Write your proofs using complete English sentences as well as mathematical formulae.
Work which the grader cannot follow may receive a grade of zero.
In this exam F denotes a field and \mathbb{R} denotes the field of real numbers.

Name: \qquad

1. (8 points) In $M_{2 \times 2}(\mathbb{R})$, consider the set

$$
X=\left\{\left(\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
2 & 0 \\
4 & -2
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)\right\}
$$

of four matrices. Find a subset of X which is a basis for the span of X.

Solution: I claim that the first three matrices will work. Note that all the matrices lie in the 3-dimensional subspace of matrices of trace zero. It therefore suffices to show that the first three matrices are linearly independent. Suppose

$$
a\left(\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+c\left(\begin{array}{cc}
2 & 0 \\
4 & -2
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Then comparing entries we get $a+2 c=0,2 a+b=0$, and $b+4 c=0$, from which it follows that a, b and c are all equal to 0 .
2. Let the linear map $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be given by $T(f(x))=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)$.
(a) (4 points) By computing with the matrix of T or otherwise, prove that T is invertible.
(b) (4 points) Compute $T^{-1}\left(x^{2}-x+2\right)$.

Solution: (a) Using the standard basis β, we get

$$
[T]_{\beta}^{\beta}=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

which is triangular and therefore easily seen to have determinant 1 , hence is invertible. (b) $T^{-1}\left(x^{2}-x+2\right)=x^{2}-3 x+3$. (There are many ways to see this.)
3. (8 points) Determine whether the matrix

$$
A=\left(\begin{array}{cccc}
-1 & -2 & 2 & 2 \\
0 & 1 & -2 & -2 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \in M_{4 \times 4}(\mathbb{R})
$$

is diagonalizable or not. If so, find a basis of \mathbb{R}^{4} consisting of eigenvectors of A.

Solution: The characteristic polynomial is $(-1-t)^{3}(1-t)$, as one sees from the triangular form of A. The eigenvalues are -1 and 1 . A basis of eigenvectors is

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)\right\} .
$$

The first three are eigenvectors of eigenvalue -1 and the last has eigenvalue 1. The matrix is therefore diagonalizable.
4. Give a proof or a counterexample for each of the following statements.
(a) (2 points) The determinant is a linear map from $M_{n \times n}(F)$ to F.
(b) (2 points) The union of two subspaces of a vector space is a subspace.
(c) (2 points) The sum of two surjective linear maps is surjective.
(d) (2 points) If $T: V \rightarrow W$ and $U: W \rightarrow Z$ are linear maps such that T is injective and U is surjective, then $U T$ is either injective or surjective.

Solution: (a) False. Consider $n=2, F=\mathbb{R}, A=I_{2}, B=-I_{2}$. Then $\operatorname{det}(A+B)=0$ while $\operatorname{det}(A)+\operatorname{det}(B)=1+1=2$,
(b) False, consider the subspaces $x=0$ and $y=0$ in \mathbb{R}^{2}. We have elements $(1,0)$ and $(0,1)$ in the union such that their sum $(1,1)$ is in neither subspace, so the union is not closed under addition.
(c) You could use the same example as in (a) !!
(d)Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, T(a, b)=(a, b, 0)$ and $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, U(x, y, z)=(y, z)$. Then it is clear that T is injective and U is surjective, while the map $U T: R^{2} \rightarrow \mathbb{R}^{2}$ sends (a, b) to $(b, 0)$ has rank 1 , so is neither surjective nor injective.
5. (8 points) Use the Gram-Schmidt procedure to find an orthonomal basis of the subspace of \mathbb{R}^{4} spanned by $(1,-1,0,0),(0,0,1,-1),(0,1,-1,0)$.

