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I This talk is about the critical group, a finite abelian group
associated with a finite graph.

I The critical group is defined using the Laplacian matrix of
the graph.

I The critical group arises in several contexts;
I in physics: the Abelian Sandpile model

(Bak-Tang-Wiesenfeld, Dhar);
I its combinatorial variant: the Chip-firing game

(Björner-Lovasz-Shor, Gabrielov, Biggs);
I in arithmetic geometry: Picard group, graph Jacobian

(Lorenzini).
I We’ll consider the problem of computing the critical group

for families of graphs.
I The Paley graphs are a very important class of strongly

regular graphs arising from finite fields.
I We’ll say something about the computation of their critical

groups, which involves groups, characters and number
theory.
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Pierre-Simon Laplace (1749-1827)



I Γ = (V ,E) simple, connected graph.

I L = D − A, A adjacency matrix, D degree matrix.
I Think of L as a linear map L : ZV → ZV .
I rank(L) = |V | − 1.
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Critical group

I ZV/ Im(L) ∼= Z⊕ K (Γ)

I The finite group K (Γ) is called the critical group of Γ.
I Let ε : ZV → Z,

∑
v∈V av v 7→

∑
v∈V av .

I L(ker(ε)) ⊆ ker(ε), and K (Γ) ∼= Ker(ε)/L(Ker(ε))
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Kirchhoff’s Matrix-Tree Theorem

Gustav Kirchhoff (1824-1887)

Kirchhoff’s Matrix Tree Theorem
For any connected graph Γ, the number of spanning trees is
equal to det(L̃), where L̃ is obtained from L be deleting the row
and column corrresponding to any chosen vertex.

Also, det(L̃) = |K (Γ)| = 1
|V |
∏|V |

j=2 λj .
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I A configuration is an assignment of a nonnegative integer
s(v) to each round vertex v and −

∑
v s(v) to the square

vertex.

I A round vertex v can be fired if it has at least deg(v) chips.
I The square vertex is fired only when no others can be fired.
I A configuration is stable if no round vertex can be fired.
I A configuration is recurrent if there is a sequence of firings

that lead to the same configuration.
I A configuration is critical if it is both recurrent and stable.
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Relation with Laplacian

I Start with a configuration s and fire vertices in a sequence
where each vertex v is fired x(v) times, ending up with
configuration s′.

I s′(v) = −x(v) deg(v) +
∑

(v ,w)∈E x(w)

I s′ = s − Lx

Theorem
Let s be a configuration in the chip-firing game on a connected
graph G. Then there is a unique critical configuration which can
be reached from s.

Theorem
The set of critical configurations has a natural group operation
making it isomorphic to the critical group K (Γ).
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Equivalence and Smith normal form

Henry John Stephen Smith (1826-1883)

Given an integer matrix X , there exist unimodular integer
matrices P and Q such that

PXQ =

[
Y 0
0 0

]
, Y = diag(s1, s2, . . . sr ), s1|s2| · · · |sr .
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I Trees, K (Γ) = {0}.

I Complete graphs, K (Kn) ∼= (Z/nZ)n−2.
I n-cycle, n ≥ 3, K (Cn) ∼= Z/nZ.
I Wheel graphs Wn, K (Γ) ∼= (Z/`n)2, if n is odd (Biggs).

Here `n is a Lucas number.
I Complete multipartite graphs (Jacobson, Niedermaier,

Reiner).
I Conference graphs on a square-free number of vertices

(Lorenzini).
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Raymond E. A. C. Paley (1907-33)



Paley graphs P(q)

I Vertex set is Fq, q = pt ≡ 1 (mod 4)

I S = set of nonzero squares in Fq

I two vertices x and y are joined by an edge iff x − y ∈ S.
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Some Paley graphs (from Wolfram Mathworld)



Paley graphs are Cayley graphs

We can view P(q) as a Cayley graph on (Fq,+) with connecting
set S

Arthur Cayley (1821-95)



Paley graphs are strongly regular graphs

It is well known and easily checked that P(q) is a strongly
regular graph and that its eigenvalues are k = q−1

2 , r =
−1+

√
q

2

and s =
−1−√q

2 , with multiplicities 1, q−1
2 and q−1

2 , respectively.



Critical groups of graphs
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Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs



David Chandler and Qing Xiang



Symmetries

I

|K (P(q))| =
1
q

(
q +
√

q
2

)k (q −√q
2

)k

= q
q−3

2 µk ,

where µ = q−1
4 .

I Aut(P(q)) ≥ Fq o S.
I K (P(q)) = K (P(q))p ⊕ K (P(q))p′

I Use Fq-action to help compute p′-part.
I Use S-action to help compute p-part.
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p′-part

Joseph Fourier (1768-1830)



Discrete Fourier Transform

I X , complex character table of (Fq,+)

I X is a matrix over Z[ζ], ζ a complex primitive p-th root of
unity.

