
The Code of a Regular Generalized Quadrangle of Even OrderN. S. Narasimha SastryPeter SinIntroductionLet V (q) �= F4q be a 4-dimensional vector space over the �eld of q = 2nelements, endowed with a nonsingular symplectic form h�;�i. Our aim isto study the incidence between the set P of one-dimensional subspaces ofV (q) (viewed as points of projective space) and the set L (lines) of isotropic2-dimensional subspaces. This incidence system is the regular generalizedquadrangle of order q. (See [8], p.37 and (5.2.1), p.77.) Let A be the incidencematrix, with rows labelled by the q3 + q2 + q + 1 points (in any order) andcolumns labelled by the q3+ q2+ q+1 lines (in any order) and entries 0 or 1according to whether or not the point lies on the line. The matrix A can beconsidered as a matrix over any commutative ring k and de�nes an k-linearmap between the free k-modules kL and kP on L and P respectively, sendingl 2 L to Pp2l p 2 kP . The most interesting case is when k = F2, when wehave a natural identi�cation of subsets of P with the elements of FP2 . The�rst theorem gives the rank of A in this case. Two �elds are involved, the�eld Fq de�ning the geometry and the coe�cient �eld k = F2. The lattermay be replaced by any extension without altering the rank, but the orderq = 2n of the �rst �eld is critical. Let N be the collection of those subsetsof Z=2nZ which do not have two consecutive elements.Theorem 1. Let k be any �eld of characteristic 2. Thenrank A = 1 + 1 +p172 !2n + 1�p172 !2n= 1 + XI2N 4jIj:We shall in fact prove that the rank of A is equal to the second expression.A simple combinatorial proof of the equality of the two expressions is givenin the �rst lemma of [6, Appendix].This work was done while one of us (NSN) was visiting the university of Florida during1995-96. He wishes to thank Professor John Thompson for kindly arranging this visit andthe department for its kind hospitality and the friendly atmosphere during his stay.



We shall not prove Theorem 1 directly but instead, we shall deduce it froma much stronger result (Theorem 2) for which we need some notation andbackground results. We shall take k to be an algebraically closed �eld ofcharacteristic 2 from now on. The group G = Aut(V (q); h�;�i) �= Sp(4; q)acts on the sets P and L, preserving the incidence relation. Thus, the mapfrom kL to kP de�ned by A is a map of kG-modules. Denote its image by C.This is the code of the generalized quadrangle. Theorem 1 gives its dimension.It is is well known that the words of minimumweight in this code are preciselythe scalar multiples of the columns of A ([3, Theorem 2.8,(b),p.3].]). It is clearthat the vector 1 = Pp2P p spans a trivial kG-submodule of kP and thatthe map sending every p 2 P to 1 is a kG-projection onto this submodule.Thus(1) kP = k1� YP ;where YP is the kernel of the projection. It is also immediate from the factthat each point lies on q+1 lines that 1 2 C. Thus, we have a decomposition(2) C = k1� C:We can think of C as the set of codewords of even weight. Theorem 2 belowdescribes the structure of the kG-module C in detail.We next recall some facts about the simple kG-modules. Let V = V (q)
Fqk �= k4 and extend the symplectic form to V . Then G is the subgroupof the algebraic group Sp(V ) �= Sp(4; k) �xed by the n-th power of theFrobenius morphism F (which is the map squaring matrix entries of elementsin SL(4; k)). It is well known [13, Theorem 28, p.146] that Sp(4; k) has anendomorphism � with � 2 = F . Let S be any Sp(4; k)-module, given bysome representation � : Sp(4; k) �! GL(S). Then for i 2 N, we denote bySi, the vector space S with the \twisted" module structure given by therepresentation � � � i. Clearly, S �= S2n as kG-modules, so for kG-modules,we may take the indices in Z=2nZ. For I � Z=2nZ, we set VI = Ni2I Vi(with V; = k). Then by Steinberg's Tensor Product Theorem [12,x11], the 4nmodules VI are a complete set of nonisomorphic simple kG-modules. It makessense to speak of even and odd elements of Z=2nZ, and so each I � Z=2nZcan be partitioned as I = Iodd [ Ieven. We set hI = jIevenj � jIoddj.Recall that the radical of a module is the largest submodule with semisim-ple quotient (called the head). Iterating, we obtain the radical series. Dually,the maximal semisimple submodule is called the socle and we have the socleseries. We are ready to state the main result, from which Theorem 1 followsimmediately. 2



