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Abstract

Each symplectic group over the field of two elements has two exceptional
doubly transitive actions on sets of quadratic forms on the defining symplec-
tic vector space. This paper studies the associated 2-modular permutation
modules. Filtrations of these modules are constructed which have subquo-
tients which are modules for the symplectic group over an algebraically closed
field of characteristic 2 and which, as such, have filtrations by Weyl modules
and dual Weyl modules having fundamental highest weights. These Weyl
modules have known submodule structures. It is further shown that the sub-
module structures of the Weyl modules are unchanged when restricted to the
finite subgroups Sp(2n, 2) and O±(2n, 2).



1 Introduction

The problem of determining the submodule structure of the doubly transi-
tive permutation modules was first made explicit in [18]. In that paper, a
list of the known doubly transitive groups was given and the cases where the
permutation module has three or fewer composition factors were determined.
Some of the other cases had already been considered in a different context
(see for example [16]) or could be treated by existing methods, while others
([11], [4]) have been solved since, so that the submodule structures of many
of the doubly transitive permutation modules in all characteristics are now
known. Important classes where the submodule structure has not yet been
investigated in detail include the two famous series of doubly transitive ac-
tions of the symplectic groups over the field of two elements. One class of
these permutation representations is studied in Jordan’s famous treatise [13]
and the other first appeared in work of Steiner. We shall therefore follow
Mortimer (see [18, 3(D), p.8]) in calling them the Jordan-Steiner actions.
These are the actions on the quadratic forms of non-maximal and maximal
index respectively which polarize to the given symplectic form. Papers in
which these actions have been studied include [14] and [19].

We know from [18] that a Jordan-Steiner permutation module will have a
complicated structure only in characteristic 2. As we shall see, the structure
is then extremely complicated and there does not seem to us to be any
reasonable way to describe the complete submodule lattice. This is not very
surprising, since for modular representations in general, it is the exception
rather than the rule when such a complete answer is possible. In view of this,
we may look instead for suitable filtrations of the modules keeping in mind
the following two conflicting aims. The subquotients of the filtration must
be simple enough that we can give a detailed description of their submodule
structure. At the same time the filtration must be as coarse as possible in
order for much of the structure of the whole module to be captured in the
subquotients. For example we could consider the radical and socle filtrations.
Another idea, from the representation theory of reductive algebraic groups is
the notion of a filtration by Weyl modules ([12, p.251]) or one by their duals
(called a good filtration; see [12, p.238]).

In this paper, we will construct and study filtrations of the Jordan-Steiner
permutation modules which are closely related to Weyl filtrations and good
filtrations and have a mixture of Weyl modules and dual Weyl modules as
subquotients (Theorem 7.2 and Corollary 6.3). The group G = Sp(2n, 2) is
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embedded in the obvious way in the algebraic group G(k) = Sp(2n, k), where
k is an algebraically closed extension of F2. Therefore each Weyl module for
G(k) is a kG-module by restriction. Now the permutation modules (with
coefficients in k) are certainly not modules for G(k) but we shall construct
kG-filtrations on them such that the subquotients are restrictions of G(k)-
modules which have either Weyl or good filtrations. The Weyl modules
involved turn out to have fundamental highest weights and consequently, we
can show that their submodule structures with respect to G and G(k) are
identical. Moreover, the submodule structure of these Weyl modules has been
determined in [2]. In this way, we obtain an incomplete but still useful picture
of the permutation modules, which includes the characters and multiplicities
of the composition factors and some information about how they fit together.

It has long been known (See (5) below) that restriction of a Jordan-Steiner
action to the orthogonal group O(f) ∼= O±(2n, 2) fixing one of the forms f
being permuted is isomorphic to the natural action of the orthogonal group
on the set of zeroes of f . Our filtrations of the Jordan-Steiner permutation
modules therefore yield similar kO(f)-filtrations on the module of functions
on a quadric. In §8 we show that the submodule structures of the Weyl
modules remain unchanged upon this further restriction from G to O(f).

2 Notation and background

2.1

Let V be a vector space of dimension 2n over a perfect fieldK of characteristic
2. To avoid trivial exceptions, we shall assume n ≥ 2, except in §5. The
spaces S2(V ∗) and ∧2(V )∗ ∼= ∧2(V ∗) are, respectively, the vector space of
all quadratic forms and the space of all symplectic bilinear forms on V . By
definition, a quadratic form has an associated bilinear form

θ(q)(v, u) = q(v + u) − q(v) − q(u) (1)

and this formula defines the polarization homomorphism from S2(V ∗) to
∧2(V ∗). We recall that the “Frobenius twist” V (2) of V is the vector space
with the same additive group as V but scalar multiplication of v ∈ V (2) by
λ ∈ K gives the same element as scalar multiplication by

√
λ when v is

considered as an element of V . The quadratic forms with zero polarization
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can be identified with V (2)∗ and we have a short exact sequence of GL(V )-
modules

0 // V (2)∗ // S2(V ∗)
θ // ∧2(V ∗) // 0. (2)

2.2

Fix a nondegenerate symplectic bilinear form b on V and let Sp(V ) be its
symplectic group. Every element of V (2)∗ = ker θ can be written as b(−, x)2

for some x ∈ V . So if q is any quadratic form polarizing to b, then

θ−1(b) = {q + b(−, x)2 | x ∈ V }. (3)

Now the group GL(V ) acts on S2(V ∗) by the formula (gq)(v) = q(g−1v)
for all g ∈ G, q ∈ S2(V ∗) and v ∈ V . Two quadratic forms in the same
orbit are called equivalent. The equivalence class of a quadratic form f is
determined by its Arf invariant ∆(f) ∈ K/J [15, Theorem 27, p.33], where
J = {λ2 + λ | λ ∈ K}. If two forms q and q′ ∈ θ−1(b) are equivalent, the
conjugating element of GL(V ) must belong to Sp(V ), so the Sp(V )-orbits in
θ−1(b) are also determined by the Arf invariant. By (3) we know that there
is a unique x ∈ V such that q′ = q+ b(−, x)2, and it follows from the formula
for the Arf invariant [15, p.30] that ∆(q) − ∆(q′) = q(x) in K/J . (See also
[6, p. 65], [9, Lemma 1].)

