The critical group of a graph

Peter Sin

Millican Colloquium, UNT, March 24th, 2014.

Critical groups of graphs

Outline

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

► This talk is about the *critical group*, a finite abelian group associated with a finite graph.

- ► This talk is about the *critical group*, a finite abelian group associated with a finite graph.
- ► The critical group is defined using the *Laplacian matrix* of the graph.

- ► This talk is about the *critical group*, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;

- ► This talk is about the *critical group*, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);

- ► This talk is about the *critical group*, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- ▶ in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);

- ► This talk is about the *critical group*, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Picard group, graph Jacobian (Lorenzini).

- ► This talk is about the *critical group*, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Picard group, graph Jacobian (Lorenzini).
- We'll consider the problem of computing the critical group for families of graphs.

- ► This talk is about the *critical group*, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Picard group, graph Jacobian (Lorenzini).
- We'll consider the problem of computing the critical group for families of graphs.
- The Paley graphs are a very important class of strongly regular graphs arising from finite fields.

- ► This talk is about the *critical group*, a finite abelian group associated with a finite graph.
- ► The critical group is defined using the *Laplacian matrix* of the graph.
- The critical group arises in several contexts;
- ▶ in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Picard group, graph Jacobian (Lorenzini).
- We'll consider the problem of computing the critical group for families of graphs.
- ► The Paley graphs are a very important class of strongly regular graphs arising from finite fields.
- ▶ We'll say something about the computation of their critical groups, which involves groups, characters and number theory.

Critical groups of graphs

Outline

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

Pierre-Simon Laplace (1749-1827)

ightharpoonup Γ = (V, E) simple, connected graph.

- $ightharpoonup \Gamma = (V, E)$ simple, connected graph.
- ightharpoonup L = D A, A adjacency matrix, D degree matrix.

- $ightharpoonup \Gamma = (V, E)$ simple, connected graph.
- ightharpoonup L = D A, A adjacency matrix, D degree matrix.
- ▶ Think of *L* as a linear map $L : \mathbf{Z}^V \to \mathbf{Z}^V$.

- $ightharpoonup \Gamma = (V, E)$ simple, connected graph.
- ightharpoonup L = D A, A adjacency matrix, D degree matrix.
- ▶ Think of *L* as a linear map $L: \mathbf{Z}^V \to \mathbf{Z}^V$.
- ▶ rank(L) = |V| 1.

 $ightharpoonup \mathbf{Z}^V / \operatorname{Im}(L) \cong \mathbf{Z} \oplus K(\Gamma)$

- $ightharpoonup \mathbf{Z}^V / \operatorname{Im}(L) \cong \mathbf{Z} \oplus K(\Gamma)$
- ▶ The finite group K(Γ) is called the critical group of Γ.

- $ightharpoonup \mathbf{Z}^V / \operatorname{Im}(L) \cong \mathbf{Z} \oplus \mathcal{K}(\Gamma)$
- ▶ The finite group K(Γ) is called the critical group of Γ.
- ▶ Let ε : $\mathbf{Z}^V \to \mathbf{Z}$, $\sum_{v \in V} a_v v \mapsto \sum_{v \in V} a_v$.

- $ightharpoonup \mathbf{Z}^V / \operatorname{Im}(L) \cong \mathbf{Z} \oplus \mathcal{K}(\Gamma)$
- ▶ The finite group K(Γ) is called the critical group of Γ.
- ▶ Let ε : $\mathbf{Z}^V \to \mathbf{Z}$, $\sum_{v \in V} a_v v \mapsto \sum_{v \in V} a_v$.
- ▶ $L(\ker(\varepsilon)) \subseteq \ker(\varepsilon)$, and $K(\Gamma) \cong \ker(\varepsilon)/L(\ker(\varepsilon))$

Kirchhoff's Matrix-Tree Theorem

Gustav Kirchhoff (1824-1887)

Kirchhoff's Matrix Tree Theorem

For any connected graph Γ , the number of spanning trees is equal to $\det(\tilde{L})$, where \tilde{L} is obtained from L be deleting the row and column corrresponding to any chosen vertex.