Theorem 2. The radical series of C has length 2n + 1. The radical layersare radj(C)= radj+1(C) �= MI2NhI+n=j VI (0 � j � 2n):Moreover, the socle series is the same in the sense thatsocj(C) = rad2n+1�j(C):Remark. Since every composition factor of C has multiplicity 1, it followsthat every submodule of C is determined by the isomorphism type of its head.The proof of Theorem 2 is presented in x1. In x2 we discuss certain sub-codes of C of geometric origin.x1. The structure of C.Let G� and G� be the stabilizers in G of a point and of a line respectively.We have the decomposition of G� = U�L� as the semidirect product of itsunipotent radical U� with a Levi complement L�. Further we have(3) L� �= SL(2; q) � F�q :The facts we use about k SL(2; q)-modules can be found in [1]. The simplek SL(2; q)-modules are all obtained as twisted tensor products of the standard2-dimensional module W ; if Wj (j 2 Z=nZ) denotes the twist of this moduleby the j-th power of the Frobenius map and for K � Z=nZ, we setWK = Oj2KWj ;then theWK are a complete set of nonisomorphic simple k SL(2; q)- modules.We �x an isomorphism in (3) and denote by [a] the character t 7! ta of F�q ,a 2 Z=(q � 1)Z. Then, since U� acts trivially on all simple kG�-modules,these modules are of the formWK 
 [a] (outer tensor product).For example, the module WZ=nZ 
 [0] is the Steinberg module StL� ; also wewill write [a] for k 
 [a].At several points later, we need facts about representations of G�, whichwe collect in the next lemma. 3



Lemma 3.(a) The restriction of V to G� is a uniserial module with composition fac-tors (in descending order) [�1],W
[0], [1]. The module is semisimplefor L�.(b) The restriction of V1 to G� is a nonsplit extension of W 
 [�1] byW 
 [1]. The module is semisimple for L�.(c) The group U� is elementary abelian. This F2L�- module can be givena Fq-vector space structure R(q) so that R = R(q)
Fq k is isomorphicas a kL�-module to a nonsplit extension of W 
 [1] by [1].(d) Ext1kG�(M; [�2]) = 0 for M �= [0], W 
 [1] and W 
 [�1].Proof: Parts (a), (b) and (c) are by direct calculations involving only thestandard 4-dimensional matrix representation of G. In (c), to get the Fq-structure, one must choose the isomorphisms between the root subgroupsand the additive group of Fq in a consistent way, so that Z� acts with thesame character (instead of di�erent Galois conjugates of a character) on bothcomposition factors. The 1-cohomology groups for G� with values in simplemodules can all be computed by means of the ination-restriction sequence[10, Ch. VII.6, Prop. 5 and p.118, Remark]; since we have a semidirectproduct in which the kernel U� acts trivially on any simple kG�-module M ,the ination-restriction sequence takes the form of the short exact sequence:(4)0 �! H1(L�;M) inf�! H1(G�;M) res��! HomkL�( M�2Gal(Fq=F2)R(�);M) �! 0:The �rst term of this sequence is easy to compute given the calculationsof all extensions of simple k SL(2; q)-modules in [1], and the third term isstraightforward to calculate. Thus we obtain the G�- cohomology. Then (d)follows from the standard isomorphisms (cf. [10, p. 111]):H1(G�; [�2]) �= Ext1kG�(k; [�2]); etc.The automorphism � of G interchanges the two parabolic subgroups G�and G�, so that(5) kL �= indGG� (k) �= [indGG�(k)]1 �= (kP )1:We set Vodd = V(Z=2nZ)odd and Veven = V(Z=2nZ)even .The following lemma is a special case of Curtis' theory of modular repre-sentations of groups with a split BN-pair [7, 6.6, 6.8].4



