OPPOSITENESS IN BUILDINGS AND SIMPLE MODULES FOR FINITE GROUPS OF LIE TYPE

PETER SIN

Abstract

In the building of a finite group of Lie type we consider the incidence relations defined by oppositeness of flags. Such a relation gives rise to a homomorphism of permutation modules (in the defining characteristic) whose image is a simple module for the group. The p-rank of the incidence relation is then the dimension of this simple module. We give some general reductions towards the determination of the character of the simple module. Its highest weight is identified and the problem is reduced to the case of a prime field. The reduced problem can be approached through the representation theory of algebraic groups and the methods are illustrated for some examples.

1. Introduction

Let G be a finite group with a split BN-pair of characteristic p and rank ℓ, and let $I=\{1, \ldots, \ell\}$. The Weyl group W is a euclidean reflection group in a real vector space V, containing a root system R and if $S=\left\{\alpha_{i} \mid i \in I\right\}$ is a set of simple roots then W is a Coxeter group with generators the fundamental reflections $w_{i}, i \in I$, where w_{i} is the reflection in the hyperplane perpendicular to the simple root α_{i}.

For $J \subset I$, let $W_{J}:=\left\langle w_{i} \mid i \in J\right\rangle$ be the associated standard parabolic subgroup of W and $P_{J}=B W_{J} B$ the standard parabolic subgroup of G. By a type we simply mean a nonempty subset of I. An object of type $I \backslash J$, or of cotype J is, by definition, a right coset of P_{J} in G.

The associated building is the simplicial complex in which the simplices are the cosets of the standard parabolic subgroups of G, and the face relation is the reverse of inclusion. An object of type $I \backslash J$ is a $(|I \backslash J|-1)$-simplex.

An example which has an elementary description is the building for $G=$ $\mathrm{SL}(V)$ of type A_{ℓ}, where V is an $(\ell+1)$-dimensional vector space. A k-simplex is a flag of $k+1$ nontrivial, proper subspaces of V, and its type is the set of dimensions of the subspaces in the flag.

Given two fixed types there are various incidence relations between objects of the respective types which are preserved by the action of G. In the above example, if we consider in V the complete flags (objects of type I) and the
i-dimensional subspaces (objects of type $\{i\}$), then an incidence relation can be specified by prescribing a sequence of ℓ dimensions for the intersections of an i-dimensional subspace with the subspaces in a complete flag.

An incidence relation \mathcal{R} between the sets of objects of cotypes J and K can be encoded by an incidence matrix or, more conveniently for our purposes, by an incidence map of permutation modules. Let k be a commutative ring with 1. Let \mathcal{F}_{J} denote the space of functions from the set $P_{J} \backslash G$ of objects of cotype J to k. Then \mathcal{F}_{J} is a left $k G$-module by the rule

$$
\begin{equation*}
(x f)\left(P_{J} g\right)=f\left(P_{J} g x\right), \quad f \in \mathcal{F}_{J}, \quad g, x \in G \tag{1}
\end{equation*}
$$

Let $\delta_{P_{J} g}$ denote the characteristic function of the object $P_{J} g \in P_{J} \backslash G$. These characteristic functions are permuted transitively by G and form a basis for \mathcal{F}_{J}.

A G-invariant relation \mathcal{R} defines a $k G$-homomorphism $\eta: \mathcal{F}_{J} \rightarrow \mathcal{F}_{K}$ given by

$$
\begin{equation*}
\eta(f)\left(P_{K} h\right)=\sum_{P_{J} g \mathcal{R} P_{K} h} f\left(P_{J} g\right) . \tag{2}
\end{equation*}
$$

The characteristic function of an object of cotype J is sent to the sum of the characteristic functions of all objects of cotype K which are incident with it.

Naturally, we would like to compute invariants of η. We can ask for its Smith Normal Form when $k=\mathbb{Z}$, its rank when k is a field, or its eigenvalues if $J=K$. For greater detail we can also consider the $k G$-module structure of the image of η. We have described the problem in great generality and, as might be expected, the nature and difficulty of a specific instance will depend very much on G, \mathcal{R} and k. For example, if k is a field then whether or not its characteristic is the same as that of G is crucial, because the representation theory of G in its defining characteristic is closely related to the representation theory of reductive algebraic groups, while the cross-characteristic representation theory of G has a closer connection to its complex character theory and to Brauer's theory of blocks. This dichotomy can be observed in the case of generalized quadrangles by comparing the results in [3], [14] and [9]. In the first two papers k has characteristic 2 , while G has odd characteristic in the first and even characteristic in the second. In the third, the group G and k have the same odd characteristic.

In this paper we restrict ourselves to the case where k is a field of the same characteristic as G and turn next to the choice of \mathcal{R}. We know from examples (e.g. [4]) that the permutation $k G$-module \mathcal{F}_{J} can have many composition factors, growing with respect to the Lie rank of G, and also growing for fixed rank and fixed characteristic as the size of the field increases. The same may hold for the image of η. Even for rank 2, examples (e.g. [14]) demonstrate
that the number of composition factors of $\operatorname{Im} \eta$ can grow without bound. In many cases, one knows neither the number of composition factors nor their dimensions, and in these cases we have no formula for rank η. There are also examples of two problems which seem very similar on the surface, but one turns out to be much harder than the other. For example, the problem of computing the rank of the inclusion relation of 2-dimensional subspaces in ($n-2$)-dimensional subspaces in a vector space of dimension $n \geq 5$ is unsolved. In contrast, a simple formula is known ([15]) for the rank of the relation of nonzero intersection. It is therefore desirable, for a given \mathcal{R}, to have some idea a priori of the complexity of the $k G$-submodule lattice of $\operatorname{Im} \eta$. From this point of view, the oppositeness relations (defined below), which will be shown to give simple modules, can be considered to form the starting point of the theory.