Kirchhoff's Matrix-Tree Theorem

Gustav Kirchhoff (1824-1887)

Kirchhoff's Matrix Tree Theorem

For any connected graph Γ , the number of spanning trees is equal to $\det(\tilde{L})$, where \tilde{L} is obtained from L be deleting the row and column corrresponding to any chosen vertex.

Also,
$$\det(\tilde{L}) = |K(\Gamma)| = \frac{1}{|V|} \prod_{j=2}^{|V|} \lambda_j$$
.

Critical groups of graphs

Outline

Laplacian matrix of a graph

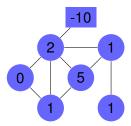
Chip-firing game

Smith normal form

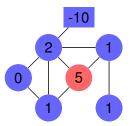
Some families of graphs with known critical groups

Paley graphs

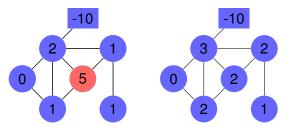
Critical group of Paley graphs



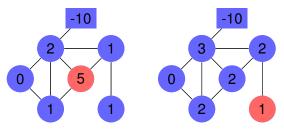
A configuration is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.



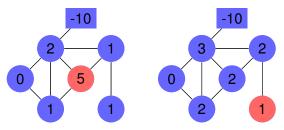
- ▶ A configuration is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least deg(v) chips.



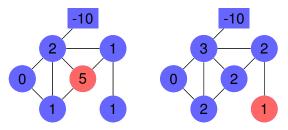
- ▶ A configuration is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least deg(v) chips.



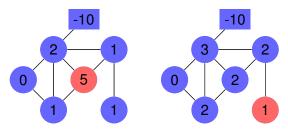
- ▶ A configuration is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- ▶ A round vertex v can be fired if it has at least deg(v) chips.



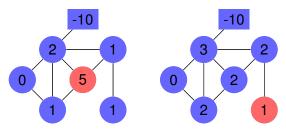
- ▶ A configuration is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least deg(v) chips.
- The square vertex is fired only when no others can be fired.



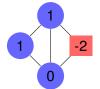
- ▶ A configuration is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least deg(v) chips.
- ► The square vertex is fired only when no others can be fired.
- ▶ A configuration is *stable* if no round vertex can be fired.

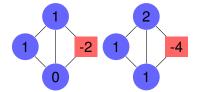


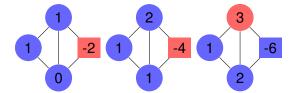
- ▶ A configuration is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least deg(v) chips.
- ► The square vertex is fired only when no others can be fired.
- ▶ A configuration is *stable* if no round vertex can be fired.
- ▶ A configuration is *recurrent* if there is a sequence of firings that lead to the same configuration.

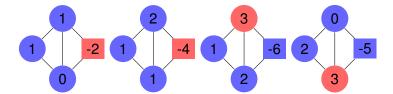


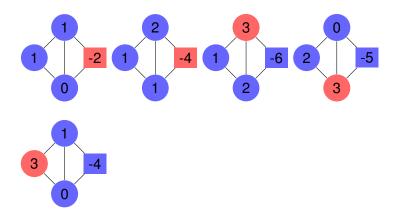
- ▶ A configuration is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least deg(v) chips.
- ► The square vertex is fired only when no others can be fired.
- ► A configuration is *stable* if no round vertex can be fired.
- ▶ A configuration is *recurrent* if there is a sequence of firings that lead to the same configuration.
- A configuration is *critical* if it is both recurrent and stable.