Lemma 4.(a) soc(YP ) �= head(YP ) �= Veven.(b) soc(YL) �= head(YL) �= Vodd.Proof: By (5), it su�ces to prove (a). Now kP , is self-dual, so Y P is too.Further, all simple kG-modules are self-dual, since V is. Thus, we are reducedto showing that head(YP ) �= Veven. By Frobenius reciprocity,HomkG(indGG�(k); VI ) �= HomkG�(k; VI) �= (VI)G� :Direct computation shows that the only simple modules VI on which G� hasa nonzero �xed point are k and Veven, and for these the space of �xed pointsis 1-dimensional. The lemma now follows from (1).Since C is the image of the kG-map from YL to YP induced by A, Lemma4 yields(6) head(C) �= Vodd and soc(C) �= Veven:We denote by [Y : W ]G the composition multiplicity of the simple kG-module W in the kG-module Y .Lemma 5. [YP : Vodd]G = 1 .Proof: First, we observe that VZ=2nZ is the Steinberg module StG. As istrue of all Steinberg modules for groups of Lie type, StG is projective andits restriction to a parabolic subgroup GJ is the induction to GJ of theSteinberg module of a Levi complement LJ [5, Proposition 6.3.3]. Thus,using Frobenius reciprocity,HomkG(StG 
 Veven; indGG�(k)) �= HomkG�(StG 
 Veven; k)�= HomkG�(StG; Veven)�= HomkG�(indG�L� StL�; Veven)�= HomkL� (StL�; Veven):The last space has dimension [Veven : StL� ]L� because StL� is projective(hence also injective).We have L� �= SL(2; q) � F�q and the restriction of V to this subgroup isa direct sum of two one-dimensional modules and a two-dimensional simplemodule, by Lemma 3. Since StL� �= WZ=nZ 
 [0], it follows that [Veven :StL� ]L� � 1. Next,HomkG(StG 
 Veven; Vodd) �= HomkG(StG; Veven 
 Vodd)= HomkG(StG; StG) �= k;5



so the projective cover of Vodd is a direct summand of StG 
 Veven. It nowfollows that [indGG�(k) : Vodd]G � 1 and equality holds by (6), which provesthe lemma.We can now give a module-theoretic characterization of C.Lemma 6. Suppose X is a kG-module satisfying the following conditions:(a) head(X) �= Vodd;(b) soc(X) �= Veven and [X : Veven]G = 1;(c) HomkG�(X;k) 6= 0.Then X �= C.Proof: By Frobenius reciprocity, (c) gives a nonzero kG-map fromX to kP .By (a), the image of this map is contained in YP and has head isomorphicto Vodd. This shows that the image is C, for Lemma 5 shows that there is aunique submodule of YP with this property and (6) shows that C is one such.Finally, by (b), this map is injective.We will now construct a module satisfying the hypotheses of Lemma 6.The properties of C stated in Theorem 2 will then be read o� by closerexamination of the construction itself.To begin with, we assert that there exists a kG-moduleE which is uniserialwith composition factors (in descending order) V1, k, V2. In fact (cf. [11,Lemma 2]) such a module exists as a subquotient of V 
 V . (It is even amodule for the algebraic group; it's dual admits a natural description as thequotient of the space of symmetric bilinear forms on V by the 1-dimensionalspan of the given symplectic form h�;�i.) We then de�ne ~X to be the tensorproduct Nn�1i=0 E2i of all the Galois conjugates of E. We note the followingproperties of ~X which follow from its de�nition. The descending compositionseries of the tensor factors E2i induce a natural descending �ltration on ~Xof length 2n + 1 as follows. If we designate the composition factors of eachE2i to be of level 0, 1 and 2 in descending order, then the t-th layer of�ltration on ~X is the direct sum of all the tensor products (involving onecomposition factor from each E2i) such that the levels of the factors add upto t. We shall call this the descending tensor �ltration. It is clear that theproducts formed by taking one composition factor from eachE2i are all simplemodules. Therefore each layer of this �ltration is semisimple. Moreover, thecomposition factors VJ of ~X each occur with multiplicity one and have theproperty that J has no consecutive indices of the form \odd-even". However,there are some in which consecutive indices of the form \even-odd" occur inJ .Lemma 7. ~X has a submodule Z such that the composition factors of Z areprecisely those composition factors VJ of ~X for which J contains consecutive6