2. Oppositeness in buildings

Let R^{+}denote the set of positive roots. The length of an element $w \in W$, denoted $\ell(w)$, is the length of the shortest expression for w as a word in the generators w_{i}. This is also equal to the number of positive roots which w transforms to negative roots. There is a unique element of maximal length, denoted w_{0}, which sends all positive roots to negative roots.

Notions of oppositeness exist at the level of types and at the level of objects. Two types J and K are opposite if $\left\{-w_{0}\left(\alpha_{i}\right) \mid i \in J\right\}=\left\{\alpha_{j} \mid j \in K\right\}$, or, equivalently, if $\left\{w_{0} w_{i} w_{0} \mid i \in J\right\}=\left\{w_{i} \mid i \in K\right\}$. In other words, two types are opposite when they are mapped to each other by the symmetry of the Dynkin diagram induced by w_{0}. If $w_{0}=-1$, then every type is opposite itself; this holds for all connected root systems except for those of type A_{ℓ}, D_{ℓ} (ℓ odd) and E_{6}. Let J and K be fixed opposite cotypes. An object $P_{J} g$ of cotype J and an object $P_{K} h$ of cotype K are opposite each other if $P_{K} h g^{-1} P_{J}=P_{K} w_{0} P_{J}$ $\left(\Longleftrightarrow P_{K} h \subseteq P_{K} w_{0} P_{J} g \Longleftrightarrow P_{J} g \subseteq P_{J} w_{0} P_{K} h\right)$.

The definition of oppositeness is a precise way to formulate the intuitive idea of two objects being in "general position". From now on we shall let J and K be fixed opposite cotypes.

Example 2.1. Consider a universal Chevalley group G type A_{ℓ} and $J=I \backslash\{i\}$. Then $G \cong \mathrm{SL}(V)$ for an $(\ell+1)$-dimensional vector space V. The objects of type $\{i\}$ can be identified with i-dimensional subspaces of V and objects of the opposite type $\{\ell+1-i\}$ can be identified with $\ell+1-i$-dimensional subspaces. A subspace of type $\{i\}$ is opposite one of type $\{\ell+1-i\}$ if their intersection is the zero subspace. A familar special case is when $\ell=3$ and $i=\ell+1-i=2$. If we think projectively, the objects are lines in space and the oppositeness relation is skewness.

More generally, an object of cotype $J=\left\{j_{1}, \ldots, j_{m}\right\}$ is a flag

$$
V_{j_{1}} \subset V_{j_{2}} \subset \cdots \subset V_{j_{m}}
$$

of subspaces of V with $\operatorname{dim} V_{i_{j}}=i_{j}$. If $V_{k_{1}}^{\prime} \supset V_{k_{2}}^{\prime} \supset \cdots \supset V_{k_{m}}^{\prime}$ is an object of the opposite type, then the two flags are opposite iff $V_{i_{j}} \cap V_{k_{j}}^{\prime}=\{0\}$, for $j=1$, ..., m.

Example 2.2. Let G be of type B_{ℓ} or C_{ℓ} with $\ell \geq 2$ or D_{ℓ} with $\ell \geq 3$ and let $J=I \backslash\{1\}$. Then J is opposite to itself. In the B_{ℓ} case, objects of cotype J can be identified with singular points (one-dimensional subspaces) with respect to a nondegenerate quadratic form in a finite vector space of dimension $2 \ell+1$. Two singular points are opposite if and only if they are not orthogonal. Similarly, objects of cotype J can be viewed as singular points of a 2ℓ-dimensional vector space with respect to a symplectic symplectic form for type C_{ℓ} or a quadratic form for type D_{ℓ}, with oppositeness interpreted as non-orthogonality. Two points are opposite if and only if they do not lie on a singular line. Thus, the concept of oppositeness generalizes the concept of collinearity of singular points in these classical geometries.

Example 2.3. Consider a universal Chevalley group G of type $E_{6}(q)$. This group has a concrete description as the group of linear transformations which preserve a certain cubic form on a 27 -dimensional vector space V over \mathbf{F}_{q}. The geometry of this space has been studied in great detail. (See [1], [10], [11].) Consider the objects of type 1 and the opposite type 6. (See Figure 1.) We can view these, respectively, as the singular points and singular (in a dual sense) hyperplanes of V. A singular point $\langle v\rangle$ is opposite a singular hyperplane H if and only $v \notin H$.

Figure 1
For further examples of oppositeness, we refer the reader to [5].
Let $A=A_{J, K}$ be the incidence matrix of the oppositeness relation, with rows indexed by objects of cotype J (in some order) and columns indexed by objects of cotype K. Suppose G is defined over \mathbf{F}_{q}, where q is a power of p.

