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INTRODUCTION

In this paper we compute the groups H'(G, V), where G is the algebraic
group of type F, over an algebraic closure F of the field F, of two elements
and V is a simple rational G-module over F.

It is well known [Steinberg 2, p. 157] that G has an exceptional T whose
square is the Frobenius endomorphism for some F,-structure. G possesses
a t-stable Borel subgroup B containing a 1-stable maximal torus 7. Thus
operates on the group X = X(T) of (rational) characters of T. Since G is
both simply connected and of adjoint type we may identify X with the
weight lattice of a root system @ of type F, and this coincides with the
lattice spanned by the roots. The subgroup B determines a positive system
in @ (such that the root subgroups of B correspond to negative roots)
and hence also a base {a,, a,, a3, a,}, the set X, of dominant weights
and a set {4,,4,,4;,4,} of fundamental dominant weights, defined
by {4, 2u;/<a;, ;> > =23, where “(, )” is the inner product for . We
choose our numbering according to the following diagram:

2 2 1 1
O——0O===0——0,
a) 33 a3 7

Thus «, and «, are long roots and a5 and a4 are short.
As is well known, the simple rational G-modules are parametrized by
X, according to their highest weights. Let L(1) be the simple module
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696 PETER SIN

with highest weight A. The first cohomology groups are described by the
following statement.

THEOREM. Let ieX,. Then the F-vector space H'(G, L(1)) is one
dimensional if A belongs to the orbit under 1: X - X of 15, Ay + A, or
Ay + 24, and is zero otherwise.

One of the main ideas is to exploit properties proved in [CPSK] of the
restriction map from G-cohomology to the cohomology of the finite groups

. {F,(27%) if m is even
Gn)=G"= . .
() {2F4(2") if nis odd
The groups G(#n) for odd values of n are the Ree groups of type F,. For
given dominant weights A and u, there is a certain threshold for n, beyond
which the map

Extg(L(4), L(r)) ~ Extg, (L(2), L(n))

is injective and a second bound such that the map becomes an
isomorphism when n exceeds it. These facts allows us to make use of the
injectivity of the Steinberg module for the finite group to prove the
triviality of most of the cohomology groups in the theorem.

We recall [Steinberg 1, Sect. 11] that the simple FG(#n)-modules are the
restrictions of the simple G-modules L(4) for 4 in a certain subset of X' _ .
It follows from our discussion of the restriction map above that if one
could compute all of the groups H'(G(n), L(1)) for all of the simple
modules for all of the finite groups, then one would also know all of the
groups H'(G, L(4)). The goal of the present paper is a much more modest
one, however, because in computing H'(G, L(4)) for a given A by this
method, we are free to choose # as large as we wish, and the “difficult”
weights for a particular group G(n) may be “easy” if we replace n by a
larger value. In this way we manage to avoid most of the combinatorial
complications of the kind which appear in the related papers [Sin 1-41], at
the cost of obtaining less sharp results for the finite groups.

Remarkably, a large part of our calculations relies only on knowledge of
the multiplication table of the Grothendieck ring of finite-dimensional
G-modules. This can be computed in principle from the characters of the
simple G-modules, which have been known for some time. We devote the
first section of this paper to collecting together information about the
simple modules and their tensor products and some Weyl modules. Using
this, we treat the main case in Section 2, showing that nearly all of the
cohomology groups in question vanish. The remaining ones are analyzed
piecemeal in the final section.
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1. TENsOR ProODUCTS OF SIMPLE MODULES

It is straightforward to check that under t: X(T)— X(T) we have
Ay iy 24, and A3 A, 245 We call the set X, = {0, 43, A4, 43+ 4,4}
the set of t-restricted weights. Every dominant weight has a “t-adic”
expression

A=Y v, veX, with v#0 if rzl (1.1)

The t"-restricted weights X .. are defined to be those for which the upper
limit r in (1.1) is less than n. For A€ X ., the simple G-module L{4) remains
simple upon restriction to G(n) and the 4" modules thus obtained form a
complete set of nonisomorphic simple FG(n)-modules (see [Steinberg 1,
Sect. 11]). Steinberg’s Tensor Tensor Product Theorem [Steinberg 1,
Sect. 11] states that for 4 as in (1.1) there is a G-module isomorphism

L= Lve)®L(v,)'® - @ L(v,)", (1.2)

where the superscripts “t™ indicate twisting the G-module structure be the
endomorphism ' of G. It follows that the characters of all the simple
rational G-modules and simple FG(n)-modules are completely determined
by those of L(4,), L(4,) and L(4;+ 4,). Likewise, the muitiplication tables
for the Grothendieck rings of the categories of finite-dimensional modules
for G and FG(n) are determined by the products of the classes of these
three modules, because forming tensor products commutes with twisting
the factors by . The characters of the simple modules were first given in
[Veldkamp], and are reproduced in Tablel The Weyl group of & is
denoted by W.

Since —1 € W, all of the simple modules are self-dual.

Let V(4) denote the Weyl module with highest weight Ae X, . It has a
unique maximal submodule with quotient isomorphic to L(4). The charac-
ter of V(4) is given by Weyl's character formula. Tables of these characters,
including all of the ones we shall need, appear in [Bremner-Moody-

TABLE |

dim 0 A A Ay 2h,  AitAe A Ay+d,
W-orbit size 1 24 24 9% 24 144 96 192
L(0) 1 1 0 0 0 0 0 0 0
L(Gs) 26 2 1 0 0 0 0 0 0
L(23) 246 6 4 2 1 0 0 0 0
LA, +4,) 4096 64 40 24 14 8 4 2 1
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Patera]. The entries in Tablel can be calculated using Jantzen’s Sum
Formula [Jantzen, p. 314].

The module V(i )=~ L(i,) has an interesting interpretation as the
reduction mod 2 of the submodule of elements of trace zero in an
exceptional Jordan Algebra over Z. The module V{4, + A,) = L(A;+ 4,) is
the Steinberg module for G(1)=~2F,(2). Let p=2X4,+ A, + i+ Ay The
module L(p) is the first Steinberg module for G. Since by (1.2) we have
Lip)= L{A;+ A,)® L(A3+ 4,)", we may regard L(i;+4,) as the ith
Steinberg module for G.

