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This talk is about the critical group, a finite abelian group
associated with a finite graph.

The critical group is defined using the Laplacian matrix of
the graph.

The critical group arises in several contexts;

in physics: the Abelian Sandpile model
(Bak-Tang-Wiesenfeld, Dhar);

its combinatorial variant: the Chip-firing game
(Bjérner-Lovasz-Shor, Gabrielov, Biggs);

in arithmetic geometry: Picard group, graph Jacobian
(Lorenzini).

We'll consider the problem of computing the critical group
for families of graphs.

The Paley graphs are a very important class of strongly
regular graphs arising from finite fields.

We’ll say something about the computation of their critical
groups, which involves groups, characters and number
theory.



Critical groups of graphs

Laplacian matrix of a graph



Pierre-Simon Laplace (1749-1827)



» = (V, E) simple, connected graph.



» = (V, E) simple, connected graph.
» L =D — A, Aadjacency matrix, D degree matrix.



» = (V, E) simple, connected graph.
» L =D — A, Aadjacency matrix, D degree matrix.
» Think of L as a linearmap L:Z"V — ZV.



v

v

v

I = (V, E) simple, connected graph.

L =D — A, A adjacency matrix, D degree matrix.
Think of Las alinearmap L:Z"Y — ZV.

rank(L) = |V| — 1.
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ZV/Im(L)=Z o K(T)

The finite group K(I') is called the critical group of I'.
Lete:ZY = Z,> cyave— Y ,cpar.

L(ker(e)) C ker(e), and K(I') = Ker(e)/L(Ker(e))
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Kirchhoff’'s Matrix-Tree Theorem

Gustav Kirchhoff (1824-1887)

Kirchhoff’'s Matrix Tree Theorem

For any connected graph ', the number of spanning trees is
equal to det(L), where L is obtained from L be deleting the row
and column corrresponding to any chosen vertex.

Also, det(L) = |K(M)| = i [T,Y5 V.
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Rules

» A configuration is an assignment of a nonnegative integer
s(v) to each round vertex v and — », s(v) to the square
vertex.

» A round vertex v can be fired if it has at least deg(v) chips.
» The square vertex is fired only when no others can be fired.
» A configuration is stable if no round vertex can be fired.

» A configuration is recurrent if there is a sequence of firings
that lead to the same configuration.

» A configuration is critical if it is both recurrent and stable.
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Relation with Laplacian

» Start with a configuration s and fire vertices in a sequence
where each vertex v is fired x(v) times, ending up with
configuration s'.

> s'(v) = —x(v)deg(v) + > (y wyce X(W)
» § =s—Lx

Theorem

Let s be a configuration in the chip-firing game on a connected
graph G. Then there is a unique critical configuration which can
be reached from s.

Theorem
The set of critical configurations has a natural group operation
making it isomorphic to the critical group K(T').
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Equivalence and Smith normal form

= 3
4

Henry John Stephen Smith (1826-1883)
Given an integer matrix X, there exist unimodular integer
matrices P and Q such that

PXQ = |:Y+8:| ’ Y:diag(31,52,..-5r), S1|32|.“|Sr'
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Trees, K(I') = {0}.

Complete graphs, K(Kp,) = (Z/nZ)"—2.

n-cycle, n > 3, K(Cp) = Z/nZ.

Wheel graphs W,, K(I') = (Z/¢,)?, if nis odd (Biggs).
Here ¢, is a Lucas number.

Complete multipartite graphs (Jacobson, Niedermaier,
Reiner).

Conference graphs on a square-free number of vertices
(Lorenzini).



Critical groups of graphs

Paley graphs



Raymond E. A. C. Paley (1907-33)
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Paley graphs P(q)

» Vertex setis Fq, g = p' =1 (mod 4)
» S = set of nonzero squares in Fq
» two vertices x and y are joined by an edge iff x — y € S.



S—Paley graph 9Paley graph 13—Paley graph 17=Paley graph
S—cwlegraph  generalized quadrangle

29— Paley graph 37—Paley graph 41-Paley graph

Some Paley graphs (from Wolfram Mathworld)



Paley graphs are Cayley graphs

We can view P(q) as a Cayley graph on (Fg, +) with connecting
set S

Arthur Cayley (1821-95)



Paley graphs are strongly regular graphs

It is well known and easily checked that P(q) is a strongly
regular graph and that its eigenvalues are k = q’1 ,r= _1+‘f
and s = 12f with multiplicities 1, 4+ and 951 respectlvely.
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Critical group of Paley graphs



David Chandler and Qing Xiang
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Symmetries

[K(P(q))| =

—1
where p = 9.

Aut(P(q)) > Fq x S.

K(P(q)) = K(P(9))p & K(P(q))p

Use FF4-action to help compute p’-part.
Use S-action to help compute p-part.
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p'-part

Jean-Baptiste-Joseph Fourier
(1768-1830)

Joseph Fourier (1768-1830)
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Discrete Fourier Transform

» X, complex character table of (Fq, +)

» X is a matrix over Z[(], ¢ a complex primitive p-th root of
unity.
1yl _

;XLXt = diag(k — ¥(S))s, (1)

» Interpret this as PLQ-equivalence over suitable local rings
of integers.



