Write your proofs using complete English sentences as well as mathematical formulae.
Bonus points may be awarded for particularly well-argued proofs.
In this exam F denotes a field and \mathbb{R} denotes the field of real numbers.

Name: \qquad

1. Let V be the vector space of real polynomials of degree at most 3 .
(a) (2 points) Show that the mapping $T: V \rightarrow V$ given by

$$
T(f(x))=(1+x) f^{\prime}(x), \quad \text { for } f(x) \in V
$$

is a linear mapping. (As usual, $f^{\prime}(x)$ denotes the derivative of $f(x)$.)
Solution: Let $f(x)$ and $g(x) \in V$ and $c \in \mathbb{R}$. Then
$T(f(x)+c g(x))=(1+x)(f(x)+c g(x))^{\prime}=(1+x) f^{\prime}(x)+c(1+x) g^{\prime}(x)=T(f(x))+T(g(x))$,
which proves that T is a linear mapping.
(b) (2 points) Compute the matrix $[T]_{\beta}^{\beta}$, where $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ is the standard ordered basis of powers of x.

Solution:

We have $T(1)=0, T(x)=1+x, T\left(x^{2}\right)=(1+x) 2 x=2 x+2 x^{2}$, and $T\left(x^{3}\right)=$ $(1+x) 3 x^{2}=3 x^{2}+3 x^{3}$. Thus,

$$
[T]_{\beta}^{\beta}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 3
\end{array}\right) .
$$

(c) (2 points) Determine the rank and nullity of T. (Rank is the dimension of $R(T)$, nullity is the dimension of $N(T)$.)

Solution:

The rank of T is equal to the rank of $[T]_{\beta}^{\beta}$. Since the first column of $[T]_{\beta}^{\beta}$ is zero and the other three columns are linearly independent (there are several ways to check this, e.g. RREF), the rank is 3 . Then by the Rank-Nullity Theorem, the nullity is $4-3=1$.
2. In R^{3} let β be the standard basis and let

$$
\beta^{\prime}=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)\right\}
$$

(a) (4 points) Compute the change-of-basis matrices $[1]_{\beta}^{\beta^{\prime}}$ and $[1]_{\beta^{\prime}}^{\beta}$.

Solution: To compute $[1]_{\beta^{\prime}}^{\beta}$ we must express the vectors of β^{\prime} in terms of the standard basis, which is easy:

$$
[1]_{\beta^{\prime}}^{\beta}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right)
$$

To find $[1]_{\beta}^{\beta^{\prime}}$ we must express the standard basis vetors in terms of β^{\prime}. We have

$$
\begin{gathered}
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \\
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right),
\end{gathered}
$$

and

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) .
$$

Thus,

$$
[1]_{\beta}^{\beta^{\prime}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

(b) (4 points) Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$. Find the matrix $\left[L_{A}\right]_{\beta^{\prime}}^{\beta^{\prime}}$.

Solution: Since β is the standard basis we have $\left[L_{A}\right]_{\beta}^{\beta}=A$. Hence by the change of basis formula, we have

$$
\begin{aligned}
{\left[L_{A}\right]_{\beta^{\prime}}^{\beta^{\prime}} } & =[1]_{\beta}^{\beta^{\prime}}\left[L_{A}\right]_{\beta}^{\beta}[1]_{\beta^{\prime}}^{\beta} \\
& =[1]_{\beta}^{\beta^{\prime}} A[1]_{\beta^{\prime}}^{\beta} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -\frac{1}{2} & -\frac{3}{2} \\
0 & \frac{1}{2} & -\frac{1}{2}
\end{array}\right) .
\end{aligned}
$$

3. (a) (4 points) Prove that there is a unique linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $T\left(\binom{1}{1}\right)=$ $\binom{\frac{1}{5}}{-1}$ and $T\left(\binom{1}{2020}\right)=\binom{\frac{-2}{7}}{\ln ^{2} 2}$.

Solution: Since neither of $\binom{1}{1}$ and $\binom{1}{2020}$ is a scalar multiple of the other, they are linearly independent, so they form a basis of the 2-dimensional space \mathbb{R}^{2}. By the fundamental Theorem of Linear Algebra, for any vectors w_{1} and w_{2} in \mathbb{R}^{2} there exists a unique linear map sending $\binom{1}{1}$ to w_{1} and $\binom{1}{2020}$ to w_{2}. The problem is just a special case of this with $w_{1}=\binom{\frac{1}{5}}{-1}$ and $w_{2}=\binom{\frac{-2}{7}}{\ln ^{2}}$.
(b) (2 points) Is this linear map an isomorphism?

Solution: Yes. The vectors $\binom{\frac{1}{5}}{-1}$ and $\binom{\frac{-2}{7}}{\ln 2}$ are linearly independent, so they form a basis of \mathbb{R}^{2}. Therefore the map T is surjective, and since in addition the domain and codomain are of the same dimension, T is an isomorphism. (An alternative argument would be to use the Fund. Thm. to define the inverse map of T.)