It will be convenient to introduce the following notation. Let E= L(/,),
M=L(A;) and S=L(4;+ 4;). For any G-module ¥, let V, be the module
obtained through twisting by t' and for any finite set 7 of natural numbers,
let V,=&),;.,; V;. With this notation the simple G-modules are the modules
E,® M ;® S for disjoint finite subsets 7, J and K of natural numbers. For
the finite group G(n), we have V,=V,,, and the simple modules with
highest weights belonging to X .. are those for which the subsets 7, J and
K of the new notation are contained in the set N={0,1,..,n—1}. The
simple FG(n)-module S is injective; it is the Steinberg module for G(n).

We shall write [V:L(4)] for the multiplicity of L(4) as a composi-
tion factor of the G-module V if V has finite dimension. The numbers
[L(A)® L(u):L(v)] for 4, ue X, are given in Table II. It is clear that these
multiplicities can be computed from TableI in principle, so we discuss
briefly some practical aspects. Let {e;|1 <i<4} be an orthonormal basis
for the euclidean space (X®z R, <, >). Then we may take & to be the set
{te; te,te; (e, te,teste)|l<i<j<4} witha,=(1,-1,0,0),
a,=(0,1, ~1,0), 2;=(0,0,1,0), a,=32(—1, —1, —1,1), so that the
fundamental dominant weights are 4, =(1,0,0,1), 4,=(1,1,0,2), 4=
2H1,1,1,3) and 4,=(0,0,0, 1). If 5, denotes the reflection relative to «,
then W= {o,/1<i<4). In computing with W both for the present
calculation and for calculations with the Jantzen Sum Formula it is often
helpful to consider the subgroup 2 =<g,, 06,, 65, 04,650,0,6,)> of index 3
which consists of all signed permutations of the basis elements. The advan-
tage of using X is that it is possible to recognize instantly whether or not
two weights lie in the same X-orbit. In all of the calculations we made it
was very easy to determine the Z-orbits contained in the same W-orbit, by
considering lengths of vectors, for example.

In the group ring Z[X], the Grothendieck ring of finite-dimensional
rational 7-modules, the character of a finite-dimensional rational G-module
can be decomposed into a positive integral linear combination of W-orbit
sums of weights, as in Table I and each of the W-orbit sums can be written
as a sum of ZX-orbit sums. To obtain Table I we first decomposed the
characters in TableI into X-orbit sums. Then, by lengthy but routine
calculations, we obtained the products of these Z-orbit sums as positive
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TABLE 2
Products of z-Restricted Modules

EQE E®M E®S M®M M®S S®S

F 2 2 28 18 92 848

E 4 2 18 12 54 344

E, 2 4 48 32 176 1352
M 2 2 10 4 18 108
E, 1 2 26 16 112 1176
Ep, 0 2 24 16 88 640
M, 0 1 18 12 74 648
E, 0 0 8 6 48 536

s 0 1 2 0 2 12
E,®@M 0 0 6 4 24 176
Eqps) 0 0 6 4 32 308
Ej o 0 0 6 4 EY) 432
E®M, 0 0 3 2 24 236
M, 0 0 2 1 12 220
Eqony 0 0 0 0 10 128
s, 0 0 0 0 6 72
Eps 0 0 0 0 0 40
E,@M 0 0 1 0 6 64
E®S 0 0 0 0 2 16
My, 0 0 0 0 3 48
E.QM 0 0 0 0 0 20
E, 0 0 0 0 4 72
E,® M, 0 0 0 0 2 60
E®M, 0 0 0 0 1 20
Eppay 0 0 0 0 0 EY)
Eipra 0 0 0 0 4 64
E®S, 0 0 0 0 0 12
E,®M, 0 0 0 0 0 16
M, 0 0 0 0 0 4
E.®S 0 0 0 0 0 4
En2®M 0 0 0 0 0 8
M®S 0 0 0 0 0 2
M, 0 0 0 0 0 2
Es, 0 0 0 0 0 4
Epy 0 0 0 0 0 4
Eps®M, 0 0 0 0 0 2
s, 0 0 0 0 0 1
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integral combinations of other Z-orbit sums. Next the W-conjugacy of all
the Z-orbits involved was determined, which yielded the product of the
W-orbit sums in terms of W-orbit sums and also enabled us to extend
Table I to all of the simple modules, 37 in all, having their highest weights
in one of these orbits. This 37 x 37 unitriangular integer matrix (or rather
its inverse) and the information on products of W-orbit sums then easily

led to Table Il
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We define the mass of a simple G-module by
mEQ@M,QS)=211+3{J]+5|K]

and that of an arbitrary finite-dimensional module to be the greatest of the
masses of its composition factors. The mass of a module is clearly invariant
under twisting by 7 and under taking duals. It also behaves well with
respect to tensor products, as the following result shows.

LemMMA 1.3. For simple G-modules E,QM,® Sy and E,QMz;® Sc,
we have

m(E,@M,®Sx)Q(E,QMz®S.))
<211+ 1A + 301 + 1Bl + 5(1K| + | C))

with equality if and only if IOK)n (AL C)=F=(JUuK)n(BuC(C).
In terms of weights A= t'v, and u=7Y t'v) (given as t-adic expressions)
we have

m(L(A)® L(p)) < m(L(4)) + m(L(u))

with equality if and only if v,+ v e X, for all i.

Proof. Inspection of Table Il shows the lemma to be true when the
simple modules have z-restricted highest weights. The general result then
follows from the Tensor Product Theorem (1.2) and an obvious induction
on the masses of the tensor factors.

One can similarly define the mass of an FG(n)-module V. Since
V= pginy Vo it follows from Lemma 1.3 that the mass of a G-module is no
less than its mass as an FG(n)-module and hence that Lemma 1.3 is also
true for the tensor product of two simple FG(n)-modules.

2. THE MAIN CASE

Let us begin by defining a little more notation. Given a module V for G
or FG(n), we define its radical rad V to be the intersection of its maximal
submodules and we define its socle to be its maximal semisimple
submodule. Then we set rad’ ¥ =rad(rad’~' V) and we define soc' ¥ to
be the full preimage in V of soc(¥/soc’~! V). The sequence F/rad V,
rad V/rad? V, ... is called the radical series of V and the first term V/rad V
is called the head and denoted by hd V.