indices. In particular, the composition factors of X = ~X=Z are precisely theVJ with J in the collection N of subsets not having consecutive indices.Proof: Suppose VJ is a composition of ~X such that J contains consecutiveindices r, r + 1. Note that r must be even and n > 1. Since VJ occurswith composition multiplicity one, there is a unique submodule A of X withhead(A) �= VJ ; A can be characterized as the smallest submodule having VJas a composition factor. The Lemma will follow if we can prove that for everycomposition factor VK of A, the setK also contains r and r+1. By induction,it is su�cient to consider the composition factors VK of rad(A)= rad2(A).Suppose that VK is such a factor. Then Ext1kG(VJ ; VK) 6= 0. Thus J and Kmust satisfy the condition for this to hold given by the main theorem in [11],which states:The space Ext1kG(VJ ; VK ) is zero unless the symmetric di�erence of J and Kis a singleton fig with i� 1 =2 J \K, in which case it is one-dimesional.If J � K, or i 6= r, r + 1, we are done. Clearly i cannot be r + 1. Finally,suppose i = r. So J = K[frg. But since r is even, Vr occurs at level 2 in thetensor factor E2(r�1) of ~X, while k is at level 1. So the composition factorVJ appears in the layer of the tensor �ltration on ~X below that in which VKappears. This contradicts the fact that VK is a composition factor of A andthe lemma is proved.We shall next prove that X = ~X=Z has the structure claimed for C inTheorem 2. Up to isomorphism there is a unique nonsplit extension Di of Viby the trivial module k (by [11]). The key fact is:Lemma 8. If neither i nor i� 1 belongs to J 2 N then Di
VJ is a nonsplitextension of VJ[fig by VJ .Proof: This follows from the fact that Di is isomorphic to a submodule ofVi�1 
 Vi�1, so that Di 
 VJ embeds in Vi�1 
 VJ[fi�1g. Then since thisis a tensor factor of Vi�1 
 VZ=2nZ, which by [11, Lemma 1] is a projectiveindecomposable module, hence has simple socle. ThereforeDi
VJ has simplesocle and the lemma is proved.Lemma 9. The �ltration on X induced by the tensor �ltration on ~X is equalto the radical �ltration, and the reversed (ascending) �ltration is the socle�ltration.Proof: Let K 2 N . Suppose that there is an odd index r in K. ThenLemma 8 applies with J = K nfrg, showing that Dr
VKnfrg is indecompos-able of length 2. If r = 2j+1, then Dr is isomorphic to a quotient of Ej . Let~Xj be the tensor product of the other factors, so that ~X = Ej 
 ~Xj . Then7