The map λ 7→ λ2 + λ is an additive homomorphism of K with kernel
{0, 1}. So if K is finite there are two Sp(V )-orbits.

Let e1, . . . , en, f1, . . . , fn be a symplectic basis for V with respect to b
and let x1, . . . , xn, y1, . . . , yn be the dual basis for V ∗. Thus,

b(ei, fj) = xi(ej) = yi(fj) = δi,j , b(ei, ej) = b(fi, fj) = 0. (4)

Then when K is finite the quadratic forms q+ =
∑n

i=1 xiyi and q− =
x2

1+αy
2
1+

∑n
i=1 xiyi, where α /∈ J , are representatives of the two Sp(V )-orbits.

These orbits consist of the forms of Witt index n and n− 1 respectively.
Our main interest is in the case K = F2. In this case we denote Sp(V )

by G and we choose q− with α = 1. We denote the G-orbits containing q+

and q− by Q+ and Q− respectively, and we denote by Qf the G-orbit of
f ∈ θ−1(b). The foregoing discussion shows that

Qf = {f + b(−, v)2 | v ∈ V, f(v) = 0}. (5)
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The stabilizer in G of f is the orthogonal group O(V, f). By Witt’s
Lemma this group has two orbits on V \ {0} consisting of isotropic and
anisotropic vectors. Further, the map sending v to f + b(−, v)2 is an isomor-
phism of O(V, f)-sets from V to θ−1(b) taking the set of isotropic vectors to
Qf . It follows that G acts doubly transitively on Qf , which we shall call a
Jordan-Steiner set.

The first proof of the double transitivity of the G-action on the forms
of maximal index appears in [13, p. 236]. The argument we have given is
standard.

Our approach to the study of the permutation modules for the Jordan-
Steiner sets will be based on the characterization (5), which will allow us to
view these sets as affine subsets of a suitable module for G.

Remark 2.1 We note in passing that when K = F2 Witt’s Lemma and
the O(V, f)-isomorphism above also imply that each of the groups O(V, q+)
and O(V, q−) acts transitively on the Jordan-Steiner set of the opposite type,
namely Q− and Q+ respectively.

Our study of the Jordan Steiner permutation modules will be motivated
in part by the following heuristical remarks. The quotient of the module
θ−1(Kb) by the submodule V (2)∗ is a one-dimensional trivial module. Then
if K is finite, the KSp(V )-permutation modules given by the action of the
group on each of the cosets of V (2)∗ in θ−1(Kb), will have the same composi-
tion factors. This is because the composition factors are determined by the
elements of odd order and the actions of an element of odd order on the |K|
cosets are all isomorphic. When K = F2, we have V (2)∗ ∼= V ∗ and the non-
trivial coset is θ−1(b) = Q+ ∪ Q−. Therefore, in the Grothendieck group of
KSp(V )-modules, the sum of the two Jordan-Steiner permutation modules
is equal to the permutation module on the set V ∗. The latter is well known
to have a filtration (by polynomial degree) such that the graded module is
isomorphic to the exterior algebra ∧(V ∗) of V ∗. (This is in fact the classical
construction of the Reed-Muller codes [17].) The exterior powers ∧r(V ∗) are
fundamental and have been studied in detail by several authors (e.g. [2], [3],
[7] and [10]).

The remainder of this paper is an attempt to make the relation between
the Jordan-Steiner permutation modules and ∧(V ∗) precise.
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3 Orthogonal spaces of dimension 2n + 1

In this section, we study the well known correspondence which exists over
perfect fields of characteristic 2 between the geometry of an odd-dimensional
orthogonal space and that of a symplectic space of one dimesion lower. Our
purpose in doing this is to produce a kG-module where the action of G on
the Jordan-Steiner set can be described in coordinates and directly compared
with the action of G on ∧(V ∗). In the process, we also give proofs of some
classical facts since this can be done with no extra effort.

3.1

Let V̂ denote a vector space of dimension 2n + 1 over K. Fix a nonzero
vector d̂ ∈ V̂ and take V above to be the space V̂ /Kd̂, with π : V̂ → V the

natural map. Let b̂ be the symplectic bilinear form on V̂ defined by

b̂(u, v) = b(π(u), π(v)) for u, v ∈ V̂ . (6)

Let Q̂ denote the set of all nondegenerate quadratic forms q̂ on V̂ such that
q̂(d̂) = 1 and b̂(u, v) = q̂(u + v) − q̂(u) − q̂(v) for u, v ∈ V̂ . Let q̂ ∈ Q̂ and
v ∈ V . Then the map

v̂ 7→ ṽ = v̂ +
√
q̂(v̂)d̂ (7)

is constant on π−1(v). The element ṽ satisfies π(ṽ) = v and q̂(ṽ) = 0 and is

the unique element of V̂ with these properties.
Let Γ(V̂ ) denote the group of linear automorphisms of V̂ which preserve

d̂ and b̂. Let H be the set of all hyperplanes of V̂ which do not contain d̂.

Lemma 3.1 (i) For any q̂ ∈ Q̂, we have Q̂ = {q̂+λ2 | λ ∈ V̂ ∗, λ(d̂) = 0}.

(ii) Γ(V̂ ) acts transitively on Q̂.

(iii) Γ(V̂ ) acts transitively on H.