We make heavy use of the following statements about “generic”
cohomology.
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LEMMA 2.1. Let V be a finite-dimensional rational G-module over F.

(a) For sufficiently large values of n (depending on V) the restriction
map

HY G, V)-> H G(n), V)

Is an isomorphism

(b) For any natural number i, the map
HYG,V)->HY G, V)

induced by twisting by t' is an isomorphism.
(c) For any positive integer n and 4, e X . the restriction map
Extg(L(4), L(n)) = Extg,,, (L(1), (L(1))
is Injective.
Proof. Part(a) is a special case of [CPSK, Thm.7.1] if n is even.
To prove (b) we fix i and choose an even value of n which is bigger than

i and big enough so that (a) holds for both V and V. Then we have a
commutative diagram

H\G, V) —= H\G,V,)

res j 1 res

H'(G(n), V)—"— HY(G(n), V)

in which the vertical arrows are isomorphisms given by (a) and the bottom
arrow is an isomorphism because 75, is an automorphism. This proves
{b) and combining this with the main theorem of [Avrunin] we obtain (a)
for odd values of n too.

If n is even, (c) is a special case of [CPSK, Thm. 7.4], but we shall give
a proof which includes the odd case as well, based on [Andersen,
Prop.2.7]. We use some standard facts about the induced modules
H°(4)=ind§(4) for which we refer to [Jantzen, pp. 199-207]. Suppose
we have a nonsplit G-module extension V of L(i) by L(u). Since
ExtL(L(4), L(p)) = Ext (L(u, (L(2)) and nonsplit extensions can only exist
when one of A or u lies strictly below the other in the usual partial ordering
of X, we may assume 2 £ p. Then it is a standard fact that V embeds into
H ). Let p, be the highest weight of Sy, where N= {0, .., n—1}. Then
it is easy to check using Weyl’s formula that S, = L(p,) = Hp,). We have
Hom z(p, p, ® H(p,— 1)) #0, since yx is a minimal weight in the tensor
product. Thus, there is a nonzero G-map

H(u) - Hp,)®H(p,— )= L(p,)® H(p, — ),
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which must be injective since its restriction to soc(H%u))= L(u) is not
Zero.
Thus it suffices to show that

Homyg,,, (L(4), L(p,)® Hp,—n)
= HomG(n)(L(pn)’ L(A)® Ho(pn - ,Ll)) = 0

We define a linear function /1 X®;R->R by f(4,)=1, f(),])=\/§,
f(A3)=a and f(4,)=a ./2, where 1/(2~ﬁ)<a<2. Then one can check
that f takes positive values on all positive roots. The weights of L(1)®
H'p,—p) lie strictly below p,, since 2 < u. Therefore, from Steinberg’s
Tensor Product Theorem and the fact that f(tv)}> f(v) for all ve X, , it
follows that any G(n)-composition factor L(w), w € X -, of the above tensor
product must satisfy f(w) <f(p,). This completes the proof of (c).

Many of our arguments involve repeated applications of the following
principle, which follows directly from the long exact sequence of cohomol-
ogy for G.

LEMMA 22. Let V and W be simple G-modules and let d=
dim ExtL(V, W). Let X be a G-module with soc X=W and X/soc X
isomorphic to a direct sum of d copies of V. Let Y be a simple module and
let Z be a simple submodule of Y® V. Suppose that the natural map

Homy(Z, Y® W)s Homy(Z, Y® X)

is an isomorphism. Then d< dim Ext;(Z, Y® W).

When we apply this result, the module Y® W is simple and not
isomorphic to Z, so the hypothesis of the lemma becomes equivalent to the
triviality of Homg(Z, Y® X)= Hom;(Z® Y*, X). Clearly, the last group
is trivial if W is not isomorphic to any composition factor of Z& Y*,
which will be the case if, for example m(W)>m(Z® Y*). Another simple
but useful criterion is given by the next lemma.

LEMMA 2.3. Let A be dominant weight written as

ry
A=Y 1, vieX, v, v, #0

i=rp

and let A’ =37 t/vand A" =3}, t*v; be expressions of the same kind
for the dominant weights ' and A". Suppose s, <ty and that L(v,)™ &
L(v,,)*. Then L(1) is not a composition factor of the G-module
L(A)® L(A").
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Proof. Since twisting by t commutes with taking tensor products, we
see using (1.2) that every composition factor of L(A')® L(A") is of the form
L(vs0)®L(y)”"” for some pe X, . The lemma is now clear from (1.2).

Remark. Lemma 2.3 does not hold for the finite groups G(n), because
7 induces a partial order on the set of simple G-modules but not on the
simple FG(n)-modules. This is a major factor in making calculations for G
much simpler than for the finite groups.

The next lemma is used to choose the module Z in many applications of
Lemma 2.2.

LEMMA 24. The module S is isomorphic to a direct summand of E@ M.
Consequently, the simple module E embeds into M ® S and M embeds into
E®S.

Proof. From Table Il we see [EQ M:S]=1. We have S=V(1;+ 4,)
and so since 4, + 4, is the maximal weight of E® M and Weyl modules do
not extend simple modules of lower weight [Jantzen, Prop. 2.14, p. 207],
there is a submodule of E® M isomorphic to S. Then the self-duality
of E@M and the uniqueness of § as a composition factor imply that
S is isomorphic to a direct summand. The last part follows from the
isomorphisms

Hom (S, EQ M)=Homg(E, S® M)=Homy(M, E® S).

Let us introduce the following notations, suggested by Lemma 2.2. For
two simple modules L(4) and L{u), let d(L(A), L(y)) = dim  ExtL(L(A), L(u))
and let X(L(4), L(u#)) be a G-module with socle isomorphic to L(u) and
the quotient by its socle isomorphic to a direct sum of d(L(4), L(u)) copies
of L(4). The injective hull of L(x) has a submodule fitting this description
and any other is isomorphic to it.

We now come to the two principal results of this section.

LeMMA 2.5. Let I and J be disjoint finite sets of natural numbers. Then
Extg(E,Q@M,, S, ,)=0.