VKnfrg is a composition factor of ~Xj , since r+1 =2 K. Therefore, Dr
VKnfrgis isomorphic to a subquotient of ~X. This shows that the unique compositionfactor VK of ~X occurs in a subquotient which is a nonsplit extension of VKby VKnfrg . Note that in the tensor �ltration of ~X, VK appears exactly onelayer above VKnfrg . Next suppose there is an even index s = 2j so thatK [fsg is still in N . Then the dual module D�r is isomorphic to a submoduleof E2j�1 and a similar argument to the above shows that VK occurs in ~X ina subquotient which is a nonsplit extension of VK by VK[frg. Again, we notethat VK[frg is exactly one layer below VK in the tensor �ltration of ~X. Noneof what we have said is a�ected by passing to X. Thus we have shown thatif VK is any composition factor of X then all composition factors of X whichcan be obtained either by deleting an odd index or by adding an even indexappear strictly lower in the radical �ltration of X and exactly one layer lowerin the �ltration induced from the tensor �tration of ~X. It is easy to see thatstarting with any K 2 N , we can reach the set (Z=2nZ)even by applying asuitable sequence of these two operations on indices.Then since the induced �ltration has semisimple layers, it follows thatthe two �ltrations are equal. The dual argument shows that the ascendinginduced �ltration is the socle �ltration.Proof of Theorem 2: It remains to show X �= C. The hypotheses (a)and (b) of Lemma 6 are immediate consequences of Lemma 9. We now checkcondition (c). If we consider E as a kG�-module, then by parts (a) and(b) of Lemma 3, E has a �ltration with subquotients (in descending order)W
[�1],W
[1], k, [�2],W1
[0], [2], where the last three factors come froma G�-�ltration of S = socG(E) �= V2. Then by Lemma 3 (d), the nonzerokG� homomorphism from S to [�2] extends to E. Therefore the inducedhomomorphism from Nn�1i=0 S2i �= Veven to [Pn�1i=0 2i(�2)] = [0] extends to~X = Nn�1i=0 E2i. Since the submodule Nn�1i=0 S2i of ~X maps isomorphicallyto its image in X, this proves HomkG�(X;k) 6= 0. So by Lemma 6, X �= C.Remark. A closer look at the proof of Lemma 9 shows that the same argu-ment, using lemma 8 will yield the entire submodule structure of C. FromJ 2 N we may obtain other elements of N by deleting an odd index or byadding an even one so that the resulting set still belongs to N . If K 2 N isobtained from J by a sequence of these two types of operation, then we willwrite K � J . This is clearly a partial order with unique maximal element(Z=2nZ)odd and unique minimal element (Z=2nZ)even. Consider the collec-tion of those subsets X of N with the property that if J 2 X and K � J ,then K 2 X . This collection is partially ordered by inclusion. The argument8



of Lemma 9 shows that this partially ordered set is lattice-isomorphic to thecollection of kG-submodules of C.x2. Some geometric subcodesOvoids.An ovoid in the 3-dimensional projective space P(V (q)) �= PG(3; q) is a setO of q2+1 points, of which no three are collinear. An ovoid in the symplecticgeometry W(q) = (P;L) is a set O of q2 + 1 points, such that no two lie ona common (isotropic) line. By a well-known theorem of Segre [9, TheoremIII, p.321] (see also [2, Prop. 1 and Remarks, p.138]), the classi�cation ofthe ovoids of PG(3; q) and those of W(q) are equivalent problems.The only known ovoids in W(q) are the (nondegenerate) elliptic quadricsand the Tits ovoids [14, n�.5]. An elliptic quadric is the set of one-dimension-al isotropic subspaces in V (q) for a quadratic form f of Witt index 1 whichhas the given symplectic form < �;� > as its associated bilinear form. Thestabilizer in G of an elliptic quadric is conjugate to a subgroup 
 which hasa subgroup of index 2 isomorphic to SL(2; q2) �= SO(V (q); f). A Tits ovoid isthe set of self-conjugate points of a polarity of W(q) which exists only whenq is an odd power of 2. When q > 2, its stabilizer in G is conjugate to theSuzuki group Sz = Sp(4; k)�n .The codes Q and T .Given a subset X of P , we can consider the sum of its elements as a vector[X] in kP , and thereby obtain a bijection from the set of all subsets of P tothe F2-span of P in kP . In [2, Propositions 2 and 3] it was shown that theelements [O], where O is either an elliptic quadric or a Tits ovoid, belong tothe code C. Let Q denote the subspace of C generated by the vectors [O] forelliptic quadrics, and let T denote the corresponding space for Tits ovoids. Inthis section we investigate these subcodes, which are clearly kG-submodules.Up to isomorphism there is a unique nonsplit extension Mi of the trivialmodule by Vi+2. ( The dual of this module was denoted Di+2 earlier.) Thus,M is isomorphic to a submodule of the module E de�ned earlier in the con-struction of X. Thus in ~X =Nni=1E2i there is a submodule ~Q =Nni=1M2iof dimension 5n. We also have [11, Lemma 2(b)](7) M �= ^2(V1)=(^2(V1))G:We will describe the structure of ~Q and then show that it is isomorphic toQ as a kG-module. More precisely, we shall show that in the diagram(8) ~X ����! X �= Cx??C9