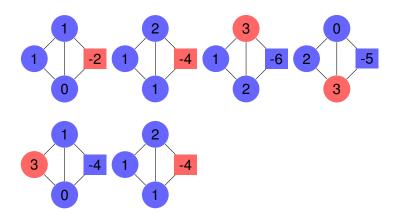


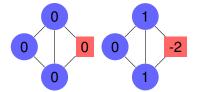


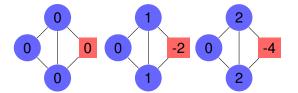


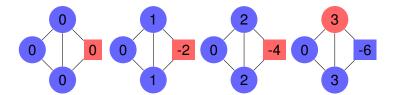


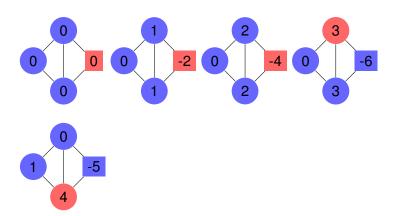


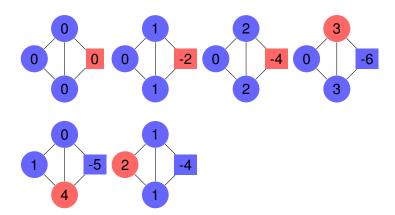


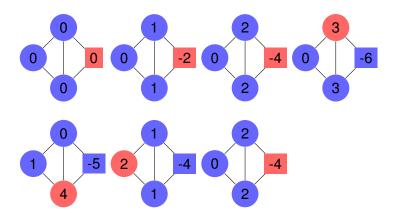












Start with a configuration s and fire vertices in a sequence where each vertex v is fired x(v) times, ending up with configuration s'.

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired x(v) times, ending up with configuration s'.

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired x(v) times, ending up with configuration s'.
- $\triangleright s' = s Lx$

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired x(v) times, ending up with configuration s'.
- $\triangleright s' = s Lx$

Theorem

Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired x(v) times, ending up with configuration s'.
- $\triangleright s' = s Lx$

Theorem

Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

Theorem

The set of critical configurations has a natural group operation making it isomorphic to the critical group $K(\Gamma)$.

Critical groups of graphs

Outline

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

Equivalence and Smith normal form

Henry John Stephen Smith (1826-1883)

Given an integer matrix X, there exist unimodular integer matrices P and Q such that

$$PXQ = \begin{bmatrix} Y & 0 \\ 0 & 0 \end{bmatrix}, \quad Y = \operatorname{diag}(s_1, s_2, \dots s_r), \quad s_1 |s_2| \cdots |s_r.$$

Critical groups of graphs

Outline

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

▶ Trees, $K(\Gamma) = \{0\}$.

- Trees, K(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.

- Trees, *K*(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.

- Trees, K(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner).

- Trees, K(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner).
- Conference graphs on a square-free number of vertices (Lorenzini).

Critical groups of graphs

Outline

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

Raymond E. A. C. Paley (1907-33)

Paley graphs P(q)

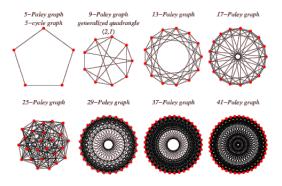
▶ Vertex set is \mathbb{F}_q , $q = p^t \equiv 1 \pmod{4}$

Paley graphs P(q)

- ▶ Vertex set is \mathbb{F}_q , $q = p^t \equiv 1 \pmod{4}$
- S= set of nonzero squares in \mathbb{F}_q

Paley graphs P(q)

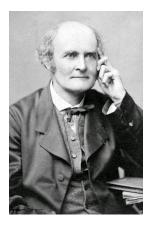
- ▶ Vertex set is \mathbb{F}_q , $q = p^t \equiv 1 \pmod{4}$
- $S = \text{set of nonzero squares in } \mathbb{F}_q$
- ▶ two vertices x and y are joined by an edge iff $x y \in S$.