Proof. 1f IuJ=(, then ExtL(F, F)=0, so we assume JuJ# . By
Lemma 2.1(b), we can assume that the smallest element of 70 J is 0. Let
n—1 be the largest element of this set and define N={0,..,n—1} and
K=N\(/uJ). Then by Lemma 2.1(c), we have

EXté;(E1® M,®Sk Sy)s EthG(n)(E®MJ®SKy Sy)=0,
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by the injectivity of the FG(n)-module S . Thus the lemma is proved if we
show

dAE,QM;, S ) SAEQM,;® Sk, Sy).

Now every element of K is greater than O and neither £ nor M is
isomorphic to S, so Lemma 2.3 shows that S, is not a composition factor
of (E;®@M,® S;)®Sx. Therefore the desired inequality follows from
Lemma 2.2.

Remark. This lemma could be formulated in a much broader setting,
since its proof requires only general properties of modular representations
of semisimple groups.

ProrosITiON 2.6. Let I,J, and K be disjoint finite sets of natural
numbers with |K| =1 or \ILuJ| = 4. Then H(G,E,Q M,® Sx)=0.

Proof. First suppose IuJ=¢. If |K| =1, we can apply Lemma 2.1(b)
in conjunction with the isomorphism S = V(4; + 4,) to deduce H'(G, S;)=0.
If | K] = 2, we choose n large enough so that K€ N= {0, .., n—1}. Then for
any subset L < N\K and any element re N\(Ku L), a comparison of
masses using Lemma 1.3 reveals that S, is not a composition factor of
(5,®S5,)®S,=S5,®S5,.y,,- Therefore, Lemma 2.2 yields

d(SL’ SKuL)sd(SLu(r}i SKULU{V})‘

It follows that d(F, Sg) < d(S, . S~), Which is zero by Lemma 2.1(c) and
the injectivity of S, for FG(n).

We may assume from now on that JuJ is not empty. Let a be its
smallest element. Suppose beluJ\{a}. Lemma 2.4 shows that if bel,
then S, ® (E;Q M,)=(5,® E,)® E,, ,, ® M, has a submodule isomorphic
to E; @M, (4, while if beJ then S, @ (E;® M,) has a submodule
isomorphic to E;,,;®M, ,,. Let (I''J') be (I\{b},Ju {b}) or
(v {b}, J\{b}) accordingly. Since b>a and ae I' UJ' =IuU J, Lemma 2.3
tells us that [S,® (E, ® M,.):Sx]1=0. Therefore, by Lemma 2.2,

d(EI®Mjs SK)Sd(EI'®M.I's SKu{b})'
Now if ce I’ uJ'\{a, b}, the same reasoning leads to
AE, @M, Sk ) SAE, @My, Sko5,01)s

where (17, J") is obtained from (/’, J') in the same way that the latter was
obtained from (7, J). Continuing in this manner, we eventually arrive at

dE,@M,;, SY)SAUEL® M e, S 1ok par)s (2.6.1)
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where I* UJ*=IuUJ and S,® (E;«® M,.) has a submodule isomorphic
to E,@M,.

We now consider the cases |K| > 1 and |/U J| >4 separately.

To begin with, we suppose |K| = 2. By Lemma 1.3 we have

m(S ;o okpia) Z5HOI+5>m(E; Q@ M,)),
so by Lemma 2.2 and (2.6.1) we have
dE,QM;, S )SAE, QM) S; 0 k)

Pick N={0,.,n—1} to contain IuJuK Then for any Lc
N({JuJuK)and re N\(ITuJu KU L) we have

m(S; s oko)Z5 LI+ 5O +10>m((S,®5,)QE,Q@M,;®S5,),

hence [S,®(E,QM,® S5, ,1):S;0s0x01=0. Then by Lemma 2.2, we
have

d(EJ®MI®SL5 Slu.luKuL)gd(EJ®MI®SLu{r}’ SluJuKuLu{r})'

It follows that
d(EJ®Ml’ SK)gd(E.l@Ml@ SN (JuJuK)? SN)a

and the last term is zero by Lemma 2.1(c).
We next consider the case when K is a singleton set {k}, say. Suppose
first that [/w J| 2 2. Then we can see from Table II that

m(S oo kpia) Z3 VI Z2mME, QM) +2Tu]| Z2m(E,Q@ M)+ 4,

with equality if and only if J=¢ and |I|=2. Moreover, Lemma 1.3
and Table Il show that m(S,Q(E,®M,))<m(E,® M, +4 unless
ael Therefore S,k 18 certainly not a composition factor of
S,®E,® M, unless /= and |/|=2. We now show that it is not a
composition factor even in the case. Let /= {a, b}. We have m(Sy, ,,) = 10.
Using Lemma 1.3 and Table I, we see that any composition factor of
S.OM,,,,=(S,®M,)® M, of mass 10 must be a composition factor
of (E,, ®S,)®M,, since Z,,,®S, is the only composition factor of
S,® M, of mass 7 or more. If a+1#b then (E,, ,®S,)® M, is simple
and different from S, ,,, while if @+ 1 =5, the only composition factor of
(E,®S,)®M, of mass 10 is S,,,,, which is also different from S, ,,.
Thus, we have shown

[S.(E,QOM,)) S, 0x {a}] =0.

481/164,3-8
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Therefore by Lemma 2.2 and (2.6.1) we have
dE,QM,, S)<AE;QM,;, 51, ,0k) (2.6.2)

We now argue as in the case |K|>=2 that the right hand side is zero.
Choose N={0,..,n—1} to contain JuJu K. For any L& N\({uJuUK)
and re N\(/uJu Ku L), we have by our assumptions on |/u J| and | K],

m(S;osoko)Z5+5TOJI+S5 LI Z5+2[TuJ|+m(E,QM,®S,)
Z9+m(E,QM,®S,)>m(S,Q(E,@M,®S5, 1))

the last inequality being due to the fact that m(S,® S,)=38, from Table II.
Then repeated applications of Lemma 2.2 lead to

dE,QM,;, S; o) SAE,QM,;® SN\(luJuK)s Sw)

and the right hand side is zero by Lemma 2.1(c). This completes the proof
in the case |[K|=1, |[IuJ]| =2

We turn to the situation where K= {k} and IuJ={a}. Let b be
the smaller of ¢ and k and ¢ the larger of the two and define
P={bb+1,.,c}and L=P\{a, k}.