I 1
q XX

t
= I.

I
1
q

XLX
t

= diag(k − ψ(S))ψ, (1)

I Interpret this as PLQ-equivalence over suitable local rings
of integers.
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Theorem
K (P(q))p′ ∼= (Z/µZ)2µ, where µ = q−1

4 .



The p-part

Carl Gustav Jacob Jacobi (1804-51)



F×q -action

I R = Zp[ξq−1], pR maximal ideal of R, R/pR ∼= Fq.

I T : F×q → R× Teichmüller character.
I T generates the cyclic group Hom(F×q ,R×).
I Let RFq be the free R-module with basis indexed by the

elements of Fq; write the basis element corresponding to
x ∈ Fq as [x ].

I F×q acts on RFq , permuting the basis by field multiplication,

I RFq decomposes as the direct sum R[0]⊕ RF×q of a trivial
module with the regular module for F×q .

I RF×q = ⊕q−2
i=0 Ei , Ei affording T i .

I A basis element for Ei is

ei =
∑

x∈F×q

T i(x−1)[x ].
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S-action

I Consider action S on RF×q . T i = T i+k on S.

I S-isotypic components on RF×q are each 2-dimensional.
I {ei ,ei+k} is basis of Mi = Ei + Ei+k

I The S-fixed subspace M0 has basis {1, [0],ek}.
I L is S-equivariant endomorphisms of RFq ,

L([x ]) = k [x ]−
∑
s∈S

[x + s], x ∈ Fq.

I L maps each Mi to itself.
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Jacobi Sums

The Jacobi sum of two nontrivial characters T a and T b is

J(T a,T b) =
∑
x∈Fq

T a(x)T b(1− x).

Lemma
Suppose 0 ≤ i ≤ q − 2 and i 6= 0, k. Then

L(ei) =
1
2

(qei − J(T−i ,T k )ei+k )

Lemma

(i) L(1) = 0.
(ii) L(ek ) = 1

2(1− q([0]− ek )).

(iii) L([0]) = 1
2(q[0]− ek − 1).
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Corollary
The Laplacian matrix L is equivalent over R to the diagonal
matrix with diagonal entries J(T−i ,T k ), for i = 1, . . . ,q − 2 and
i 6= k, two 1s and one zero.



Carl Friedrich Gauss (1777-1855) Ludwig Stickelberger (1850-1936)



Gauss and Jacobi

Gauss sums: If 1 6= χ ∈ Hom(F×q ,R×),

g(χ) =
∑

y∈F×q

χ(y)ζ tr(y),

where ζ is a primitive p-th root of unity in some extension of R.

Lemma
If χ and ψ are nontrivial multiplicative characters of F×q such
that χψ is also nontrivial, then

J(χ, ψ) =
g(χ)g(ψ)

g(χψ)
.
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Stickelberger’s Congruence

Theorem
For 0 < a < q − 1, write a p-adically as

a = a0 + a1p + · · ·+ at−1pt−1.

Then the number of times that p divides g(T−a) is
a0 + a1 + · · ·+ at−1.

Theorem
Let a, b ∈ Z/(q − 1)Z, with a, b, a + b 6≡ 0 (mod q − 1). Then
number of times that p divides J(T−a,T−b) is equal to the
number of carries in the addition a + b (mod q − 1) when a and
b are written in p-digit form.
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The Counting Problem

I k = 1
2(q − 1)

I What is the number of i , 1 ≤ i ≤ q − 2, i 6= k such that
adding i to q−1

2 modulo q − 1 involves exactly λ carries?
I This problem can be solved by applying the transfer matrix

method.
I Reformulate as a count of closed walks on a certain

directed graph.
I Transfer matrix method yields the generating function for

our counting problem from the adjacency matrix of the
digraph.
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Theorem
Let q = pt be a prime power congruent to 1 modulo 4. Then the
number of p-adic elementary divisors of L(P(q)) which are
equal to pλ, 0 ≤ λ < t , is

f (t , λ) =

min{λ,t−λ}∑
i=0

t
t − i

(
t − i

i

)(
t − 2i
λ− i

)
(−p)i

(
p + 1

2

)t−2i

.

The number of p-adic elementary divisors of L(P(q)) which are

equal to pt is
(

p+1
2

)t
− 2.



Example:K (P(53))

I f (3,0) = 33 = 27

I f (3,1) =
(3

1

)
· 33 − 3

2

(2
1

)(1
0

)
· 5 · 3 = 36.

I

K (P(53)) ∼= (Z/31Z)62⊕(Z/5Z)36⊕(Z/25Z)36⊕(Z/125Z)25.
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K (P(54)) ∼= (Z/156Z)312 ⊕ (Z/5Z)144 ⊕ (Z/25Z)176

⊕ (Z/125Z)144 ⊕ (Z/625Z)79.
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Thank you for your attention!
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