Brouwer [5] has shown that each eigenvalue of $A A^{\prime}$ is a power of q, where A^{\prime} is the transpose of A.

In the following sections, we show that the p-rank of the incidence matrix A is the dimension of an irreducible p-modular representation of G. This fact is derived as a corollary of a general theorem of Carter and Lusztig [8]. Then we describe the simple module in terms of its highest weight and show, using Steinberg's Tensor Product Theorem that, given a root system and choice of opposite types, the p-ranks can be computed for all q once they are known in the case $q=p$. We then discuss methods for computing the character of the simple module in some examples.

3. Some lemmas on double cosets

Let V_{J} be the subspace of V spanned by $S_{J}=\left\{\alpha_{i} \mid i \in J\right\}$. Then $R_{J}=R \cap V_{J}$ is a root system in V_{J} with simple system S_{J} and Weyl group W_{J}. For $w \in W_{J}$, its length as an element of W_{J} is the same as for W. Let w_{J} be the longest element in W_{J}.

The following is immediate from the definition of opposite types.
Lemma 3.1. If $w_{0}=w^{*} w_{J}=w_{K} w^{\prime}$ then $w^{*}=w^{\prime}$.

For $w \in W$, we recall that $U_{w}^{-}=U \cap w^{-1} w_{0} U w_{0} w$. For $w \neq 1$ this group is a nontrivial p-group. We also have that given a choice of preimage $n_{w} \in N$ of w, each element of $B w B$ can be written as a unique product $g=b n_{w} u$, with $b \in B$ and $u \in U_{w}^{-}$. Thus, $\left|U_{w}^{-}\right|$equals the number of cosets $B g^{\prime}$ in $B w B$, which is equal to $q^{\ell(w)}$ in the untwisted case. In the case of twisted groups, the equation $\left|U_{w}^{-}\right|=q^{\ell(w)}$ is also valid if q is taken to be the level [12, Definition 2.1.9] of the Frobenius endomorphism defining G (which is a prime power or, for Suzuki and Ree groups, the square root of an odd power of 2 or 3) and $\ell(w)$ means the length in the Weyl group of the untwisted root system. We refer to [12, Theorems 2.3.8 and 2.4.1] and [7]. We shall use only the obvious fact that U_{w}^{-}is a nontrivial p-group when $w \neq 1$.)
Lemma 3.2. ([5, Proposition 3.1]) We have $P_{K} w_{0} P_{J}=P_{K} w^{*} P_{J}=P_{K} w^{*} B$. The number of cosets $P_{K} g$ in $P_{K} w_{0} P_{J}$ is $q^{\ell\left(w^{*}\right)}$.

Lemma 3.3. (cf. [5, Corollary 3.2]) Let $w \in W_{J}$. Then $B\left(w^{*} w\right) B \subseteq P_{K} w_{0} P_{J}$. Let $x \in G$. For a given coset $P_{K} h \subseteq P_{K} w_{0} P_{J} x$, the number of cosets $B g \subseteq$ $B w^{*} w B x$ such that $B g \subseteq P_{K} h$ is $q^{\ell(w)}$.
Proof. The first assertion is true because $P_{K} w^{*} w P_{J}=P_{K} w^{*} P_{J}=P_{K} w_{0} P_{J}$. The rest follows by counting. The number of cosets $P_{K} h \subseteq P_{K} w_{0} P_{J} g$ is $q^{\ell\left(w^{*}\right)}$ and the number of cosets $B g \subseteq B w^{*} w B x$ is $q^{\ell\left(w^{*} w\right)}=q^{\ell\left(w^{\bar{*}}\right)+\ell(w)}$.

4. Permutation modules on flags and their oppositeness HOMOMORPHISMS

Let k be an algebraically closed field of characteristic p. Recall from the Introduction that \mathcal{F}_{J} denotes the space of functions from the set $P_{J} \backslash G$ of objects of cotype J to k, with left $k G$-module structure given by (1). Also, $\delta_{P_{J g}}$ denotes the characteristic function of the object $P_{J} g \in P_{J} \backslash G$ and these functions form a permutation basis of \mathcal{F}_{J}. (The module \mathcal{F}_{J} is isomorphic to the $k G$-permutation module on the left cosets of P_{J} in G by the map sending $\delta_{P_{J} g}$ to $g^{-1} P_{J .}$.) The relation of oppositeness defines the $k G$-homomorphism $\eta: \mathcal{F}_{J} \rightarrow \mathcal{F}_{K}$ given by

$$
\begin{equation*}
\eta(f)\left(P_{K} h\right)=\sum_{P_{J} g \subseteq P_{J} w_{0} P_{K} h} f\left(P_{J} g\right) \tag{3}
\end{equation*}
$$

and we have

$$
\eta\left(\delta_{P_{J} g}\right)=\sum_{P_{K} h \subseteq P_{K} w_{0} P J g} \delta_{P_{K} h}
$$

The following result is essentially a corollary of more general results in [8].
Theorem 4.1. The image of η is a simple module, uniquely characterized by the property that its one-dimensional U-invariant subspace has full stablizer equal to P_{J}, which acts trivially on it.

The next subsections describe some results in [8] and explain how Theorem 4.1 follows from them.