Theorem 1
K(P(Q))or = (2/1:2)?, where u = %5



The p-part

Carl Gustav Jacob Jacobi (1804-51)
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R =2Z,[¢{4-1], PR maximal ideal of R, R/pR = 4.

T :Fg — R* Teichmdiller character.

T generates the cyclic group Hom(Fy, R*).

Let R¥ be the free R-module with basis indexed by the

elements of Fq; write the basis element corresponding to
x € Fq as [x].
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elements of Fq; write the basis element corresponding to
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]F;;-action

» R =12Z,[¢3—1], PR maximal ideal of R, R/pR = F.

» T :Fg; — R* Teichmiiller character.

» T generates the cyclic group Hom(Fj, R*).

» Let R¥s be the free R-module with basis indexed by the
elements of Fq; write the basis element corresponding to
x € Fq as [x].

> Iﬁ‘g acts on R¥s, permuting the basis by field multiplication,

» RFa decomposes as the direct sum R[0] & R of a trivial
module with the regular module for Fy .

> R% =@ 2E;, E; affording T'.

» A basis element for E; is

ei= > T(x K.

X
xeFg
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Consider action Son Rfa. T/ = T+k on 8.

S-isotypic components on R are each 2-dimensional.
{ej, ej.k} is basis of M; = E; + Ej

The S-fixed subspace My has basis {1,[0], ex}.

L is S-equivariant endomorphisms of R,

L([x]) = k[x] = > [x + ], x € Fy.

seS
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L maps each M; to itself.
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Jacobi Sums

The Jacobi sum of two nontrivial characters 72 and T? is

J(T2TP) =) Te(x)TP(1 - x).

XE]Fq

Lemma
Suppose0 <i<qg-—2andi+#0,k. Then

1 .
L(e) = é(qe,- —J(T7, e k)

Lemma
(i) L(1)=0.

L(ex) = 3(1 — q([0] — ex))-
(iii) L([0]) = 2(q[0] — ex —1).

I\)\—k Nl



Corollary

The Laplacian matrix L is equivalent over R to the diagonal
matrix with diagonal entries J(T~', TX), fori=1,...,q — 2 and
i # k, two 1s and one zero.



Carl Friedrich Gauss (1777-1855) Ludwig Stickelberger (1850-1936)



Gauss and Jacobi

Gauss sums: If 1 # x € Hom(Fg, R*),

a00) = > x(y)¢"W,

X
yeFy

where ( is a primitive p-th root of unity in some extension of R.



Gauss and Jacobi

Gauss sums: If 1 # x € Hom(Fg, R*),

a00) = > x(y)¢"W,

X
yeF;

where ( is a primitive p-th root of unity in some extension of R.
Lemma

If x and ) are nontrivial multiplicative characters of Fg such
that x is also nontrivial, then
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Theorem
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Then the number of times that p divides g(T~2) is
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Stickelberger’s Congruence

Theorem
For0 < a< q— 1, write a p-adically as

a:ao+a1p+--~+at_1pt*1.

Then the number of times that p divides g(T~2) is
a t+ar+--+a.

Theorem

Leta,beZ/(q—1)Z, witha, b,a+ b#0 (modq—1). Then
number of times that p divides J(T~2, T~?) is equal to the
number of carries in the addition a+ b (mod q — 1) when a and
b are written in p-digit form.
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» What is the number of i, 1 < i< g — 2, i # k such that
adding i to 02;1 modulo g — 1 involves exactly \ carries?

» This problem can be solved by applying the transfer matrix
method.
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k=23(qg—1)

What is the number of i, 1 < i< g— 2, i # k such that
adding i to 02;1 modulo g — 1 involves exactly \ carries?
This problem can be solved by applying the transfer matrix
method.

Reformulate as a count of closed walks on a certain
directed graph.
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The Counting Problem
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k=23(qg—1)

What is the number of i, 1 < i< g— 2, i # k such that
adding i to 02;1 modulo g — 1 involves exactly \ carries?
This problem can be solved by applying the transfer matrix
method.

Reformulate as a count of closed walks on a certain
directed graph.

Transfer matrix method yields the generating function for
our counting problem from the adjacency matrix of the
digraph.



Theorem

Let g = p' be a prime power congruent to 1 modulo 4. Then the
number of p-adic elementary divisors of L(P(q)) which are
equaltop*, 0 <\ <t,is

min{\,t—\}

f(t,\) = ; t—t/(tj i> (;__Zii>(—p)" <p;_1>t2i'

The number of p-adic elementary divisors of L(P(q)) which are
equal to p' is (p+1) —2.
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Example:K(P(5%))

> £(3,0) = 3% =27
F 131 = ()3 - 3()() 53-36

>

K(P(5%)) = (Z/312)%2%(Z2/52)% ¢ (Z2/252)% (Z/1252)%°.



Example:K(P(5%))

> f(4,0) =34 =81.
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1) = ()3 - 30)0) 59 = 14a



Example:K (P(5%))

g) 34 _ (?)(f) .5.32+g(§)(8) .52 = 176.



Example:K(P(5%))

g) 34 _ (?)(f) .5.32+g(§)(8) .52 = 176.

K(P(5%)) = (2/1562)%'2 @ (Z2/5Z)'** @ (Z/25Z)'7®
@ (Z/1252)'* @ (2/6252)°.



Thank you for your attention!
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