Some Paley graphs (from Wolfram Mathworld)

Paley graphs are Cayley graphs

We can view $\mathrm{P}(q)$ as a Cayley graph on $(\mathbb{F}_q,+)$ with connecting set S



Arthur Cayley (1821-95)

Paley graphs are strongly regular graphs

It is well known and easily checked that P(q) is a *strongly regular graph* and that its eigenvalues are $k=\frac{q-1}{2}$, $r=\frac{-1+\sqrt{q}}{2}$ and $s=\frac{-1-\sqrt{q}}{2}$, with multiplicities 1, $\frac{q-1}{2}$ and $\frac{q-1}{2}$, respectively.

Critical groups of graphs

Outline

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

David Chandler and Qing Xiang

$$|\mathcal{K}(\mathrm{P}(q))|=rac{1}{q}\left(rac{q+\sqrt{q}}{2}
ight)^k\left(rac{q-\sqrt{q}}{2}
ight)^k=q^{rac{q-3}{2}}\mu^k,$$
 where $\mu=rac{q-1}{4}.$

•

$$|K(P(q))| = \frac{1}{q} \left(\frac{q+\sqrt{q}}{2}\right)^k \left(\frac{q-\sqrt{q}}{2}\right)^k = q^{\frac{q-3}{2}}\mu^k,$$

where
$$\mu = \frac{q-1}{4}$$
.

▶ Aut(P(
$$q$$
)) $\geq \mathbb{F}_q \times S$.

•

$$|\mathcal{K}(\mathrm{P}(q))| = rac{1}{q} \left(rac{q+\sqrt{q}}{2}
ight)^k \left(rac{q-\sqrt{q}}{2}
ight)^k = q^{rac{q-3}{2}}\mu^k,$$

where
$$\mu = \frac{q-1}{4}$$
.

- ▶ Aut(P(q)) $\geq \mathbb{F}_q \rtimes S$.
- $\blacktriangleright \ \mathsf{K}(\mathtt{P}(q)) = \mathsf{K}(\mathtt{P}(q))_{p} \oplus \mathsf{K}(\mathtt{P}(q))_{p'}$

$$|\mathcal{K}(\mathrm{P}(q))| = rac{1}{q} \left(rac{q+\sqrt{q}}{2}
ight)^k \left(rac{q-\sqrt{q}}{2}
ight)^k = q^{rac{q-3}{2}}\mu^k,$$

where
$$\mu = \frac{q-1}{4}$$
.

- ▶ Aut(P(q)) $\geq \mathbb{F}_q \rtimes S$.
- $\blacktriangleright \ \mathsf{K}(\mathrm{P}(q)) = \mathsf{K}(\mathrm{P}(q))_{p} \oplus \mathsf{K}(\mathrm{P}(q))_{p'}$
- ▶ Use \mathbb{F}_q -action to help compute p'-part.

Symmetries

$$|\mathcal{K}(\mathrm{P}(q))| = rac{1}{q} \left(rac{q+\sqrt{q}}{2}
ight)^k \left(rac{q-\sqrt{q}}{2}
ight)^k = q^{rac{q-3}{2}}\mu^k,$$

where $\mu = \frac{q-1}{4}$.

- ▶ Aut(P(q)) $\geq \mathbb{F}_q \rtimes S$.
- $\blacktriangleright \ \mathsf{K}(\mathrm{P}(q)) = \mathsf{K}(\mathrm{P}(q))_{p} \oplus \mathsf{K}(\mathrm{P}(q))_{p'}$
- ▶ Use \mathbb{F}_q -action to help compute p'-part.
- ▶ Use S-action to help compute p-part.

Jean-Baptiste-Joseph Fourier (1768-1830)

Joseph Fourier (1768-1830)

▶ X, complex character table of $(\mathbb{F}_q, +)$

- ▶ X, complex character table of $(\mathbb{F}_q, +)$
- X is a matrix over Z[ζ], ζ a complex primitive p-th root of unity.

- ▶ X, complex character table of $(\mathbb{F}_q, +)$
- X is a matrix over Z[ζ], ζ a complex primitive p-th root of unity.