Proof: Part (i) follows from the fact that the difference of two quadratic
forms with the same polarization is the square of a linear functional. For
λ ∈ V̂ ∗ with λ(d̂) = 0, the transformation tλ : v 7→ v + λ(v)d̂ of V̂ belongs

to Γ(V̂ ) and its induced action on quadratic forms sends q̂ + λ2 to q̂. This

proves (ii). To prove (iii), we identify H with {ν ∈ V̂ ∗ | ν(d̂) = 1}. For µ, ν

in this set, let λ = µ− ν. Then in its action on V̂ ∗ the element tλ sends µ to
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ν.

Lemma 3.2 Let q̂ ∈ Q̂ and H ∈ H.

(i) The set of O(q̂)-orbits on H is in bijection with the set of Sp(H, b̂|H)-

orbits on Q̂.

(ii) The permutation action of Sp(H, b̂|H) on Q̂ is isomorphic to the action
of Sp(V ) on θ−1(b).

(iii) The set of O(q̂)-orbits on H is in bijection with the set of Sp(V )-orbits
on θ−1(b).

Proof: The stabilizer in Γ(V̂ ) of q̂ is the orthogonal group O(q̂) and

the stabilizer of H is the symplectic group Sp(H, b̂|H). Therefore, (i) follows

from (ii) and (iii) of Lemma 3.1. Each quadratic form on H polarizing to b̂|H
has a unique extension to an element of Q̂ and since π induces an isometry
of H with V , we have (ii). Then (iii) follows from (i) and (ii).

Example 3.3 Let d̂, êi, f̂i, i = 1, . . . , n, be a basis of V̂ such that π(êi) = ei
and π(f̂i) = fi and let ẑ, x̂i, ŷi, i = 1, . . . , n, be the dual basis for V̂ ∗. If
K is finite and H is the hyperplane ẑ = 0 then the restrictions to H of
q̂+ =

∑n
i=1 x̂iŷi and q̂+ + x̂2

1 + αŷ2
1 (α /∈ J) correspond under π to the

representatives q+ and q− of the Sp(V )-orbits in θ−1(b).

3.2

Fix q̂ ∈ Q̂. Then π defines a group homomorphism σbq from O(q̂) to Sp(V ).
(The well known fact that this is an isomorphism will follow from our dis-
cussion.) Let U = θ−1(Kb). Via σbq, we may think of the Sp(V )-module U
as a module for O(q̂). Also we have natural injections i : V (2)∗ → U and

π(2)∗ : V (2)∗ → V̂ (2)∗.
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Theorem 3.4 There exists a KO(q̂)-module isomorphism ζbq from V̂ (2)∗ to
U such that the following diagram commutes.

V̂ (2)∗
ζbq // U

V (2)∗
?�

π(2)∗

OO

V (2)∗
?�

i

OO (8)

For λ ∈ V̂ (2)∗ the quadratic form ζbq(λ) is given by the formula

ζbq(λ)(v) = λ(v̂) + q̂(v̂)λ(d̂), (9)

where v̂ ∈ V̂ is any preimage of v ∈ V under π.

Proof: For v ∈ V let ṽ be its preimage in V̂ given in (7). For λ ∈ V̂ (2)∗,
we define Tbq(λ) : V → K given by Tbq(λ)(v) = λ(ṽ). Then Tbq(λ) is a quadratic

form which polarizes to λ(d̂)2b, so Tbq(λ) ∈ U . Then the map ζbq : V̂ (2)∗ → U
given by ζbq(λ) = Tbq(λ) is an injective homomorphism of KO(q̂)-modules,
hence an isomorphism since both V (2)∗ and U have dimension 2n + 1. The
commutativity of the diagram is easily checked.

Remark 3.5 Theorem 3.4 gives us the following commutative diagram

O(q̂)

σbq

��

ρ // GL(V̂ (2)∗)

Sp(V ) // GL(U)

≈

OO
(10)

in which ρ is the representation of O(q̂) on V (2)∗ and the right vertical iso-
morphism is induced by ζbq. The commutativity of the square shows that
ρ may be factored through σbq. Thus V (2)∗ has the structure of a Sp(V )-
module. As a homomorphism of abstract groups, the injectivity of ρ implies
that σbq is injective. Since Sp(V ) acts faithfully on U , it follows that σbq

is also surjective. Thus, we have proved the well known isomorphism (of
abstract groups) of O(q̂) with Sp(V ). In the case of algebraic groups, the
above diagram also shows that the Frobenius map (obtained by composing ρ
with inverse-transpose) of O(q̂) factors through the noncentral infinitesimal
isogeny σbq.
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4 Coordinates and filtrations

In this section we shall apply the results of the previous sections when the
field K is either F2 or an algebraically closed extension k. We wish to view
the F2 theory as embedded inside the theory for k, so we need first to clarify
our notation. We will keep the notation V , U , V̂ , Q̂, ζbq, θ

−1(b), etc. to mean

the objects with K = F2 and use parallel notation such as Vk, Uk, V̂k, Q̂k,
ζbqk for the corresponding k-objects. Further, we shall consider the F2-objects

such as V , Q̂ as subsets of Vk, Q̂k, etc.

4.1

We now fix some additional notation. We choose bases for V̂ and V and
their duals as in Example 3.3 and use the same bases for the extensions to
k. Then under our convention that V

(2)
k is the same abelian group as Vk,

the elements ei, fi also form a basis for V
(2)
k , but because of the different

scalar multiplication, we will denote these elements by capitals Ei and Fi
when thinking of them this way. The dual basis will consist of the elements
Xi = x2

i and Yi = y2
i . We apply the same convention to V̂k. Thus, our chosen

basis for V̂
(2)∗
k is Ẑ, X̂i, Ŷi, i = 1, . . . , n.