Suppose first that aeJ. Then because [S,® E,:S,]=0, Lemma 2.2
implies d(M,, S;)<d(E,, S, ;). Further, since Lemma 2.3 shows that
Siu.k; =S5 18 not a composition factor of S, ®(E,®S,), we have
d(E,, S 1)) <AE,®S,,Sp). Let N={0,..,c—b}. Then Lemma 2.1(b)
and (c¢) show that

d(Ea®SLa SF)=d(Eufb®SN\{0,c7b}’ SN)zO

Now suppose ae/ and that k#a+ 1. Then we have [S,® E,:S5,1=0
from Table II, which leads via Lemma 2.2 to

d(E,, S) < d(M,, S o). (26.3)

We show that (2.6.3) also holds when & =a + 1, but let us assume it for the
time being and show how to finish the case ae/ By Lemma 2.3,
[S.®(M,®5,):5.,%1=0, so as in the previous paragraph, we obtain

d(Ma’ S{uk})sd(Ma®SL’ SP)=0

It remains to prove (2.6.3) for k=a+ 1. We wish to apply Lemma 2.2 by
showing that Homg (M, ® S,, X(E,, S,.,))=0. Since S, is a quotient of
M,®E,, by Lemma 2.4, it will suffice to show Hom;(M,® M ,®E,,
X(E,, S,,1))=0. Now the only composition factors of M,® M, whose
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tensor products with E, have a composition factor S,,, are E,®@ M, ,
and E,, , ®M,. We have

Hom (E,®M,,,QE,, E,)~Hom(E,®M,, ,,E,®E,)=0
and
HomG(Ea®Ma+l®Ea’ Sa+l)gHomG(Ea®Ma+l’ Ea®Sa+l)=0’

which shows Homg(E,® M, , ® E,, X(E,, S,,,))=0, with a similar easy
calculation to show Homg(E,, ® M, ®E,, X(E,, S,,,))=0. Therefore
we have proved (2.6.3) in this remaining case.

This completes the proof of the proposition for |[K| =1, so we now
consider the case |/ J| > 4, assuming, as we may, that K= .

We show (in the notation of (2.6.1)) that

A(S o sy gay Er @M, )<d(S;.,, E,QM)). (2.6.4)

Then we are finished, because Lemma 2.5 shows the right hand side to be zero
and together with (2.6.1) this establishes the vanishing of H'(G, E,Q@ M ).
Suppose first that {7 J| = 5. Then by Lemma 1.3 and Table IT we have

m(S oy qa) ZME,QM)+5>m(S, @ (E,QM,)),

so (2.6.4) is an immediate consequence of Lemma 2.2. This leaves us with
the case |[fuJ|=4. Let IuJ={a, b, c,d}, with a<b<c<d In order to
prove (2.6.4), it is enough to show that [S,®(E,QM,): S, . ]1=0.
Now, m(S s, ..4) =15 whereas by Lemma 1.3 and Table II we have

3+311+21J]  if aed

E < i )
m(S,®E,QM,) {4+3i1|+2|J| if ael

The right hand side is less than 15 unless |/| <1 and unless a e 7 in the case
|J| = 1. Therefore, we may assume ae I. Then

m(S,® E;®M)=m((S,@M,)®E,@M, (,,)<T+9=16.

The only composition of S,® M, of mass 6 or more are S,QFE,, |,
M, .., and E, ., .., Thus, the only composition factors of
S,® E,® M, of mass at least 15 are composition factors of

E. i ®EQM, (,,®S,), M, ®E,QM),
or

E{a+l.a+2}®(E.lu{u}®Ml“ {a})'
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Each of these three modules has the form of a tensor product of two simple
modules, exactly one of which has a tensor factor E,, M, or S,,. Therefore,
Lemma 2.3 shows that S, ., is not a composition factor of any of the
three, and (2.6.4) follows.

This completes the proof of the proposition.

3. CALCULATIONS OF HY(G, E,@ M) For [[UJ| <3

To begin with, we summarize some facts about Weyl modules and their
duals, the modules H°(4). Our notation follows that of [Jantzen].

LEMMA 3.1. Let L, ueX,.
(a) If u<4, then

Extg(L(4), L(n)) = Homg(rad V(1), L(u))
~ Homg(L(), H%(4)/soc HO(L)).

(b) Exti(V(4), H(u))=0.
(c) V(A)® V(u) khas a descending filtration

V=V’>V!'s ... oV =0,

with VYVt '=V(v,) for some v,eX,, (i=0,..r—1), and such that
whenever v,>v, we have i>j. In particular, V(4)® V(u) has a submodule
isomorphic to V(4 + u).

Proof. Part (a) is Prop. 2.14, p. 207 of [Jantzen] and has already been
used in this paper. Part (b) is a special case of Prop.4.13, p.236 in
[Jantzen] and (c) is a theorem of Donkin [Donkin, 7.3.11].

In addition to these facts, we also use the Jantzen sum formula [Jantzen,
Prop. 8.19, p. 314] in one or two places.

We divide our analyis of the groups H'(G, E,® M) according to |1 u J|.
The case /uJ = has already been covered in Lemma 2.5. If |[TuJ|=1,
then by Lemma 2.1(b), we need only compute H'(G, E), H'(G, S) and
H(G, M). We have seen earlier that E and S are simple Weyl modules, so
the first two are zero. A very easy computation shows that the composition
factors of rad ¥(4,) are E and F. Since H'(G, E) =0, the radical must be
semisimple. Thus, H'(G, M) = F by Lemma 3.1(a).

Now suppose [/uJ|>1. By Lemma 2.1(b), we are reduced to the case
where Oe /U J. Define (I',J') to be (Ju {0}, I\{0}) if 0e] and to be
(J\{0}, Tu {0}) if 0eJ. Then by Lemma 2.4, S, ;. ;0; ® (E,® M,) has a
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submodule isomorphic to E, & M,.. Also, since 0el'uJ’, Lemma 2.3
shows that [S, ;). 0y ® (£, ® M ,): F]=0. Therefore, Lemma 2.2 yields

dE,@M,, F)SAE @M, Sy, 110 (3.2)

Also, we note that S® (E, ® M,) has a submodule isomorphic to
E,® M,. All of this leads to the following statement which will provide the
basis for a large part of the remaining calculations.
LemMa 33, If [S®E,®M,:S;,y.10,1=0 then H(G, E,® M,)=0.
Proof. Our hypothesis and Lemma 2.2 show that

d(El‘®MJ" S(luJ)\{O})Sd(EJ®MI’ SIU.I)

and the right hand side is zero by Lemma 2.5 The lemma follows
from (3.2).