- ▶ X, complex character table of $(\mathbb{F}_q, +)$
- X is a matrix over Z[ζ], ζ a complex primitive p-th root of unity.

>

$$\frac{1}{q}XL\overline{X}^t = \operatorname{diag}(k - \psi(S))_{\psi},\tag{1}$$

- ▶ X, complex character table of $(\mathbb{F}_q, +)$
- X is a matrix over Z[ζ], ζ a complex primitive p-th root of unity.

•

$$\frac{1}{q}XL\overline{X}^t = \operatorname{diag}(k - \psi(S))_{\psi}, \tag{1}$$

Interpret this as PLQ-equivalence over suitable local rings of integers.

Theorem

$$\mathsf{K}(\mathtt{P}(q))_{p'}\cong (\mathbf{Z}/\mu\mathbf{Z})^{2\mu}$$
 , where $\mu=rac{q-1}{4}$.

The *p*-part

Carl Gustav Jacob Jacobi (1804-51)

• $R = \mathbf{Z}_p[\xi_{q-1}]$, pR maximal ideal of R, $R/pR \cong \mathbb{F}_q$.

- ▶ $R = \mathbf{Z}_p[\xi_{q-1}]$, pR maximal ideal of R, $R/pR \cong \mathbb{F}_q$.
- $T: \mathbb{F}_q^{\times} \to R^{\times}$ Teichmüller character.

- ▶ $R = \mathbf{Z}_p[\xi_{q-1}]$, pR maximal ideal of R, $R/pR \cong \mathbb{F}_q$.
- ▶ $T : \mathbb{F}_q^{\times} \to R^{\times}$ Teichmüller character.
- ▶ T generates the cyclic group $\operatorname{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.

- ▶ $R = \mathbf{Z}_p[\xi_{q-1}]$, pR maximal ideal of R, $R/pR \cong \mathbb{F}_q$.
- ▶ $T : \mathbb{F}_q^{\times} \to R^{\times}$ Teichmüller character.
- ▶ T generates the cyclic group $\operatorname{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.
- Let $R^{\mathbb{F}_q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_q ; write the basis element corresponding to $x \in \mathbb{F}_q$ as [x].

- ▶ $R = \mathbf{Z}_p[\xi_{q-1}]$, pR maximal ideal of R, $R/pR \cong \mathbb{F}_q$.
- ▶ $T : \mathbb{F}_q^{\times} \to R^{\times}$ Teichmüller character.
- ▶ T generates the cyclic group $\text{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.
- Let $R^{\mathbb{F}_q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_q ; write the basis element corresponding to $x \in \mathbb{F}_q$ as [x].
- lacksquare $\mathbb{F}_q^{ imes}$ acts on $R^{\mathbb{F}_q}$, permuting the basis by field multiplication,

- ▶ $R = \mathbf{Z}_p[\xi_{q-1}]$, pR maximal ideal of R, $R/pR \cong \mathbb{F}_q$.
- ▶ $T : \mathbb{F}_q^{\times} \to R^{\times}$ Teichmüller character.
- ▶ T generates the cyclic group $\text{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.
- Let $R^{\mathbb{F}_q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_q ; write the basis element corresponding to $x \in \mathbb{F}_q$ as [x].
- lacksquare $\mathbb{F}_q^{ imes}$ acts on $R^{\mathbb{F}_q}$, permuting the basis by field multiplication,
- ▶ $R^{\mathbb{F}_q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}_q^{\times}}$ of a trivial module with the regular module for \mathbb{F}_q^{\times} .