We now proceed to describe the G-orbits on θ−1(b) ⊆ Uk in coordinates
by means of Theorem 3.4. That theorem gives different isomorphisms ζbqk

for different choices of q̂k ∈ Q̂k. Since π
(2)∗
k (Xi) = X̂i and π

(2)∗
k (Yi) = Ŷi,

the commutativity of the diagram in Theorem 3.4 yields ζbqk(X̂i) = Xi and

ζbqk(Ŷi) = Yi for all q̂k ∈ Q̂k. The image of Ẑ under ζbqk will depend on q̂k. Let
f ∈ θ−1(b) and Qf be its G-orbit. Theorem 3.4 shows that there is a unique

choice of q̂f ∈ Q̂k such that ζbqf (Ẑ) = f and of course we have q̂f ∈ Q̂.

Let Zf be the G-orbit of Ẑ in V̂ (2)∗ ⊆ V̂
(2)∗
k under the action defined by

ζbqf . For v =
∑n

i=1(αiei + βifi) ∈ V , αi, βi ∈ F2, we have

b(−, v)2 =

n∑

i=1

(βiXi + αiYi) ∈ V (2)∗ ⊆ V
(2)∗
k (11)

so by (3)

ζ−1
bqf

(θ−1(b)) = {Ẑ +

n∑

i=1

βiX̂i + αiŶi | αi, βi ∈ F2}. (12)
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Since, by (5), f + b(−, v)2 ∈ Qf if and only if v ∈ V and f(v) = 0, we have

Zf = {Ẑ +
n∑

i=1

βiX̂i + αiŶi | αi, βi ∈ F2, f(
n∑

i=1

αiei + βifi) = 0}. (13)

Thus, Zf is the set of F2-rational points of the affine subset of V̂
(2)∗
k given

by the equations D̂ = 1, f(F̂i, Êi) = 0. Here we have identified V̂
(2)
k with

its double dual and f(F̂i, Êi) means the quadratic form on V̂
(2)∗
k obtained by

substituting F̂i for xi and Êi for yi in f .

4.2

The action of Sp(Vk) on V̂
(2)
k extends to a homogeneous action of Sp(Vk) on

the polynomial ring

R̂ = k[Ê1, . . . , Ên, F̂1, . . . , F̂n, D̂]. (14)

Since Sp(Vk) preserves D̂, the subspaces

Ft = {h ∈ R̂ | degree of h in Êi, F̂i is at most t} (15)

define a filtration of R̂ by Sp(Vk)-modules, as t ranges over the natural num-
bers. The filtrations for its quotient rings S considered below are the images
of this filtration under natural surjections. We denote the image of Ft in S
by Ft(S) and the quotient space Ft(S)/Ft−1(S) by grt(S).

Let I denote the ideal of R̂ generated by D̂, Ê1F̂1 + · · ·+ ÊnF̂n, Ê
2
i ,F̂ 2

i ,
i = 1,. . . ,n. This ideal is stable under Sp(Vk). For f ∈ θ−1(b), let If denote

the ideal of R̂ generated by D̂ − 1, f(F̂i, Êi), Ê
2
i − Êi, F̂

2
i − F̂i, i = 1,. . . , n.

This ideal is stable under the action of G. Let A = R̂/I and Af = R̂/If .

Lemma 4.1 There exists a surjective kG-module homomorphism ϕf from
gr(A) to gr(Af ).

Proof: Let t be a nonnegative integer and Mt denote the k-subspace
k[Êi, F̂i]

n
i=1 ∩ Ft of R̂. Consider the diagram

Mt

ηt◦i

''OOOOOOOOOOOOO
� � i // Ft

ψt // //

ηt

����

Ft(Af )/Ft−1(Af)

Ft(A)

ψt

55 55jjjjjjjj

(16)
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where i is the inclusion map and ηt, ψt are the natural surjections. Note that
ηt ◦ i is onto with kernel Mt ∩ I. The map ψt ◦ i takes this kernel to zero
because its elements can be written as

∑n
i=1(Ê

2
iHi + F̂ 2

i Ki) + (
∑n

i=1 ÊiF̂i)L

with Hi, Ki, L ∈Mt−2 and ψt◦i takes Ê2
i , F̂

2
i and

∑n
i=1 ÊiF̂i and all multiples

of them to zero. Therefore a k-linear surjective homomorphism ψt exists and
the diagram commutes. Since ψt and ηt are kG-module homomorphisms
and ηt is surjective, it follows that ψt also is a kG-module homomorphism.
Since ψt is surjective, so is ψt. Since Ft−1 ⊆ Kerψt, it follows that ψt maps
Ft−1(A) to zero. Thus there exists a kG-module surjective homomorphism
from grt(A) to grt(Af).

5 The exterior algebra and the spin module

The results of this section are needed in the proof of Theorem 7.2 to determine
the kernel of ϕt but may also be of general interest. They hold for any field K
of characteristic two. Though Proposition 5.1 below can be extracted from
[10], we present a proof of this because our approach is different and makes
the presentation of Proposition 5.2 easier.

We consider b as an element of degree two in the exterior algebra ∧(V ∗).
In characteristic two we have b2 = 0. So the map δ given by multiplication by
b makes ∧(V ∗) into a complex. It is best for us to keep the standard grading
on ∧(V ∗) so δ has degree two. Obviously, the complex decomposes into a
direct sum ∧(V ∗) = ∧(V ∗)even

⊕
∧(V ∗)odd. The symplectic group Sp(V )

which preserves b acts on this complex, hence also on its homology groups.

Proposition 5.1 H i(∧(V ∗), δ) = 0 unless i = n , in which case it affords
an irreducible representation of Sp(V ) of dimension 2n.

Proof: First consider the case when n = 1. Here the even part is just V ∗

concentrated in degree 1, while the odd part is δ : K → K. So the proposition
is true in this case. For the general case, we consider the decomposition

V = W1 ⊕W2 ⊕ · · · ⊕Wn, b = b1 + b2 + · · ·+ bn (17)

into hyperbolic planes. We have the tensor factorization

∧(V ∗) = ⊗n
j=1 ∧ (W ∗

j ) (18)
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under which multiplication by b on the left becomes the map b1 ⊗ 1 ⊗ · · · ⊗
1+1⊗ b2⊗· · ·⊗ 1+ · · ·+1⊗· · ·⊗ 1⊗ bn. Therefore, (18) is an isomorphism
of complexes. (There is no sign to worry about!)