A related result is the following lemma.

LemMma 3.4, Suppose I and J are partitioned as I= AU B and J=CuU D.
Assume one of the following:

(a) OeAandHomgy(S® (EA‘\{O} Moo i), X(E,QOMc, Eg®Mp))
=0, or

(b) 0eCand Homg(S®(E o 10, @M j0y)s X(E,@M, Ex® Mp))
=0.

Then H'(G, E,Q M;)=0.

Proof. The arguments for the two parts are similar, so we prove (a)
only. By Lemma 24, the module E, ,, ® Mo, embeds into S®
(E,® M). Therefore the hypothesis and Lemma 2.2 give

dE,QM, F)=dE,QM, EQ M)
<d(E‘A\{O}()EAICU{O), EB®MD®S)
=d(E1\{0} ®M,, {0} S).

Then since by Lemma 2.3, S, ), (0; ® (E;\;0) ® M, (o) has no composi-
tion factor S and since it has a submodule isomorphic to £,® M,, by
Lemma 2.4, we may apply Lemma 2.2 and Lemma 2.5 to obtain

AE; 0, @M, 0y, SISAE,QM;, S, ,)=0.

At this point, we simplify our notation a little by omitting set braces on
subscripts, writing E, , for E, ,,, etc.
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The Case |IuJi=3. Let IuJ=1{0,a4,b} with O0<a<b and let
{c,d}={a, b}.

(a) 1] =0. We shall show H'(G, M, , ,)=0. By Lemma 3.3 it suffices
to show that S, , is not a composition factor of S® E, , , =(S®E)® E, ,,
which follows immediately from a comparison of masses using Lemma 1.3
and Table II.

(b) |I] = 1. We subdivide this case into (i)0e and (ii) 0e J.

(i) We prove H(G, EQ M, ,)=0. By Lemma 3.3, we need only
show that [(SQM)®E,,:S,,]=0. Since m(S,,)=10, we may restrict
our attention to those composition factors of S® M of mass 6 or more,
these being £, ® S, M, and E, , ,. We note that each of these has a tensor
factor E, M or S, so by Lemma 2.3 S, , cannot be a composition factor of
the tensor product of any of them with £, ,. This completes (i).

(i) We wish to show H(G, E.® M, ,) =0, so to apply Lemma 3.3
we want [(S®E)QM R E,;S,,]1=0. Since m(M . ®E,)=5, we need
only to consider the tensor product of M ® E, with those composition
factors of S® E of mass 5 or more. These are S, E,® S, E® M, and
E,® M. As in (i), Lemma 2.3 gives the desired result. This completes (ii)
and with it, case {b)

(c) |1l =2. Here we again split the analysis into the subcases (1)0eJ
and (ii)0el

(i) We aim to show H'(G, E,,® M)=0. By Lemma 3.3, it will
suffice to prove [(S®EY® M, ,:S,,]=0. Arguing as we did for (a) and
(b), we need only consider those composition factors of S® E which have
mass at least 4 and which in addition have no tensor factors E, M or S.
This leaves only E| ,. It is easy to see that S, , will be not a composition
factor of E,,®M,, unless a=1 and b=2, so with this exception our
argument is finished. The proof of

H'(G,E, ,® M)=0 (1)

is postponed until near the end of Section 3 when we deal with several
similar calculations left over from the present discussion.

(ii) In order to show HYG, E, .® M,)=0 using Lemma 3.3 we
must show [(S@M)@M . ®E,:S,,]=0. The sole composition factor of
S® M having mass at least 5 and not having a tensor factor E, M
or §is £,®M,. One easily sees that [(E,@M )@ (E,®M.):S,,]1=0
except for when d=a=1 and c=5b=2. Thus, it remains to show
HYG, E,,® M,)=0. We apply Lemma 3.4, with 4= {0}, B= {2}, C= ¥
and D= {1}, by showing

Hom (M ® S, X(E, E,® M,)) =0.
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Since S is an homomorphic image of M ® E, we may replace M® S by
(M® M)® E in the equation above. It is not hard to see that the only
composition factor of M ® M whose tensor product with E has £, ® M, as
a composition factor is E® M,. Thus, the equation follows from

Hom (E@ M, QFE, E)yxHomg(EQM,, EQE)=0
and
Homg(EQM, ® E, E;QM,)=Homg(E®Q M, E,, ®M,)=0.

This finishes case (c).

(d) 1] =3. Our goal is to show H'(G, E, ,,)=0. Bearing in mind
Lemma 3.3, we are interested in determining when S,, is a composition
factor of (S@M)®M,,. The usual considerations of masses and
t-restricted tensor factors show that the critical composition factors
of SO®M are E,,, S, and E,®M,. By Lemma 2.3, it is clear that in
order for the tensor product of any of these with M, , to have S,, as a
composition factor we must have a=1, so we assume this. Then, we
have [E,,®M,;,:S,,1=0 unless h=2 Next consider S, ®M,;,=
(S,®M)®M,. Out of all the composition factors of S, ® M, only
E,® S, has the property that its tensor product with M, could possibly
have S, , as a composition factor, and then only when /=2. Finally,
consider E,Q M, @M, ,=(M QM,)QE,®M,. Since m(E,®M,)=5,
we are interested in the composition factors of M, ® M, of mass at
least 5, namely, M, ® E, and M,® E,. Lemma 2.3 shows that S, , is a
composition factor neither of E,QM, ®E,®M, nor of E,@M,®
E,®M,. Thus we have shown that H'(G, E,,,)=0 unless a=1 and
b= 2. The proof of

HY(G, Ey1,)=0 (2)

is given later.
The Case |[IuJ|=2. Let IuJ={0,a}.