- ▶ $R = \mathbf{Z}_p[\xi_{q-1}]$, pR maximal ideal of R, $R/pR \cong \mathbb{F}_q$.
- ▶ $T : \mathbb{F}_q^{\times} \to R^{\times}$ Teichmüller character.
- ▶ T generates the cyclic group $\operatorname{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.
- Let $R^{\mathbb{F}_q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_q ; write the basis element corresponding to $x \in \mathbb{F}_q$ as [x].
- $ightharpoonup \mathbb{F}_q^{ imes}$ acts on $R^{\mathbb{F}_q}$, permuting the basis by field multiplication,
- ▶ $R^{\mathbb{F}_q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}_q^{\times}}$ of a trivial module with the regular module for \mathbb{F}_q^{\times} .
- $ightharpoonup R^{\mathbb{F}_q^{\times}} = \bigoplus_{i=0}^{q-2} E_i, E_i \text{ affording } T^i.$

- ▶ $R = \mathbf{Z}_p[\xi_{q-1}]$, pR maximal ideal of R, $R/pR \cong \mathbb{F}_q$.
- ▶ $T : \mathbb{F}_q^{\times} \to R^{\times}$ Teichmüller character.
- ▶ T generates the cyclic group $\operatorname{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.
- Let $R^{\mathbb{F}_q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_q ; write the basis element corresponding to $x \in \mathbb{F}_q$ as [x].
- $ightharpoonup \mathbb{F}_q^{ imes}$ acts on $R^{\mathbb{F}_q}$, permuting the basis by field multiplication,
- ▶ $R^{\mathbb{F}_q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}_q^{\times}}$ of a trivial module with the regular module for \mathbb{F}_q^{\times} .
- $ightharpoonup R^{\mathbb{F}_q^{\times}} = \bigoplus_{i=0}^{q-2} E_i, E_i \text{ affording } T^i.$
- A basis element for E_i is

$$e_i = \sum_{x \in \mathbb{F}_q^\times} T^i(x^{-1})[x].$$

▶ Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.

- ▶ Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.
- ▶ S-isotypic components on $R^{\mathbb{F}_q^{\times}}$ are each 2-dimensional.

- ▶ Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.
- ▶ S-isotypic components on $R^{\mathbb{F}_q^{\times}}$ are each 2-dimensional.
- $\{e_i, e_{i+k}\}$ is basis of $M_i = E_i + E_{i+k}$

- ▶ Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.
- ▶ S-isotypic components on $R^{\mathbb{F}_q^{\times}}$ are each 2-dimensional.
- $\{e_i, e_{i+k}\}$ is basis of $M_i = E_i + E_{i+k}$
- ▶ The *S*-fixed subspace M_0 has basis $\{1, [0], e_k\}$.

- ▶ Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.
- ▶ S-isotypic components on $R^{\mathbb{F}_q^{\times}}$ are each 2-dimensional.
- $\{e_i, e_{i+k}\}$ is basis of $M_i = E_i + E_{i+k}$
- ▶ The *S*-fixed subspace M_0 has basis $\{1, [0], e_k\}$.
- ▶ *L* is *S*-equivariant endomorphisms of $R^{\mathbb{F}_q}$,

$$L([x]) = k[x] - \sum_{s \in S} [x+s], \ x \in \mathbb{F}_q.$$

- ▶ Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.
- ▶ S-isotypic components on $R^{\mathbb{F}_q^{\times}}$ are each 2-dimensional.
- $\{e_i, e_{i+k}\}$ is basis of $M_i = E_i + E_{i+k}$
- ▶ The S-fixed subspace M_0 has basis $\{1, [0], e_k\}$.
- ▶ *L* is *S*-equivariant endomorphisms of $R^{\mathbb{F}_q}$,

$$L([x]) = k[x] - \sum_{s \in S} [x+s], \ x \in \mathbb{F}_q.$$

L maps each M_i to itself.