In light of the case n = 1, we now see that the complex ∧(V ∗) is a direct
sum of subcomplexes of the form M = M1⊗M2⊗· · ·⊗Mn, where each Mj is
either W ∗

j concentrated in degree 1, or δj : K → K. Now the tensor product
of exact complexes is exact, as is the tensor product of an exact complex
with one concentrated in a single degree, while the tensor product of two
complexes each concentrated in a single degree results in one of the same
kind. Thus, all subcomplexes of M above are exact, with the sole exception
of the one in which all the Mj are taken to be W ∗

j , which is the complex
⊗n
j=1W

∗
j concentrated in degree n. Thus, H i(∧(V ∗), δ) = 0 if i 6= n, while

Hn(∧(V ∗), δ) = ⊗n
j=1W

∗
j . (19)

This proves all statements about dimensions. The decomposition into
subcomplexes M above is equivariant with respect to the subgroup SL(W1)×
· · · × SL(Wn) of SL(V ), and so (19) is an isomorphism of modules for this
group, in which the right hand side is obviously simple. This completes the
proof of the proposition.

If K is algebraically closed, then Sp(V ) is a simple algebraic group (of
type Cn) and the module L we have just constructed is a rational one. Its
highest weight must be equal to the highest weight in the module ∧n(V ∗),
since this weight does not occur in any other exterior power. It is easy to
see that this weight is the fundamental weight corresponding to the long
fundamental root in the Cn root system. The module L is called the spin
module for Sp(V ).

With ei, fi , xi, yi as in 2.2, we have b = x1 ∧ y1 + · · · + xn ∧ yn and
the space ∧n(V ∗) has a basis consisting of elements yIxJ , where I and J
are subsets of N = {1, · · · , n} such that |I| + |J | = n, xI =

∏
i∈I xi and

yI =
∏

i∈I yi. Let I denote the complement of I in N and [yIxJ ] denote the
image of yIxJ in L.

Proposition 5.2 The 2n elements [yIxI ] for I ⊆ N form a basis for the spin
module L.

Proof: The elements [yIxI ] are clearly annihilated by δ. It is not difficult
to see they do not lie in δ(∧n−2(V ∗)) so they have nonzero images in L. To see
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that these images are linearly independent, there is no loss in assuming that
K is algebraically closed. Then we see that they are simultaneous eigenvec-
tors affording distinct characters of the maximal torus of Sp(V ) which is the
product of the diagonal subgroups of the SL(Wj) in the hyperbolic decom-
position described in the proof of Proposition 5.1. This proves their linear
independence and the proposition.

6 Good filtrations and Weyl filtrations

In this section we assume k to be an algebraically closed extension of the
field K of the previous section. Later we will apply the results in the case
K = F2. Let Vk = k ⊗K V . It is known [7, Appendix A] that as modules
for the algebraic group Sp(Vk), the exterior powers have filtrations by Weyl
modules ([12, p.251] and, by self-duality, also good filtrations (by duals of
Weyl modules); see [12, p.238]).

Proposition 6.1 (i) ∧r(Vk)/Imδ ∩ ∧r(Vk) has a good filtration for 0 ≤
r ≤ n and a Weyl filtration for n+ 1 ≤ r ≤ 2n.

(ii) ∧r(Vk)/Kerδ ∩ ∧r(Vk) has a good filtration for 0 ≤ r ≤ n − 1 and a
Weyl filtration for n ≤ r ≤ 2n.

Proof: We shall use the general fact [12, II.4.17] that in a short exact
sequence

0 →W ′ →W →W ′′ → 0 (20)

of rational modules for a reductive algebraic group, if W ′ and W have good
filtrations then so does W ′′, together with the dual statement that if W ′′ and
W have Weyl filtrations then so does W ′. This will allow us to argue by
induction. It is clear that (i) holds for r = 0 and r = 1. By Lemma 5.1, for
2 ≤ r ≤ n, we have the exact sequence

0 → ∧r−2(Vk)/Imδ ∩ ∧r−2(Vk) → ∧r(Vk) → ∧r(Vk)/Imδ ∩ ∧r(Vk) → 0. (21)

Then ∧r(Vk) has a good filtration, as mentioned above, and ∧r−2(Vk)/Imδ ∩
∧r−2(Vk) has one by the inductive hypothesis. So by the general fact men-
tioned, we have proved (i) by induction. The remainder of the proof of (i) is

12



the same argument using duality and reverse induction and (ii) is proved in
the same way as (i).

6.1 Characters

Let ωi, 1 ≤ i ≤ n be the fundamental dominant weights and let V (i) be
the Weyl module with highest weight ωi. We label the Dynkin diagram in
the usual way so that V (1) is the natural module. We denote by H(i) and
L(i) the corresponding dual Weyl module and simple module respectively.
In addition, V (0), H(0) and L(0) all mean the trivial module.

By the independence of characters of a maximal torus, the multiplicities of
the factors which occur in the good (or Weyl) filtration of ∧r(V ∗

k ) are the same
as in characteristic zero; here it is a classical fact that the degree 2 map given
by multiplication by the form is injective for degrees < n and that the dual
Weyl module is its cokernel. Therefore, we have H(r) = ∧r(V ∗

k ) − ∧r−2(V ∗
k )

for 0 ≤ r ≤ n in the Grothendieck group of Sp(Vk)-modules, where, as usual,
we take modules to be zero if they are indexed by numbers outside the range
[0, 2n]. Inverting this equation yields

∧r(V ∗
k ) =

⌊r/2⌋∑

t=0

H(r − 2t). (22)

By the same token, the multiplicities of the good (and Weyl) filtration fac-
tors of Cokerδ and Imδ depend only on the (formal) characters. They can
therefore be computed using (22) and Proposition 5.1.