Fundamental endomorphisms of \mathcal{F}_{\emptyset}. Let $\mathcal{F}=\mathcal{F}_{\emptyset}$. For each $w \in W$ we define $T_{w} \in \operatorname{End}_{k}(\mathcal{F})$ by the formula

$$
T_{w}(f)(B g)=\sum_{B g^{\prime} \subseteq B w^{-1} B g} f\left(B g^{\prime}\right) .
$$

Then

$$
T_{w} \in \operatorname{End}_{k G}(\mathcal{F}), \quad \text { for all } w \in W
$$

One can show (see [8]) that

$$
T_{w w^{\prime}}=T_{w} T_{w^{\prime}} \quad \text { if } \ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right) .
$$

Let $w \in W$ have reduced expression

$$
w_{j_{n}} \cdots w_{j_{1}}
$$

We consider the partial products $w_{j_{1}}, w_{j_{2}} w_{j_{1}}, \ldots w_{j_{n}} \cdots w_{j_{1}}$. The positive roots sent to negative roots by each partial product are also sent to negative roots by each of its successors and each partial product sends exactly one more positive root to a negative root than its predecessors. Explicitly, the new positive root
sent by $w_{j_{i}} \cdots w_{j_{1}}$ to a negative root is $w_{j_{1}} \cdots w_{j_{i-1}}\left(r_{j_{i}}\right)$. With this in mind, we can define the endomorphsim $\Theta_{w_{0}}^{J}$ of $[8$, p.363] for any J subset of I.

For any reduced expression

$$
w_{0}=w_{j_{k}} \cdots w_{j_{1}}
$$

define

$$
\Theta_{j_{i}}=\left\{\begin{array}{l}
T_{w_{j_{i}}} \quad \text { if } w_{j_{1}} \cdots w_{j_{i-1}}\left(r_{j_{i}}\right) \notin V_{J} \tag{4}\\
I+T_{w_{j_{i}}} \quad \text { if } w_{j_{1}} \cdots w_{j_{i-1}}\left(r_{j_{i}}\right) \in V_{J}
\end{array}\right.
$$

and set

$$
\Theta_{w_{0}}^{J}=\Theta_{j_{k}} \Theta_{j_{k-1}} \cdots \Theta_{j_{1}}
$$

The definition depends on the choice of reduced expression but it is shown in [8] that different expressions give the same endomorphism up to a nonzero scalar multiple.

We can now state the result from which Theorem 4.1 can be deduced. We recall that in every simple $k G$-module the subspace fixed by the subgroup U is one-dimensional. Therefore, the full stabilizer in G of this subspace must contain $N_{G}(U)=B$, so must be equal to some standard parabolic subgroup $P_{Q}, Q \subseteq I$. Thus this line is a one-dimensional $k P_{Q}$-module.

Theorem 4.2. ($\left[8\right.$, Theorem 7.1]) The image $\Theta_{w_{0}}^{J}(\mathcal{F})$ is a simple $k G$-module. The full stablizer of the one-dimensional subspace of U-fixed points in this module is P_{J} and the action of P_{J} on this one-dimensional subspace is trivial.
(Our space \mathcal{F} is the space denoted \mathcal{F}_{χ} in [8] when χ is the trivial character.)
Proof of Theorem 4.1. Let

$$
\begin{equation*}
w_{J}=w_{i_{m}} \cdots w_{i_{2}} w_{i_{1}} \tag{5}
\end{equation*}
$$

be a reduced expression for w_{J}. The above expression can be extended to a reduced expresion

$$
\begin{equation*}
w_{0}=w_{i_{k}} \cdots w_{i_{m+1}} w_{i_{m}} \cdots w_{i_{1}} \tag{6}
\end{equation*}
$$

of w_{0}. Thus $m=\left|R_{J}^{+}\right|$and $k=\left|R^{+}\right|$.
Then

$$
\begin{equation*}
w^{*}=w_{i_{k}} \cdots w_{i_{m+1}} \tag{7}
\end{equation*}
$$

is a reduced expression for w^{*}. We choose the special expression (6) for w_{0} to define $\Theta_{w_{0}}^{J}$. Since w_{J} sends all positive roots in V_{J} to negative roots and w_{0} sends all negative roots to positive roots, it is clear that for the first m partial products the new positive root sent to a negative root belongs to V_{J}, and that
the new positive roots for the remaining partial products are the elements of $R^{+} \backslash R_{J}^{+}$, so do not belong to V_{J}. Thus we have

$$
\begin{equation*}
\Theta_{w_{0}}^{J}=T_{w^{*}}\left(1+T_{i_{m}}\right) \cdots\left(1+T_{i_{1}}\right), \tag{8}
\end{equation*}
$$

Since $\ell\left(w^{*} w\right)=\ell\left(w^{*}\right)+\ell(w)$ for all $w \in W_{J}$, we see that $\Theta_{w_{0}}^{J}$ is a sum of endomorphisms of the form $T_{w^{*} w}$, for certain elements $w \in W_{J}$, with exactly one term of this sum equal to $T_{w^{*}}$.

Let $\pi_{J}: \mathcal{F} \rightarrow \mathcal{F}_{J}$ be defined by

$$
\left(\pi_{J}(f)\right)\left(P_{J} g\right)=\sum_{B h \subseteq P_{J} g} f(B h)
$$

and π_{K} defined similarly. It is easily checked that π_{J} and π_{K} are $k G$-module homomorphisms and they are surjective since $\pi_{J}\left(\delta_{B}\right)=\delta_{P_{J}}$.

