1 ⊂ N ⊂ N + P+.

Note that the simplicity of Q := N/V1 is a consequence of the minimality of
N. We know all of the kG-composition factors of kL2 , but we do not know
the isomorphism class of Q. However, by considering the various possibilities
for Q, we may see that regardless of its isomorphism class, we always have
that the dimension of (N + P+)⊥ is strictly greater than the dimensions
of {0}, 〈1〉k ,V1, and V2. Thus, we have reached a contradiction and the
assertion has been established.

Remark 3.3. In view of Remark 2.15, we see that we may deduce from
Theorem 3.1 and its corollary the submodule structure of FL2 where F is
any field of characteristic 2.

Remark 3.4. In [2] (see pg. 352), Bagchi et al conjectured the submodule

lattice of FL2

2 for G. We now see from Corollary 3.2 and the preceding remark
that their conjectured structure is correct in all cases except when q ≡
±1 mod 8, in which case the Weil modules have been neglected. However,
their structure is correct for the conformal group Γ.

Remark 3.5. Let E be a 5-dimensional vector space over Fq which is en-
dowed with a non-singular orthogonal geometry. Denote by O(5, q) the
corresponding full orthogonal group and by Ω(5, q) its derived subgroup.
We will write L1(E) for the set of isotropic 1-spaces in E. There is a natural
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identification (see [3]) of the elements of L2 with the elements of L1(E).
This identification carries Γ onto O(5, q) and G onto Ω(5, q). Thus, we see

that the above results give us the submodule structure of FL1(E), where F
is any field of characteristic 2.
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