Proposition 6.2 The Weyl modules and dual Weyl modules which occur in
the filtrations of Proposition 6.1 each occur with multiplicity one and are as
follows.

(i) For 0 ≤ r ≤ n, ∧r(Vk)/Imδ ∩ ∧r(Vk) has factors H(r − 4t), with 0 ≤
t ≤ ⌊r/4⌋.

(ii) For n < r ≤ 2n, ∧r(Vk)/Imδ ∩∧r(Vk) has factors V ((2n− r− 2)− 4t),
with 0 ≤ t ≤ ⌊(2n− 2 − r)/4⌋.

(iii) For 0 ≤ r < n, ∧r(Vk)/Kerδ ∩ ∧r(Vk) has factors H(r − 4t), with
0 ≤ t ≤ ⌊r/4⌋.
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(iv) For n ≤ r ≤ 2n, ∧r(Vk)/Kerδ∩∧r(Vk) has factors V ((2n−r−2)−4t),
with 0 ≤ t ≤ ⌊(2n− 2 − r)/4⌋.

(Here, ⌊x⌋ denotes the ‘integral part’ of x.)

Corollary 6.3 In the Grothendieck ring of Sp(Vk)-modules,

(i)

n∑

r=0

Cokerδr =

⌊n/4⌋∑

t=0

(t+ 1)[H(n− 4t) +H(n− 4t− 1)

+H(n− 4t− 2) +H(n− 4t− 3)];

(ii)

2n∑

r=n+1

Cokerδr =

⌊(n−3)/4⌋∑

t=0

(t+ 1)[V (n− 4t− 3) + V (n− 4t− 4)

+V (n− 4t− 5) + V (n− 4t− 6)].

(iii) Cokerδ = L+ Imδ.

As we have seen, it is an easy matter to determine which Weyl modules
and dual Weyl modules appear in these filtrations. A harder question is
to give the composition factors of the Weyl modules and harder still is the
problem of describing the submodule lattices of the Weyl modules. Fortu-
nately, these questions have been answered in the papers [2] and [3] and we
will briefly describe the results here. The composition factors of the Weyl
modules V (i) also have fundamental highest weights and their multiplicities
|V (i) : L(j)| are either 0 or 1. The multiplicity is 1 if and only if i ≥ j, i− j
is even and the binary digits of 1

2
(i − j) are among those of n− j + 1. The
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fact that the Weyl modules involved are multiplicity-free is of great help in
describing their submodule structure. In general, this means that the sub-
module lattice is the latttice of ideals with respect to a natural ordering on
the set of composition factors. The problem then is to give a combinatorial
description of the ordering. For the Weyl modules with fundamental highest
weights, this has been accomplished by Adamovich [3].

Finally we note that since all of the composition factors of the Weyl
modules have fundamental, hence 2-restricted, highest weights, it follows
from [1, Proposition 2.7] that when K = F2 the submodule structures of the
Weyl modules are the same for the finite group Sp(V ) as they are for the
algebraic group Sp(Vk).

7 Functions on the Jordan-Steiner sets

We now resume the hypotheses and notations of §4 and work with F2 and
its algebraically closed extension k.

7.1

Let f be one of the G-orbit representatives q+, q− in θ−1(b) given in 2.2. We
now consider the rings A and Af from 4.2.

Then Sp(Vk) stabilizes the nondegenerate symplectic bilinear form
∑n

i=1 Fi∧
Ei on V

(2)∗
k and we have

A ∼= k[E1, · · · , En, F1, · · · , Fn]
< E2

i , F
2
i ,

∑n
i=1EiFi >

∼= ∧(V
(2)
k )

<
∑n

i=1 Fi ∧ Ei >
(23)

as Sp(Vk)-modules.

Let δ denote the Sp(Vk)-module endomorphism of ∧(V
(2)∗
k ) given by the

left multiplication by the above symplectic bilinear form. Then (23) and
Proposition 5.1 now yield the following lemma.

Lemma 7.1 (i) A ∼= Coker(δ) as Sp(Vk)-modules;

(ii) A contains a simple Sp(Vk)-submodule isomorphic to the spin module
L = Kerδ/Imδ;

(iii) dimk Im(δ) = 2n−1(2n − 1) and dimk(Kerδ) = 2n−1(2n + 1); and
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(iv) dimk(A) = 2n−1(2n + 1).

We view Af as the space of all k-valued functions on Vf .

Theorem 7.2 Let ϕt be the kG-module homomorphism from grt(A) onto
grt(Af ) defined in Lemma 4.1.

(i) If f = q+, then ϕt is an isomorphism for all t.

(ii) If f = q−, then ϕt is an isomorphism for degrees t with t 6= n. The
kernel of ϕn is the image in grn(A) of the simple kG-submodule of
Lemma 7.1(ii).

Thus, we have gr(Aq+) ∼= Cokerδ and gr(Aq−) ∼= Imδ as kG-modules.

Proof: Since dimk gr(Af) = dimk Af = |Vf | = |{a ∈ V | f(a) = 0}| =
2n−1(2n + 1) or 2n−1(2n − 1) according as f = q+ or f = q−, part (i) follows
from the surjectivity of ϕt and (iv) of Lemma 7.1.

By Proposition 5.2 the simple Sp(Vk)-submodule M of A given in Lemma
7.1(ii) which corresponds to Kerδ/Imδ in Cokerδ is generated as a kG-module

by the image in A of the product Ê1 · · · Ên ∈ Fn. We must show that the
image of Ê1 · · · Ên in grn(Aq−) is zero. Consider the polynomial

h(Ê1, · · · , Ên) = Ê1

n∏

i=2

(1 + Êi) (24)

in R̂. We will prove that this function vanishes on Vq−. Then, on expanding h,

it will be immediate that the image of Ê1 · · · Ên in Aq− belongs to Fn−1(Aq−).