We can now complete the proof of Theorem 4.1. The main step is to compare $\eta \pi_{J}$ with $\pi_{K} T_{w^{*} w}$ for $w \in W_{J}$. For $f \in \mathcal{F}$, we compute

$$
\begin{align*}
{\left[\eta\left(\pi_{J}(f)\right)\right]\left(P_{K} g\right) } & =\sum_{P_{J} h \subseteq P_{J} w^{*-1} P_{K} g} \sum_{B x \subseteq P_{J} h} f(B x) \\
& =\sum_{B x \subseteq P_{J} w^{*-1} P_{K} g} f(B x) \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
{\left[\pi_{K}\left(T_{w^{*} w}(f)\right)\right]\left(P_{K} h\right) } & =\sum_{B g \subseteq P_{K} h}\left(T_{w^{*} w} f\right)(B g) \\
& =\sum_{B g \subseteq P_{K} h} \sum_{B x \subseteq B\left(w^{*} w\right)^{-1} B g} f(B x) \\
& =\sum_{B g \subseteq P_{K} h} \sum_{B g \subseteq B\left(w^{*} w\right) B x} f(B x) \tag{10}\\
& =q^{\ell(w)} \sum_{B x \subseteq P_{J} w^{*-1} P_{K} g} f(B x) .
\end{align*}
$$

where the last equality follows from Lemma 3.3 , since $B x \subseteq B\left(w^{*} w\right)^{-1} B g$ if and only if $B g \subseteq B w^{*} w B x$. Thus, we have for each $w \in W_{J}$ a commutative diagram

which means that for $w \neq 1$ we have $\pi_{K} T_{w w^{*}}=0$. It now follows from (8) that $\pi_{K} \Theta_{w_{0}}^{J}=\pi_{K} T_{w^{*}}=\eta \pi_{J}$. Therefore, since $\Theta_{w_{0}}^{J}(\mathcal{F})$ is simple and $\eta \pi_{J}(\mathcal{F}) \neq 0$,
we see that $\eta \pi_{J}(\mathcal{F}) \cong \Theta_{w_{0}}^{J}(\mathcal{F})$. Finally, since π_{J} is surjective, we have $\eta\left(\mathcal{F}_{J}\right) \cong$ $\Theta_{w_{0}}^{J}(\mathcal{F})$. This completes the proof of Theorem 4.1.

5. Highest weights

If G is a universal Chevalley group or a twisted subgroup of such a group then there is an algebraic group $G(k)$, the Chevalley group over k, and a Frobenius endomorphism σ of $G(k)$ such that G is the group of fixed points of σ. References for this theory are the original paper [17, 12.4] or the very complete account in [12, Chapter 2].

The simple $k G$-modules are restrictions of certain simple rational modules $L(\lambda)$ of $G(k)([17,13.1])$, where λ is the highest weight of the module. This connection is well known; for definitions and details we refer to the original sources [16] and [17]. The simple module $L(\lambda)$ is characterized by the property that it has a unique B-stable line, and T acts on this line by the character λ.

Assume that G is a universal Chevalley group over \mathbf{F}_{q}. By Steinberg's theorem [17, 13.3], the simple $G(k)$ modules with highest weights in the set of q-restricted weights

$$
X_{q}=\left\{\lambda=\sum_{i=1}^{\ell} a_{i} \omega_{i} \in X_{+} \mid 0 \leq a_{i} \leq q-1(\forall i)\right\}
$$

remain irreducible upon restriction to G and this gives a complete set of mutually non-isomorphic simple $k G$-modules.

It is useful to identify the highest weight of the module in Theorem 4.1. We may assume that R is indecomposable, since simple modules for direct products are easily described in terms of the factors.

Let $\lambda_{\text {opp }}$ denote the q-restricted highest weight such that the restriction of the simple $G(k)$-module $L\left(\lambda_{\text {opp }}\right)$ to G is the simple module in Theorem 4.1. The condition in Theorem 4.1 that P_{J} is the full stabilizer in G of the onedimensional highest weight space of $L\left(\lambda_{\text {opp }}\right)$ is equivalent to the condition that for $i=1, \ldots, \ell,\left\langle\lambda_{\text {opp }}, \alpha_{i}^{\vee}\right\rangle=0$ if and only if $i \in J$. The condition in Theorem 4.1 that P_{J} acts trivially on the highest weight space means that the restriction of $\lambda_{\text {opp }}$ to H is the trivial character, which in turn means that, when $\lambda_{\text {opp }}$ is written as a linear combination of fundamental weights, all of the coefficients must be 0 or $q-1$. These conditions allow us to identify $\lambda_{\text {opp }}$. The fundamental weights ω_{i} for the ambient algebraic group are indexed by I, and $\lambda_{o p p}=\sum_{i \in I \backslash J}(q-1) \omega_{i}$.