the modules ~Q and Q map isomorphically to the same submodule of C.Lemma 10.(a) The horizontal map in (8) restricts to an isomorphism of ~Q with itsimage.(b) The tensor �ltration on ~X induces the radical �ltration (and socle�ltration) of ~Q. Thus, ~Q has radical length n+ 1 withradj(Q)= radj+1(Q) �= MI2(Z=2nZ)evenjIj=j VI (0 � j � n):Proof: Part (a) is clear since ~Q has no composition factors in common withthe kernel of the map. Part (b) is proved using Lemma 8, exactly as in theproof of Lemma 9.In view of Lemma 10(a) we identify ~Q with its image in C and use thesame symbol for both. Let Q denote the image of Q in C.Lemma 11. ~Q = Q.Proof: Let T be a cyclic subgroup of order q2 + 1 of the stabilizer 
 inG of an elliptic quadric O. First we have that CT is one-dimensional, ei-ther by direct calculation, knowing the composition factors by Theorem 2or (more geometrically) by [2, Lemma 4]. Second, from Lemma 10 (b) wehave head( ~Q) �= k. Since T acts semisimply, these two observations implythat T �xes some nonzero vector in ~Q, but none in rad ~Q. Thus, ~Q is thekG-submodule of C generated by the one-dimensional space CT . But it isclear that the image of [O] in C is a nonzero vector �xed by T . Therefore, ~Qis generated by the image of [O], hence equal to Q.Lemma 12. The vertical map in (8) restricts to an isomorphism of Q to Q.Proof: This amounts to checking that 1 does not lie in Q. Supose it did.Then we would have Q �= k � Q �= k � ~Q, using Lemma 11 for the lastisomorphism. Then since head( ~Q) �= k, by Lemma 10(b), it would followthat dimk HomkG(Q; k) = 2. On the other hand Q is a quotient of thetransitive permutation module indG
(k) with basis consisiting of the set ofelliptic quadrics, and by Frobenius reciprocity, dimk HomkG(indG
(k); k) = 1,so we have a contradiction.We summarize our results on Q. 10



Theorem 13. Q is a 5n-dimensional subcode of C isomorphic as a kG-module to n�1Oi=0 [^2(V1)=(^2(V1))G]2i:It has radical length n+1 and the layers of its radical series are those statedfor ~Q in Lemma 10.Remark. If we �x an isomorphism (kP )1 �= kL and identify submodules of(kP )1 with their images, then the subcodeQ1 of kL can be described in termsof the incidences of points and lines inW(q) and the ambient space P(V (q)).Let bL denote the set of all lines in P(V (q)) and kbL the vector space havingthis set as basis. The same method used to prove Lemma 4 (see also [7], 6.6,6.8) yields:(9) kbL �= h1i � YbL; socbG(YbL) �= headbG(YbL) �= n�1Oi=0 [^2(V )](i);where the superscript (i) indicates twisting by F i and 1 is the sum of alllines.Consider the following diagram:
α α∗

α π

L

L

∗

PLk k k

kHere the maps b� and b�� are respectively the line-point and point-lineincidence maps of P(V (q)). These maps commute with the action of bG =SL(V (q)). The map �� is the point-line incidence map in W(q) and � isthe projection mapping isotropic lines to themselves and nonisotropic linesto 0. These are kG-maps. It is immediate from the de�nitions that thediagram commutes. We consider �rst the map b�� � b�. Since bG acts as arank 3 permutation group on bL, we have dimk EndkbG(kbL) = 3, and from(9) one sees that the identity and the maps onto the two simple submodulesform a basis for this space. From this it is not hard to see that the imageof b�� � b� must be socbG(YbL). Since the diagram commutes, this shows that11