Let m ∈ Vq−. Then m = Ẑ +
∑n

i=1(βiX̂i + αiŶi) with αi, βi ∈ F2 and

q−(
∑n

i=1(αiei + βifi)) = 0. Then,
∏n

i=2(1 + Êi) takes a nonzero value at m
if and only if βi = 0 for i ≥ 2. This happens if and only if β2

1 + α2
1 + β1α1 is

zero, equivalently, if and only if α1 = β1 = 0. So h vanishes on Vq−.
Thus, Kerϕn has the submodule M , of dimension 2n. Since ϕn is sur-

jective and its image gr(Aq−) has dimension 2n−1(2n − 1), it follows that
Kerϕn = M . This proves (ii). The last statement follows from (i) for q+ and
from (ii) for q−, since the submodule M corresponds to Kerδ/Imδ.

Theorem 7.2 and Proposition 6.1 yield filtrations of gr(Aq+) and gr(Aq−)
by kG-modules which are the restrictions to G of Weyl modules of Sp(Vk)
and their duals. The multiplicites of the factors are given by Corollary 6.3.
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Of course, since the permutation modules are self-dual, we can obtain
additional filtrations simply by dualizing the above filtrations.

8 Module structure for O+(2n, 2) and O−(2n, 2)

The equation (5) shows that the restriction of the kG-module Af to the or-
thogonal group O(V, f) ∼= O±(2n, 2) is isomorphic to the permutation module
on the set of zeroes of f in V . Our results therefore give us kO(V, f)-module
filtrations of this permutation module by Weyl modules and dual Weyl mod-
ules of the algebraic group Sp(Vk). In order for these filtrations to be useful
in studying the kO(V, f)-submodule structure of this permutation module, it
is desirable to know the kO(V, f)-submodule structure of the Weyl modules
involved. We have already seen at the end of § 6 that the submodule lattices
of these Weyl modules remain unchanged when the group action is restricted
from Sp(Vk) to Sp(V ). The aim of this section is to show that the same holds
when we restrict to O(V, f).

In this section we will need to consider the noncentral infinitesimal iso-
genies τ : Sp(Vk) → Spin(V̂k) and σ : Spin(V̂k) → Sp(Vk) such that the
compositions τ ◦ σ and σ ◦ τ are the absolute Frobenius maps of the respec-
tive groups. These maps and their ramifications for the representation theory
of the above and related groups have been studied in detail in [8].

Lemma 8.1 H1(Sp(Vk), L(n)) = 0.

Proof: The module L(n) is the pullback along τ of the spin module for
Spin(2n + 1, k), which we shall denote here by S. (In the notation of [8],
the letter G is used for Spin(2ℓ+ 1, k) and the spin module is L(ωℓ).) Then
the two general reduction steps in [8, I.6.3] show that H1(Sp(Vk), L(n)) ∼=
H1(Spin(V̂k), S). Let Gσ be the (scheme-theoretic) kernel of σ. Then S is a
simple injective module forGσ and it follows immediately from the “inflation-
restriction” sequence [8, I.6.2(3)] that H1(Spin(V̂k), S) = 0.

Proposition 8.2 Each Weyl module V (i) (i = 1,. . . ,n) of the algebraic
group Sp(Vk) satisfies the following properties. The restrictions of its compo-
sition factors to the subgroup O(V, f) remain simple and distinct as modules
for this subgroup. Furthermore, the lattice of submodules remains the same.
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That is, the groups Sp(Vk), O(V, f) leave invariant the same subspaces of
each V (i).

Proof: The simple modules which appear as composition factors of the
Weyl modules V (i) are the trivial module and the modules L(j). The highest
weights of these modules are restricted weights (see [1, §1.]) for Sp(Vk) and so
they are also restricted for the subgroup Ω(Vk, f), of type Dn, since they have
the same maximal torus and the roots for Ω(Vk, f) are a subset of those for
Sp(Vk, f). (Note however that ωn is not 2-restricted for the covering group
Spin(Vk, f).)

Moreover, for r 6= n the weights ωr are τ -restricted. (See [8, I.4.1].)
This implies that the modules L(r) (r 6= n) are simple for Ω(Vk, f). Then,
by Steinberg’s theorem, they remain simple upon restriction to the finite
subgroup Ω(V, f).

The restriction of the module L(n) to Ω(Vk) is isomorphic to the di-
rect sum of two simple modules which as modules for the covering group
Spin(Vk) are isomorphic to the first Frobenius twists of the half-spin mod-
ules. Thus, their highest weights are not 2-restricted with respect to Spin(Vk).
However, these weights are 2-restricted with respect to Ω(Vk, f). Again by
Steinberg’s theorem, the two simple modules remain simple for the finite
groups Ω(V, f), for which they are isomorphic to the sum of the two half-
spin modules, Therefore, their direct sum is simple for the slightly larger
groups O(V, f), since these groups have elements which interchange the two
types of maximal isotropic subspaces in the orthogonal space Vk. Thus, we
have proved the first property.