Consider next a twisted group G, constructed from an overlying universal Chevalley group G^{*} over \mathbf{F}_{q}, as the group of fixed points of an automorphism induced by an isometry ρ of order e of the Dynkin diagram of G^{*}. Then $q=q_{0}^{e}$ for some prime power q_{0}. Let $I^{*}=\left\{1, \ldots, \ell^{*}\right\}$ index the fundamental roots for G^{*}. Then the index set I for G labels the ρ-orbits on I^{*}. Let $\omega_{i}, i \in I^{*}$ be the
fundamental weights of the ambient algebraic group. For $J \subseteq I$, let $J^{*} \subset I^{*}$ be the union of the orbits in J. Then $\lambda_{\text {opp }}=\sum_{i \in I^{*} \backslash J^{*}}\left(q_{0}-1\right) \omega_{i}$.

Finally, we consider the case of Suzuki and Ree groups. Here G is the subgroup of fixed points in $G(k)$ of a Steinberg endomorphism τ which induces a length-changing permutation of the Dynkin diagram of $G(k)$ and such that $\tau^{2}=$ σ is a Frobenius endomorphism of $G(k)$ with respect to a rational structure over a finite field \mathbf{F}_{q}. Then the set I for G indexes the subset of fundamental weights of the ambient algebraic group which are orthogonal to the long simple roots, and for $J \subset I$, we have $\lambda_{\text {opp }}=\sum_{i \in I \backslash J}(q-1) \omega_{i}$.
Example 5.1. As examples, we can consider the extreme cases. If $J=K=I$, then $L\left(\lambda_{\text {opp }}\right) \cong k$. If $J=K=\emptyset, L\left(\lambda_{\text {opp }}\right)$ is the Steinberg module of the group G, which has dimension equal to the the order of U, the p-sylow subgroup of G.

From the discussion above, we see that $\lambda_{\text {opp }}$ has the form $(q-1) \tilde{\omega}$, where $\tilde{\omega}$ is a sum of fundamental weights. If $q=p^{t}$, then by Steinberg's Tensor Product Theorem, we have an isomorphism

$$
\begin{equation*}
L((q-1) \tilde{\omega}) \cong L((p-1) \tilde{\omega}) \otimes L((p-1) \tilde{\omega})^{(p)} \otimes \cdots \otimes L((p-1) \tilde{\omega})^{\left(p^{t-1}\right)} \tag{12}
\end{equation*}
$$

as modules for the algebraic group. Here, the superscripts indicate twisting by powers of the Frobenius morphism. This twisting changes the isomorphism type of a module, but does not change its dimension. In particular, we have the following numerical result.
Proposition 5.2. Let the root system R and opposite cotypes J and K be given and let $A(q)=A(q)_{J, K}$ denote the oppositeness incidence matrix for objects of cotypes J and K in the building over \mathbf{F}_{q}, where $q=p^{t}$. Then $\operatorname{rank}_{p} A(q)=\left(\operatorname{rank}_{p} A(p)\right)^{t}$.
Remark 5.3. The proposition states that once $\operatorname{rank}_{p} A(p)$ is known then we know $\operatorname{rank}_{p} A(q)$ for all powers q of p. This reduction of the computation to the prime case is significant from the viewpoint of representation theory of algebraic groups, where the Weyl modules with modules highest weight $(p-1) \tilde{\omega}$ are much less complex in structure than those of highest weight $\left(p^{2}-1\right) \tilde{\omega}$, say.

A very useful tool for analyzing Weyl modules is the Jantzen Sum Formula [13, II.8.19]: The Weyl module $V(\lambda)$ has a descending filtration, of submodules $V(\lambda)^{i}, i>0$, such that

$$
V(\lambda)^{1}=\operatorname{rad} V(\lambda), \quad\left(\text { so that } V(\lambda) / V(\lambda)^{1} \cong L(\lambda)\right)
$$

and

$$
\begin{equation*}
\sum_{i>0} \operatorname{Ch}\left(V(\lambda)^{i}\right)=-\sum_{\alpha>0} \sum_{\left\{m: 0<m p<\left\langle\lambda+\rho, \alpha^{\vee}\right\rangle\right\}} v_{p}(m p) \chi(\lambda-m p \alpha) \tag{13}
\end{equation*}
$$

First, we recall the notation in this formula (which is standard, and follows from [13]). The module $V(\lambda)$ is the Weyl module and the module $L(\lambda)$ is its simple quotient. The weight ρ is the half-sum of the positive roots and $v_{p}(m)$ denotes the exponent of p in the prime factorization of m. Finally, the character $\chi(\mu)$ is the so-called Weyl character; there is a unique weight of the form $\mu^{\prime}=w(\mu+\rho)-\rho$ in the region $\left\{\nu:\left\langle\nu+\rho, \alpha^{\vee}\right\rangle \geq 0, \forall \alpha \in R^{+}\right\}$, where $w \in W$. Then $\chi(\mu)$ is the $\operatorname{sign}(w) \operatorname{Ch} V\left(\mu^{\prime}\right)$ if μ^{\prime} is dominant, and zero otherwise. The usefulness of the sum formula is based on the fact that the characters of the Weyl modules themselves are given by Weyl's Character Formula, so that the right hand side can be computed from p, R and λ. In [2] there is a detailed description of a procedure for performing this computation. We shall refer to the quantity in (13) as the Jantzen sum for $V(\lambda)$. As can be seen from the left hand side of (13), the Jantzen sum gives an upper estimate on the composition multiplicities in the radical of the Weyl module $V(\lambda)$ in terms of the composition factors of Weyl modules which have lower highest weights. Sometimes, for weights of a special form, more information can be obtained, using induction and other facts from representation theory. For example when we start with a weight of the form $\lambda=(p-1) \tilde{\omega}$, it may be that the highest weights of the Weyl characters $\chi(\mu)$ in the Jantzen sum are very few in number or all have a similar form, such as $r \tilde{\omega}$ for $r<p-1$. In such cases, it is possible to deduce the character of $L((p-1) \tilde{\omega})$. Numerous examples of this method were worked out in detail in [2].