Jacobi Sums

The *Jacobi sum* of two nontrivial characters T^a and T^b is

$$J(T^a, T^b) = \sum_{x \in \mathbb{F}_a} T^a(x) T^b(1-x).$$

Jacobi Sums

The Jacobi sum of two nontrivial characters T^a and T^b is

$$J(T^a, T^b) = \sum_{x \in \mathbb{F}_q} T^a(x) T^b(1-x).$$

Lemma

Suppose $0 \le i \le q-2$ and $i \ne 0$, k. Then

$$L(e_i) = \frac{1}{2}(qe_i - J(T^{-i}, T^k)e_{i+k})$$

Jacobi Sums

The Jacobi sum of two nontrivial characters T^a and T^b is

$$J(T^a, T^b) = \sum_{x \in \mathbb{F}_q} T^a(x) T^b(1-x).$$

Lemma

Suppose $0 \le i \le q-2$ and $i \ne 0$, k. Then

$$L(e_i) = \frac{1}{2}(qe_i - J(T^{-i}, T^k)e_{i+k})$$

Lemma

- (i) L(1) = 0.
- (ii) $L(e_k) = \frac{1}{2}(\mathbf{1} q([0] e_k)).$
- (iii) $L([0]) = \frac{1}{2}(q[0] e_k 1).$

Corollary

The Laplacian matrix L is equivalent over R to the diagonal matrix with diagonal entries $J(T^{-i}, T^k)$, for i = 1, ..., q-2 and $i \neq k$, two 1s and one zero.

Carl Friedrich Gauss (1777-1855) Ludwig Stickelberger (1850-1936)

Gauss and Jacobi

Gauss sums: If $1 \neq \chi \in \text{Hom}(\mathbb{F}_q^{\times}, R^{\times})$,

$$g(\chi) = \sum_{\mathbf{y} \in \mathbb{F}_q^{\times}} \chi(\mathbf{y}) \zeta^{\operatorname{tr}(\mathbf{y})},$$

where ζ is a primitive p-th root of unity in some extension of R.

Gauss and Jacobi

Gauss sums: If $1 \neq \chi \in \text{Hom}(\mathbb{F}_q^{\times}, R^{\times})$,

$$g(\chi) = \sum_{\mathbf{y} \in \mathbb{F}_q^{\times}} \chi(\mathbf{y}) \zeta^{\operatorname{tr}(\mathbf{y})},$$

where ζ is a primitive p-th root of unity in some extension of R.

Lemma

If χ and ψ are nontrivial multiplicative characters of \mathbb{F}_q^{\times} such that $\chi\psi$ is also nontrivial, then

$$J(\chi,\psi)=rac{g(\chi)g(\psi)}{g(\chi\psi)}.$$

Stickelberger's Congruence

Theorem

For 0 < a < q - 1, write a p-adically as

$$a = a_0 + a_1 p + \cdots + a_{t-1} p^{t-1}$$
.

Then the number of times that p divides $g(T^{-a})$ is $a_0 + a_1 + \cdots + a_{t-1}$.

Stickelberger's Congruence

Theorem

For 0 < a < q - 1, write a p-adically as

$$a = a_0 + a_1 p + \cdots + a_{t-1} p^{t-1}$$
.

Then the number of times that p divides $g(T^{-a})$ is $a_0 + a_1 + \cdots + a_{t-1}$.

Theorem

Let $a, b \in \mathbf{Z}/(q-1)\mathbf{Z}$, with $a, b, a+b \not\equiv 0 \pmod{q-1}$. Then number of times that p divides $J(T^{-a}, T^{-b})$ is equal to the number of carries in the addition $a+b \pmod{q-1}$ when a and b are written in p-digit form.

►
$$k = \frac{1}{2}(q-1)$$

- ► $k = \frac{1}{2}(q-1)$
- ▶ What is the number of i, $1 \le i \le q-2$, $i \ne k$ such that adding i to $\frac{q-1}{2}$ modulo q-1 involves exactly λ carries?

- ► $k = \frac{1}{2}(q-1)$
- ▶ What is the number of i, $1 \le i \le q-2$, $i \ne k$ such that adding i to $\frac{q-1}{2}$ modulo q-1 involves exactly λ carries?
- This problem can be solved by applying the transfer matrix method.