In order to prove that the submodule structure is unchanged when we
restrict to the finite groups O(V, f), we will show that any nonsplit extension

0 → L(i) → E → L(j) → 0 (25)

of simple Sp(Vk)-modules with fundamental or zero highest weight remains
nonsplit when restricted to O(V, f). By [12, II.2.12(1)], we can assume that
i 6= j, and by Lemma 8.1 and duality that {i, j} 6= {0, n}. The latter
assumption implies that the (scheme-theoretic) kernel G̃τ of τ acts irreducibly
and non-trivially on at least one of L(i) and L(j). This is because the
modules L(r) for r 6= n are τ -restricted. Since all the simple modules are
self-dual and since (25) splits if and only the dual sequence does, we may
assume without loss that L(j) is a nontrivial, simple module for G̃τ , and that
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HomG̃τ
(L(j), L(i)) = 0. Then HomG̃τ

(L(j), E) has dimension ≤ 1 and so is
trivial for any perfect group which acts on it. This shows first that

HomG̃τ
(L(j), E) = HomSp(Vk)(L(j), E) = 0. (26)

Secondly, G̃τ is also a normal subgroup of Ω(Vk, f). (See [8, I.3.1]; in the
notation there Ω(Vk, f) is denoted by D̃.) So we have

HomΩ(Vk,f)(L(j), E) = HomG̃τ
(L(j), E) = 0, (27)

which shows that the extension (25) does not split for Ω(Vk, f). Now, as
explained above, the composition factors of E are 2-restricted modules for
Ω(Vk, f), so by [1, Proposition 2.7] E remains nonsplit on restriction to the
finite groups Ω(V, f). It follows that for the slightly large groups O(V, f),
the module E is a nonsplit extension of two simple modules (even in the case
i = n when there are three composition factors for Ω(V, f)).

Remark 8.3 The assertion in the proof of Proposition 8.2 that the nonsplit
extension (25) of Sp(Vk) modules remains nonsplit for O(V, f) would be false
if we were to allow the composition factors of E to be Frobenius twists
of L(i) and L(j), even though their restrictions to O(V, f) are isomorphic

to L(i) and L(j). For example, the (2n + 1)-dimensional module V̂k (with
Sp(Vk) acting via τ) is a nonsplit extension of the first Frobenius twist of
L(1) by L(0), which clearly splits when restricted to O(V, f). The example
just given may appear at first sight to contradict the assertion. After all,
the trivial composition factor can also be viewed as a Frobenius twist of
itself, suggesting that V̂k might be the Frobenius twist of an Sp(Vk)-module
E of the form in (25), contrary to the assertion. However, no such module
really exists. The above observations are explained by the fact that while the
first cohomology group of Sp(Vk) with values in Vk is trivial, the cohomology
group with values in a Frobenius twist of Vk is nontrivial. This fact is a
consequence of the exceptional non-vanishing [12, p. 371, Remark] of the
first cohomology group of the Frobenius kernel of Sp(Vk) with values in k.

We end with some results about the socles of the Jordan-Steiner per-
mutation modules and of the modules of functions on F2-rational points of
quadrics. We recall that the socle, socM , of a module M is the maximal
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semisimple submodule and that the radical, radM , is the intersection of all
maximal submodules (whence the maximal semisimple quotient isM/radM).
We also use the notation (soc2/soc)M and (rad/rad2)M for the socle of
M/socM and radM/rad(radM) respectively.

Proposition 8.4 Let kQf denote the kG-permutation module on a Jordan-
Steiner set and let kZf denote the kO(V, f)-module of functions on the set of
zeroes of f in V .

(i) soc(kQf ) ∼= k ∼= kQf/rad(kQf ). We have soc(kQf ) ⊆ rad(kQf ).

(ii) (soc2/soc)(kQf ) ∼= V ∼= (rad/rad2)(kQf ).

(iii) soc(kZf ) ∼= k ⊕ k ⊕ V ∼= kZf/rad(kZf ).

Proof: By Frobenius reciprocity, the simple modules which appear as
quotients of kQf are those which have fixed points for kO(V, q). By Propo-
sition 8.2 only the trivial module has this property. Since kQf is a transitive
permutation module, there is a unique trivial submodule. By the self-duality
of permutation modules, the isomorphisms in (i) are proved. The last state-
ment of (i) is merely the fact that the cardinality of the Jordan-Steiner set
is even.

Next we consider (iii). Now kZf is isomorphic to the direct sum of the
functions supported at the origin and the permutation module on the one-
dimensional isotropic subspaces. By Frobenius reciprocity and self-duality, it
is enough to show that the stabilizer of a one-dimensional isotropic subspace
of V fixes no other vectors in V or in any other nontrivial simple module. This
is well known and can be seen by explicit computation, or by [5, Theorem
6.13]. The latter implies that a transitive permutation module for a finite
group of Lie type with maximal parabolic subgroups as stabilizers has a
socle which is the direct sum of the trivial module and one nontrivial simple
module. It remains to prove (ii). We have already seen (5) that the restriction
of kQf to O(V, f) is isomorphic to kZf . Consider rad(kQf )/soc(kQf ). By (i)
and (iii), its head and socle are isomorphic to V as kO(V, f)-modules, hence
also as kG-modules, since by Proposition 8.2 we know that distinct simple
kG-modules restrict to distinct simple kO(V, f)-modules.
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9 Examples

To illustrate our results, we work out the case n = 3. In this case the
dimensions of the simple modules L(r) for r = 0, 1, 2 and 3 are respectively
1, 6, 14 and 8.

Figure 1 shows the graded modules and in this small case, Propsition 8.4
is sufficient to recover the submodule structures of the Jordan-Steiner per-
mutation modules. Figure 2 shows the submodule structures.

∧(V ) : 6

1 ⊕ 6 ⊕ (1 ⊕ 14) ⊕ 8 ⊕ (14 ⊕ 1) ⊕ 6 ⊕ 1

6
Cokerδ : 6

1 ⊕ 6 ⊕ 14 ⊕ ⊕ 1

8

Figure 1:

kQ
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�� AAA

8
<<

14
}}}

6

1
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−

: 1

6

14

6

1

Figure 2: Submodule structures for Sp(6, 2) .

For n > 3, our results are not strong enough to recover the submodule
structure from the structure of the graded modules. Figure 3 shows the
structure of Cokerδ ∼= gr(kQ

+
) for n = 4 and n = 5. Again, the composition

factors are indicated by their dimensions.
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n = 4 :

1 26
~~

DD

1 ⊕ 8 ⊕ 26 ⊕ 48 ⊕ 1 16 ⊕ 8 ⊕ 1

n = 5 :

10 1 100
tt JJ
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