6. Examples

We consider again some of the examples from the Introduction.
Example 6.1. For type $A_{\ell}, J=I \backslash\{i\}$, the p-ranks have been computed in [15]. (In fact it is the p-rank of the complementary relation of nonzero intersection which is computed, which equals one plus the p-rank for zero intersection.) In this case, the simple modules $L\left((p-1) \omega_{i}\right)$ can be found without reference to Weyl modules. Let $S(i(p-1))$ denote the degree $i(p-1)$ homogeneous component of the truncated polynomial ring $k\left[x_{0}, \ldots, x_{\ell}\right] /\left(x_{i}^{p} ; 0 \leq i \leq \ell\right)$, with $G \cong \mathrm{SL}((\ell+1, k)$ acting through linear substitutions. Then it is well known and elementary to show that $S(i(p-1))$ is a simple $k G$-module. By inspecting the highest weights, we see that $S(i(p-1)) \cong L\left((p-1) \omega_{\ell+1-i}\right)$, for $i=1, \ldots$, ℓ.

Example 6.2. For the examples of types B_{ℓ}, C_{ℓ} and D_{ℓ}, with $J=I \backslash\{1\}$ concerning singular points in classical spaces, the p-ranks have been computed in [2] by analysis of the Weyl modules, as outlined above. The Weyl modules in question are $V\left((p-1) \omega_{1}\right)$ and for type C_{ℓ} they are simple, so work is only needed for types B_{ℓ} and D_{ℓ}. The method can also be extended to the classical
modules of the classical groups of twisted type, namely the non-split orthogonal groups (type ${ }^{2} D_{\ell}$) and the unitary groups (type ${ }^{2} A_{\ell}$). In the latter case one must study the Weyl module $V\left((p-1)\left(\omega_{1}+\omega_{\ell}\right)\right)$, in accordance with our discussion in $\S 5$.

Example 6.3. We will sketch the computation of the p-rank for Example 2.3. The Jantzen sum for $V\left((p-1) \omega_{1}\right)$ is equal to the following:

$$
\begin{array}{r}
\chi\left((p-7) \omega_{1}+3 \omega_{6}\right)-\chi\left((p-8) \omega_{1}+\omega_{4}+2 \omega_{6}\right)+\chi\left((p-9) \omega_{1}+\omega_{3}+\omega_{6}\right) \tag{14}\\
-\chi\left((p-10) \omega_{1}+\omega_{2}+\omega_{5}\right)+\chi\left((p-11) \omega_{1}+2 \omega_{2}\right)
\end{array}
$$

The next step is to study the structure of the Weyl modules appearing in this character, again by using the sum formula.

We observe first that the Jantzen sum for $V\left((p-11) \omega_{1}+2 \omega_{2}\right)$ is zero, so this Weyl module is simple.

Next, the Jantzen sum for $V\left((p-10) \omega_{1}+\omega_{2}+\omega_{5}\right)$ is $\chi\left((p-11) \omega_{1}+2 \omega_{2}\right)$. It follows that the radical of $V\left((p-10) \omega_{1}+\omega_{2}+\omega_{5}\right)$ is isomorphic to the simple module $V\left((p-11) \omega_{1}+2 \omega_{2}\right)$.

The Jantzen sum for $V\left((p-9) \omega_{1}+\omega_{3}+\omega_{6}\right)$ is equal to

$$
\chi\left((p-10) \omega_{1}+\omega_{2}+\omega_{5}\right)-\chi\left((p-11) \omega_{1}+2 \omega_{2}\right)
$$

which by the previous paragraph is equal to $\operatorname{Ch} L\left((p-10) \omega_{1}+\omega_{2}+\omega_{5}\right)$. Therefore $\operatorname{rad} V\left((p-9) \omega_{1}+\omega_{3}+\omega_{6}\right) \cong L\left((p-10) \omega_{1}+\omega_{2}+\omega_{5}\right)$.

The Jantzen sum for $V\left((p-8) \omega_{1}+\omega_{4}+2 \omega_{6}\right)$ is
$\chi\left((p-9) \omega_{1}+\omega_{3}+\omega_{6}\right)-\chi\left((p-10) \omega_{1}+\omega_{2}+\omega_{5}\right)+\chi\left((p-11) \omega_{1}+2 \omega_{2}\right)=\operatorname{Ch} L\left((p-9) \omega_{1}+\omega_{3}+\omega_{6}\right)$,
which leads us to conclude that $\operatorname{rad} V\left((p-8) \omega_{1}+\omega_{4}+2 \omega_{6}\right) \cong L\left((p-9) \omega_{1}+\right.$ $\omega_{3}+\omega_{6}$.

