Please write your answers in full detail.

1. (6 points) Let $f(t)$ be the periodic function of period 2 such that

$$
f(t)=\left\{\begin{array}{l}
t, \quad 0 \leq t<1 \\
2-t, \quad 1 \leq t<2
\end{array} .\right.
$$

Graph this function and its windowed version.
Find the Laplace transform of $f(t)$.
2. (5 points) Find the general solution of the equation

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-9 y^{\prime}-18 y=-18 x^{2}-18 x+22 .
$$

3. (6 points) Given that $f(x)=e^{x}$ is a solution of the equation

$$
x y^{\prime \prime}-(x+1) y^{\prime}+y=0, \quad x>0,
$$

find a second linearly independent solution.
4. (5 points) If $\mathcal{L}\{f(t)\}(s)=F(s)$ and $\mathcal{L}\{g(t)\}(s)=G(s)$ express

$$
\mathcal{L}\left\{e^{t}\left[f^{\prime}(t) *(g(t-5) u(t-5))\right]\right\}(s)
$$

in terms of $F(s)$ and $G(s)$, explaining clearly which properties of the Laplace transform you use in each step. (Pay attention to the brackets!)
5. (6 points) Find the inverse Laplace transform of

$$
F(s)=\frac{7 s^{2}+23 s+30}{(s-2)\left(s^{2}+2 s+5\right)}
$$

6. (6 points) Solve the initial value problem

$$
y^{\prime \prime}-y=4 \delta(t-2)+t^{2} ; \quad y(0)=0, y^{\prime}(0)=2,
$$

where $\delta(t)$ is the Dirac delta function.
7. (6 points) Solve the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{-3 t} u(t-2), \quad y(0)=2, \quad y^{\prime}(0)=0
$$

Formulae

$$
\begin{equation*}
\mathcal{L}\left\{e^{a t} f(t)\right\}(s)=F(s-a) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}\left\{f^{\prime}(t)\right\}(s)=s F(s)-f(0) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}\{t f(t)\}(s)=-\frac{d}{d s} F(s) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} F(s) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}\{(f * g)(t)\}(s)=F(s) G(s) \tag{5}
\end{equation*}
$$