I := Im(�� � b�) = �(socbG(YbL)). We claim(10) I = h1i �Q1:It is easy to see that h1i ( I. The image I of I in C is therefore a kG-quotient of socbG(YbL) with simple socle equal to Veven. Since Veven occurswith composition multiplicity 1 in Nn�1i=0 [^2(V )](i), there is a unique suchquotient, and Lemma 10 shows that it must be isomorphic to ~Q1. Thus inparticular head(I) �= k, and we can conclude by the reasoning of Lemma 11that I is the submodule of C1 generated by (C1)�(T ) = (CT )1, namely, Q1.Now (10) follows.Assume now that n > 1 is odd. Let T denote the image of T in C.Lemma 14. Let S be a Tits ovoid and let 
 be the stabilizer of an ellipticquadric O. Then there exists a cyclic subgroup T of 
 of order q2 + 1 forwhich Xt2T t[S] = [O]:Proof: We may assume that S is the Tits ovoid stabilized by Sz. Denotethe sum in the statement by fT (S). Now Sz \ 
 contains a cyclic subgroupT 0 of order q �p2q + 1 and index 4 [4, Theorem 5(a)]1The centralizer in G of this subgroup is a cyclic subgroup of 
 of orderq2 + 1. We take this to be our T . Let fSjgq�p2q+1j=1 be the set of distinctimages of S under T . Each Sj can be further decomposed into T 0-orbits S 0jl(1 � l � q �p2q + 1). Then, since k has characteristic 2 we havefT (S) = q�p2q+1Xj=1 q�p2q+1Xl=1 [S 0jl]:We claim that for each j precisely one of the S 0jl is disjoint from all the otherovoids Sj0 , while each of the other S 0jl is equal to precisely one S 0j0l for j0 6= j.If j0 6= j then Sj0\Sj is a T 0-orbit (cf. [4, proof of Theorem 1(b), p.156-157]1)and if j, j0 and j00 are distinct, then the T 0-orbits Sj0 \ Sj and Sj00 \ Sj aredistinct, since T acts semiregularly on P(V (q)). This proves the claim. Itfollows the weight of fT (S) is equal to (q +p2q + 1)(q �p2q + 1) = q2 + 1.In view of [2, Lemma 4] the only possibilty for fT (S) is [O].1On p.147 of this paper appears the erroneous statement that there is a single conjugacyclass of subgroups isomorphic to SL(2; q2) in Sp(4; q). There are in fact two classes,interchanged by the automorphism � . The results which we use from this paper remaintrue however, so long as they are understood as referring to that conjugacy class whosemembers stabilize elliptic quadrics. 12



Theorem 15.(a) Q ( T .(b) T � radn(C) but T * radn+1(C). Consequently, the radical length ofT is n+ 1.(c) T maps isomorphically to T .Proof: (a) Lemma 14 gives the inclusion. To prove that this inclusion isproper, it is enough to show that Sz does not �x any nonzero element ofQ �= ~Q. Now each composition factor of ~Q remains simple upon restrictionto Sz, so [ ~Q : k]Sz = 1. Now ~Q has a kG quotient isomorphic to the nonsplitextensionM of the trivial module by V2. This extension does not split for Sz(e.g. using [11, Lemma 2]; here we use n > 1). We may therefore concludethat ~QSz = 0. This establishes (a).(b) We consider the possibilities for simple homomorphic images of T . NowT is a homomorphic image of the permutation module indGSz(k) and if VJ isa simple quotient of the latter then(11) 0 6= HomkG(indGSz(k); VJ ) �= HomkSz(k; VJ) �= HomkSz(VJeven ; VJodd):Now V �= Vn for Sz, so both VJeven and VJodd �= VJodd+n are simple kSz-modules, by the Tensor Product Theorem [12,x11]. Therefore, in order for(11) to hold, we must have hJ = jJevenj � jJoddj = 0. The only layer of Cin which such VJ appear is radn(C)= radn+1(C). It follows that any nonzeroimage in C of indGSz(k) is contained in radn(C) but not in radn+1(C). Inparticular this is true of T . The radical length then follows from this andthe fact that T contains Q.(c) We must show that 1 =2 T . We can argue exactly as in the proof ofLemma 12 (with T in place of Q and Sz in place of 
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