- ► $k = \frac{1}{2}(q-1)$
- ▶ What is the number of i, $1 \le i \le q-2$, $i \ne k$ such that adding i to $\frac{q-1}{2}$ modulo q-1 involves exactly λ carries?
- This problem can be solved by applying the transfer matrix method.
- Reformulate as a count of closed walks on a certain directed graph.

- ► $k = \frac{1}{2}(q-1)$
- ▶ What is the number of i, $1 \le i \le q-2$, $i \ne k$ such that adding i to $\frac{q-1}{2}$ modulo q-1 involves exactly λ carries?
- This problem can be solved by applying the transfer matrix method.
- Reformulate as a count of closed walks on a certain directed graph.
- Transfer matrix method yields the generating function for our counting problem from the adjacency matrix of the digraph.

Theorem

Let $q = p^t$ be a prime power congruent to 1 modulo 4. Then the number of p-adic elementary divisors of L(P(q)) which are equal to p^{λ} , $0 \le \lambda < t$, is

$$f(t,\lambda) = \sum_{i=0}^{\min\{\lambda,t-\lambda\}} \frac{t}{t-i} {t-i \choose i} {t-2i \choose \lambda-i} (-p)^i \left(\frac{p+1}{2}\right)^{t-2i}.$$

The number of p-adic elementary divisors of L(P(q)) which are equal to p^t is $\left(\frac{p+1}{2}\right)^t - 2$.

•
$$f(3,0) = 3^3 = 27$$

•
$$f(3,0) = 3^3 = 27$$

•
$$f(3,1) = \binom{3}{1} \cdot 3^3 - \frac{3}{2} \binom{2}{1} \binom{1}{0} \cdot 5 \cdot 3 = 36.$$

$$f(3,0) = 3^3 = 27$$

•
$$f(3,1) = \binom{3}{1} \cdot 3^3 - \frac{3}{2} \binom{2}{1} \binom{1}{0} \cdot 5 \cdot 3 = 36.$$

•

$$K(P(5^3)) \cong (\mathbf{Z}/31\mathbf{Z})^{62} \oplus (\mathbf{Z}/5\mathbf{Z})^{36} \oplus (\mathbf{Z}/25\mathbf{Z})^{36} \oplus (\mathbf{Z}/125\mathbf{Z})^{25}.$$

$$f(4,0) = 3^4 = 81.$$

$$f(4,0) = 3^4 = 81.$$

•
$$f(4,1) = \binom{4}{1} \cdot 3^4 - \frac{4}{3} \binom{3}{1} \binom{2}{0} \cdot 5 \cdot 3^2 = 144.$$

- $f(4,0)=3^4=81.$
- $f(4,1) = \binom{4}{1} \cdot 3^4 \frac{4}{3} \binom{3}{1} \binom{2}{0} \cdot 5 \cdot 3^2 = 144.$
- $f(4,2) = \binom{4}{2} \cdot 3^4 \frac{4}{3} \binom{3}{1} \binom{2}{1} \cdot 5 \cdot 3^2 + \frac{4}{2} \binom{2}{2} \binom{0}{0} \cdot 5^2 = 176.$

- $f(4,0)=3^4=81.$
- $f(4,1) = \binom{4}{1} \cdot 3^4 \frac{4}{3} \binom{3}{1} \binom{2}{0} \cdot 5 \cdot 3^2 = 144.$
- $f(4,2) = \binom{4}{2} \cdot 3^4 \frac{4}{3} \binom{3}{1} \binom{2}{1} \cdot 5 \cdot 3^2 + \frac{4}{2} \binom{2}{2} \binom{0}{0} \cdot 5^2 = 176.$

$$\begin{split} \textit{K}(P(5^4)) &\cong (\textbf{Z}/156\textbf{Z})^{312} \oplus (\textbf{Z}/5\textbf{Z})^{144} \oplus (\textbf{Z}/25\textbf{Z})^{176} \\ &\oplus (\textbf{Z}/125\textbf{Z})^{144} \oplus (\textbf{Z}/625\textbf{Z})^{79}. \end{split}$$

Thank you for your attention!