(a) |1l =0. We would like to prove H'(G, M, ,)=0. By Lemma 3.3,
we know this to be true for those values of a for which [S® E, ,:S,]=0.
The composition factors of S&® E which are relevant are those which have
no tensor factor E, M or S and which have mass no less than 3. These are
E,,, M, and M,. Therefore it is clear that for a> 2, the multiplicity in
question is zero, and we are left to show

H'(G, M, ,)=0 (3)
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and
Hl(G, M0,2)=0~ 4)

This is done later.
(b) || =1. There are two subcases: (i1)0e [ and (ii) 0Oe J.

(i) We prove H'(G, EQ M,)=0. It is straightforward to check
that [S@M®E,:S,]1=0unless a=1 or 2, so Lemma 3.3 gives the result
for all values of a except for these. We leave the proof of

HY (G, EQM,)=0 (5)

until later but we give the argument for the triviality of H'(G, EQ M)
here, using Lemma 3.4, with 4={0}, B=C=(J and D= {2}. Thus, we
aim to show

Hom (S® M, X(E, M,))=0.

By Lemma 2.4, it is enough to prove this with F® M@ M in place of
S® M. Now, the only composition factors of M® M whose tensor
products with £ have M, as a composition factor are EQ M,, E,, and
E, ® M. A little thought shows

Hom (ERE®M,, E)y=0 and HomiEQE®@M,, M,)=0.

Hence Homg(EF® E® M,, X(E, M,))=0. Similarly, one can also prove
HomE® E, ,, X(E, M;))=0 and Homg(E®Q E,® M, X(E, M,})=0, so
Lemma 3.4 can be applied to yield the desired result.

(ii) According to the statement of the main theorem, we must try
to show HY(G, E,@M)=0if a#2 and HY(G, E,@ M)=F. If a>3 then
it is easily checked that [S® EQ M, :S,]=0, and the result then follows
from Lemma 3.3. Next, we recall that E,~[L(24,), EF,~L(},) and
M=1L(%;). We have i, <Ai;<2i,. Thus, by Lemma3.1(a) and the
isomorphism rad V(i;)~ E® F proved earlier (See the case |[TuJ|=1),
we see that H'(G, M® E,)=ExtL(L(4;), L(4,))=0. Also, a routine
calculation reveals that L(4;) is not even a composition factor of V(24)),
so certainly H'(G, E;® M) =~ Ext.(L(24,), L(4;)) =0. The isomorphism

H (G, E,®M)=F (6)

is established later.

() I|=2. We wish to show H'(G,E,,)=0 for a#1 and
HY G, E,,)=0. The latter follows immediately from the fact that
rad V(4,)= L(4,), which can be verified by a very simple character calcula-
tion. Next, if a>4 then it can easily be seen that [S® M, ,:S5,]1=0, so
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Lemma 3.3 yields the result. For a=3 or4, we apply Lemma 3.4 with
A=1{0}, B={a}, C=D=(J. Since S is a quotient of E® M, we are able
to apply Lemma 3.4 if we show

Hom((EQ M)® M, X(E, E,)) =0.

It is not hard to see that the composition factors of M ® M whose tensor
products with E have E, as a composition factor are E, |, Ey,, E,@M
and E® M,. Taking the first of these, we have

Homg(E® E, ,, Ey=Homg;(E, ,, EQE)=0
and
Homg(E® E, ,, E,)=Homg(E,,, EQE,)=0,

so Homg(E® E, |, X(E, E,))=0. Similar calculations show that there are
no nonzero G-maps from the tensor products of E with the other composi-
tion factors in our list into X(E, E,), so the hypotheses of Lemma 3.4 are
established and H'(G, E, ,)=0 when a=3 or 4. We are left to show

H\G, E,,)=0. (7)

Completion of the Proof. At this point, all that remains is to prove
(1)-(7) above. Parts (6) and (7) follow directly from the following lemma.

LEMMA 3.5. The radical series of V(24,) is
L(24,), L)@ L(A,),  L(4).

Proof. By computing the composition factors of ¥(24,) and applying
the Jantzen sum formula, it can be seen that V(24,) has a descending
filtration whose subquotients have the composition factors as given in the
statement. Therefore, since we have already proved ExtL(L(4,), L(4,))=0,
the middle layer is semisimple. We claim that rad? V(24,) #0. If not, we
would have Homg(L(4,), V(24,))#0, but this is impossible because by
Lemma 3.1(c), V(24,) embeds into V(i,)® V(i) =E®E and clearly
Hom(E,, EQ E)=0. The lemma follows from the claim.

We next prove (2) which is equivalent to the vanishing of
ExtL(L(4, + 44), L(24,)). A routine computation gives the composition
factors of V(4,+ A,) as

L(;Ll + )“4)a L(2’14)’ L(A3)’
L(4,) (twice), L(4,) (twice), and L(0).
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We know by Lemma 3.1(c) that V(i, + 4,) embeds into ¥(4,)® V(4,) and
we identify it with its image. Then since

hd V(4 + 4) = L(4, + A) = L(A,)® L(A) = hd V(4)® V(4,),
it follows that
rad V(A, + 4y) Srad V(4)® V(i) = V(1) ® V(As),

where the isomorphism follows immediately from what we already know
about V(2,) and V(4,). Now since rad V(4, + 4,4) has a composition factor
L(24,), it contains the unique one-dimensional 24,-weight space of V(4,)
® V(4,4), and hence it has a submodule isomorphic to V(24,). Then from
the structure of V(24,) given in Lemma 3.5, we see that in any (ascending)
composition series of V(i,)® V(4,) we must have a composition factor
L(4,) below the unique composition factor L(24,). Then the self-duality of
V(i) ® V(4,) shows that the three composition factors L(4,) (twice) and
L(22,) must always appear in the order L(4,), L(24,), L(4,). Since the
composition multiplicities of these factors are the same in the submodule
rad V(i, + 4,) as they are in V(i,)® V(4,) it follows that these factors
must appear in the given order in any composition series of rad V(4, + 4,),
which proves (2).