The Jantzen sum for $V\left((p-7) \omega_{1}+3 \omega_{6}\right)$ is

$$
\begin{align*}
\chi\left((p-8) \omega_{1}+\omega_{4}+2 \omega_{6}\right)-\chi\left((p-9) \omega_{1}+\omega_{3}\right. & \left.+\omega_{6}\right)+\chi\left((p-10) \omega_{1}+\omega_{2}+\omega_{5}\right) \tag{15}\\
-\chi\left((p-11) \omega_{1}+2 \omega_{2}\right) & \cong \operatorname{Ch} L\left((p-8) \omega_{1}+\omega_{4}+2 \omega_{6}\right) .
\end{align*}
$$

Hence $\operatorname{rad} V\left((p-7) \omega_{1}+3 \omega_{6}\right) \cong L\left((p-8) \omega_{1}+\omega_{4}+2 \omega_{6}\right)$.
Finally, by (14), we have $\operatorname{rad} V\left((p-1) \omega_{1}\right) \cong L\left((p-7) \omega_{1}+3 \omega_{6}\right)$. Therefore, there is an exact sequence

$$
\begin{aligned}
& 0 \rightarrow V\left((p-11) \omega_{1}+2 \omega_{2}\right) \rightarrow V\left((p-10) \omega_{1}+\omega_{2}+\omega_{5}\right) \\
& \rightarrow V\left((p-9) \omega_{1}+\omega_{3}+\omega_{6}\right) \rightarrow V\left((p-8) \omega_{1}+\omega_{4}+2 \omega_{6}\right) \\
& \rightarrow V\left((p-7) \omega_{1}+3 \omega_{6}\right) \rightarrow V\left((p-1) \omega_{1}\right) \rightarrow L\left((p-1) \omega_{1}\right) \rightarrow 0
\end{aligned}
$$

The dimensions of the $V(\mu)$ are given by Weyl's formula. Hence,

$$
\begin{aligned}
\operatorname{dim} L\left((p-1) \omega_{1}\right)= & \frac{1}{2^{7} \cdot 3 \cdot 5 \cdot 11} p(p+1)(p+3) \\
& \times\left(3 p^{8}-12 p^{7}+39 p^{6}+320 p^{5}\right. \\
& \left.\quad-550 p^{4}+1240 p^{3}+2080 p^{2}-1920 p+1440\right)
\end{aligned}
$$

7. Acknowledgements

Thanks are due to the anonymous referees for their careful reading and helpful suggestions.

References

[1] Aschbacher, Michael, The 27-dimensional module for E_{6}, I, Inventiones Mathematicae 89 (1987), 159-195
[2] Arslan, Ogül and Sin, Peter, Some simple modules for classical groups and p-ranks of orthogonal and Hermitian geometries, J. Algebra 327 (2011), 141-169.
[3] B.Bagchi and A.E.Brouwer and H.A.Wilbrink, Notes on binary codes related to the $O(5, q)$ generalized quadrangle for odd q, Geometriae Dedicata 39 (1991), 339-355.
[4] M. Bardoe, P. Sin, The permutation modules for $\operatorname{GL}\left(n+1, \mathbb{F}_{q}\right)$ acting on $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$ and \mathbb{F}_{q}^{n+1}, J. London Math. Soc. 61 (2000), 58-80.
[5] Brouwer, A. E., The eigenvalues of oppositeness graphs in spherical buildings, Combinatorics and Graphs, R.A. Brualdi, S. Hedayat, H. Kharaghani, G.B. Khosrovshahi, S. Shahriari (eds.), AMS Contemporary Mathematics Series 531, 2010.
[6] Brouwer, A. E, Cohen, A, Neumaier, A Distance Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete 3.18, Springer-Verlag, 1989.
[7] Carter, Roger W., Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley \& Sons, London-New York-Sydney, 1972.
[8] Carter, R. W. and Lusztig, G., Modular representations of finite groups of Lie type, Proc. London Math. Soc. (3), 32, (1976), 347-384.
[9] D. B. Chandler, P. Sin, Q. Xiang, The permutation action of finite symplectic groups of odd characteristic on their Standard Modules, J. Algebra 318 (2007), 871-892.
[10] Cohen, A, Cooperstein, The 2-spaces of the standard E_{6}-module, Geometriae Dedicata 25 (1988) 467-480.
[11] Cooperstein, B On a Connection Between Hyperbolic Ovoids on the Hyperbolic Quadric Q ($10, \mathrm{q}$) and the Lie Incidence Geometry $E_{6,1}(q), 55-64$ in Groups and Geometries, Birkhauser, 1998
[12] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups. Number 3. Part I. Chapter A, Almost Simple K-Groups, Mathematical Surveys and Monographs, vol. 40.3, American Mathematical Society, Providence, RI, 1998.
[13] Jantzen, J. C., Representations of Algebraic Groups, Academic Press, London, 1987.
[14] N. S. N. Sastry and P. Sin, The code of a regular generalized quadrangle of even order, in Group Representations: Cohomology, Group Actions and Topology, Proc. Symposia in Pure Mathematics 63 (1998), 485-496.
[15] Sin, P., The p-rank of the incidence matrix of intersecting linear subspaces, Designs, Codes and Cryptography 31 (2004), 213-220.
[16] R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56.
[17] R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs Amer. Math. Soc 80 (1968).
[18] Tits, Jacques, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin 1974.

Department of Mathematics, University of Florida, P. O. Box 118105, Gainesville FL 32611, USA