We now prove (1), or rather the equivalent statement Ext(,(L(4, +24,),
L(4,))=0. By Lemma 3.1(c) we may identify V(i,+24,) with a
submodule of V(i,)® V(24,). From the structures of V(4,) and V(24,)
already described, we know that their tensor product has a submodule W
isomorphic to L(4,)Q L{44) = V(24,)® V(4,). It can be checked that

[V(A)® V(24,) : L(244)] =3 =[V(A, + 44) : L(244)],

and since [ W :L(24,)] =1, we must have [ Wnrad V(4,+24,): L(24,}]
= 1. It follows as in the preceding paragraph that rad V(4, +24,) has a
submodule isomorhic to V(22,). By a routine computation, we obtain

[V(A +204): L)1 =1=[V(24,) : L(43)]

and now (1) is clear.

Next, we shall prove Ext5(L(24,), L(4;)) =0, which is equivalent to (4).
We have already shown that rad V(4,)= L(4,)® F. We consider the image
U of V(24,) under the composition

V(243) s V(43)® V(43) = L(43) @ L(4;) =M @ M,

where the embedding is given by Lemma 3.1(c) and the second map is
induced by the natural map of V(4i;) onto its head. The composition
factors of V(24,) are readily computed and it turns out that L(4, +24,)=
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E,, is one. However, it is easy to see using Table Il that the kernel
of the above maps has no such composition factor. Thus, [U: E, ,]#0.
Since Homg(E, ,, M®M))=xHom(E, @M, E,®M)=0 and hd Uz
L(2;)=M,, we deduce that U & socX(M @ M). Now [MRM : M,] =1,
so [soc’(M ® M) : M,]=0. Then by the self-duality of M ® M we obtain

[(M® M)/radX(M® M) : M,]=0. (3.6)

We use this in conjunction with Lemma 3.4 (taking A=B=, C={0}
and D= {2}), so we need to show

Hom;(S®QE, X(M, M,))=0.

By Lemma 2.4, we may prove this with M® E® E in place of S®E.
The only composition factor of E® E whose tensor product with M has a
composition factor M, is M. Thus, we are reduced to proving
Homg(M ® M, X(M, M,))=0, which is clear from (3.6). This completes
the proof (4).

In order to prove (3) and (5) we take a closer look at the module V(4,).

LemMma 3.7. We have
VA3)@ V(A= V(A + 4,)@ Y,

where the module Y has a submodule W isomorphic to V(4,).

Proof. A character calculation shows that there is a Weyl filtration of
V(4,)® V(4,) as provided by Lemma 3.1(c), in which V"' V(i,+ 4,)
and V"~V V(4,). Since V(4,+ 4i4)= H*(Ay+ A,), the lemma follows
from Lemma 3.1(b).

The following information was obtained by direct calculation.

LEMMA 3.8. The composition factors of V(2,) are
M, E,,, E,, M, LK (twice), E, and  F (twice).

The Jantzen sum formula gives

S Ch V(4,))=ChE,,+2ChE,+2ChE, +4Ch M +3ChE+4ChF.

i>0
(Here, {V(%,)'};s ¢ is the Jantzen filtration; one has V{(4,)' =rad V(2,).)
We can now prove (3) ExtL(L(4,), L(4,))=0. One can deduce from

Lemma 3.8 that V(4,) has a submodule whose composition factors are
E,, M, E, and F. Suppose for a contradiction that Ext'G(M[,M);
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Homg(rad V(4,), M) 1s not zero. Then since [V(4,): M]=1, there is a
submodule of ¥(1,) whose composition factors are E,, E, and F. Since we
have already shown that Ext}(E,, E)=0 and Ext}(E,, F)=0, it follows
that Homg(E,, V(4,))#0. But this contradicts Lemma 3.7 because
Homg(E,, V(4,)® V(4,))=Homg(E, 5, V(1)) =0, from the structure of
V(45). Thus, (3) is proved.

Finally, we must prove (5) ExtlL(M,, E)=0. First we show
Extg(M,, E; ) =0. From Lemma 3.7, it follows that the first layer L=
V(1)!/V(2)? in the Jantzen filtration has composition factors E, (twice),
E, | (once), and possibly F (once). Since [ V(4,): Ey 1=1, it will suffice to
show Homg(L, E,,)=0. Now, for groups of type F, the layers of the
Jantzen filtration are known to be self-dual G-modules [Jantzen, pp.
312-313]. Therefore, if E,, were a homomorphic image of L, it would be
isomorphic to a direct summand, and then it would follow from the fact
that H'(G, E,)=0 that dim Hom(L, E,)> 2. But this would contradict
the fact that Ext,(M,, E)=Ext(M,E)=~F, so we must have
Exth(M,, Eq,)=0.

Next we claim that Homg(M ® E, £) =0. Consider the exact sequence

0-EQM,— V(i,)®M,—»E,®M,—0,

obtained using the structure of V(4,). In the long exact sequence for
Exts(E,, -), we have

Homg(E,, V(A )® M )=Homy(E, ®M,, V(4,))=0
because [E, ® M, : E]1=0, obviously. Also, we proved above that
Ext (E;, EQM,)~Ext.(M,, E,;)=0.
Therefore,
Hom (M, ®E,, E,)>xHomyE,, E,® M,)=0,

and our claim follows.
With this information, we are ready to prove (5). By Lemma 2.4, we
have

MRQE=S®Q

for some nonzero module Q. We show that @ has a submodule isomorphic
to M by eliminating all of the other composition factors of Q as
possibilities for simple submodules. Since [M ® E : S] =1, this is the same
as showing that none of the composition factors of M ® E other than §
and M are isomorphic to submodules of M ® E. We showed in the last
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paragraph that there is no submodule isomorphic to E and it is not difficult
to eliminate all of the remaining composition factors; for instance,

Hom(E,,, M@ E)>~Homi(E,®M,E®Q E)=0.
Thus, M is isomorphic to a submodule of Q, so there exists an exact sequence
0— M, M,®@E, — (M, ® E))/i(M,)— 0

Since [M,® E,: E]=0, the long exact sequence yields an injection of
Ext;(E, M) = ExtL(M,, E) into Ext.(E, M, ® E,)=ExtL(M,, E,;)=0,
so (5) is proved.

The proof of the main theorem is now complete.

Note added in proof. All extensions of simple modules are now known. These calculations
will appear later in this journal.
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