The critical group of a graph

Peter Sin

Texas State U., San Marcos, March 21th, 2014.

Critical groups of graphs

Outline
Laplacian matrix of a graph
Chip-firing game
Smith normal form
Some families of graphs with known critical groups
Paley graphs
Critical group of Paley graphs

- This talk is about the critical group, a finite abelian group associated with a finite graph.
- This talk is about the critical group, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- This talk is about the critical group, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- This talk is about the critical group, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- This talk is about the critical group, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- This talk is about the critical group, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Picard group, graph Jacobian (Lorenzini).
- This talk is about the critical group, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Picard group, graph Jacobian (Lorenzini).
- We'll consider the problem of computing the critical group for families of graphs.
- This talk is about the critical group, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Picard group, graph Jacobian (Lorenzini).
- We'll consider the problem of computing the critical group for families of graphs.
- The Paley graphs are a very important class of strongly regular graphs arising from finite fields.
- This talk is about the critical group, a finite abelian group associated with a finite graph.
- The critical group is defined using the Laplacian matrix of the graph.
- The critical group arises in several contexts;
- in physics: the Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Picard group, graph Jacobian (Lorenzini).
- We'll consider the problem of computing the critical group for families of graphs.
- The Paley graphs are a very important class of strongly regular graphs arising from finite fields.
- We'll say something about the computation of their critical groups, which involves groups, characters and number theory.

Critical groups of graphs

Outline

Laplacian matrix of a graph
Chip-firing game
Smith normal form

Some families of graphs with known critical groups
Paley graphs
Critical group of Paley graphs

Pierre-Simon Laplace (1749-1827)

- $\Gamma=(V, E)$ simple, connected graph.
- $\Gamma=(V, E)$ simple, connected graph.
- $L=D-A, A$ adjacency matrix, D degree matrix.
- $\Gamma=(V, E)$ simple, connected graph.
- $L=D-A, A$ adjacency matrix, D degree matrix.
- Think of L as a linear map $L: \mathbf{Z}^{V} \rightarrow \mathbf{Z}^{V}$.
- $\Gamma=(V, E)$ simple, connected graph.
- $L=D-A, A$ adjacency matrix, D degree matrix.
- Think of L as a linear map $L: \mathbf{Z}^{V} \rightarrow \mathbf{Z}^{V}$.
- $\operatorname{rank}(L)=|V|-1$.

Critical group

- $\mathbf{Z}^{\vee} / \operatorname{Im}(L) \cong \mathbf{Z} \oplus K(\Gamma)$

Critical group

- $\mathbf{Z}^{V} / \operatorname{Im}(L) \cong \mathbf{Z} \oplus K(\Gamma)$
- The finite group $K(\Gamma)$ is called the critical group of Γ.

Critical group

- $\mathbf{Z}^{V} / \operatorname{Im}(L) \cong \mathbf{Z} \oplus K(\Gamma)$
- The finite group $K(\Gamma)$ is called the critical group of Γ.
- Let $\varepsilon: \mathbf{Z}^{V} \rightarrow \mathbf{Z}, \sum_{v \in V} a_{v} v \mapsto \sum_{v \in V} a_{v}$.

Critical group

- $\mathbf{Z}^{V} / \operatorname{Im}(L) \cong \mathbf{Z} \oplus K(\Gamma)$
- The finite group $K(\Gamma)$ is called the critical group of Γ.
- Let $\varepsilon: \mathbf{Z}^{V} \rightarrow \mathbf{Z}, \sum_{v \in V} a_{v} v \mapsto \sum_{v \in V} a_{v}$.
- $L(\operatorname{ker}(\varepsilon)) \subseteq \operatorname{ker}(\varepsilon)$, and $K(\Gamma) \cong \operatorname{Ker}(\varepsilon) / L(\operatorname{Ker}(\varepsilon))$

Kirchhoff's Matrix-Tree Theorem

Gustav Kirchhoff (1824-1887)

Kirchhoff's Matrix Tree Theorem
For any connected graph Γ, the number of spanning trees is equal to $\operatorname{det}(\tilde{L})$, where \tilde{L} is obtained from L be deleting the row and column corrresponding to any chosen vertex.

Kirchhoff's Matrix-Tree Theorem

Gustav Kirchhoff (1824-1887)

Kirchhoff's Matrix Tree Theorem
For any connected graph Γ, the number of spanning trees is equal to $\operatorname{det}(\tilde{L})$, where \tilde{L} is obtained from L be deleting the row and column corrresponding to any chosen vertex.
Also, $\operatorname{det}(\tilde{L})=|K(\Gamma)|=\frac{1}{|V|} \prod_{j=2}^{|V|} \lambda_{j}$.

Critical groups of graphs

Outline
Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
- The square vertex is fired only when no others can be fired.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
- The square vertex is fired only when no others can be fired.
- A configuration is stable if no round vertex can be fired.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
- The square vertex is fired only when no others can be fired.
- A configuration is stable if no round vertex can be fired.
- A configuration is recurrent if there is a sequence of firings that lead to the same configuration.

Rules

- A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
- A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
- The square vertex is fired only when no others can be fired.
- A configuration is stable if no round vertex can be fired.
- A configuration is recurrent if there is a sequence of firings that lead to the same configuration.
- A configuration is critical if it is both recurrent and stable.

Sample game 1

Sample game 2

Relation with Laplacian

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.

Relation with Laplacian

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.
- $s^{\prime}(v)=-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w)$

Relation with Laplacian

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.
- $s^{\prime}(v)=-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w)$
- $s^{\prime}=s-L x$

Relation with Laplacian

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.
- $s^{\prime}(v)=-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w)$
- $s^{\prime}=s-L x$

Theorem

Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

Relation with Laplacian

- Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.
- $s^{\prime}(v)=-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w)$
- $s^{\prime}=s-L x$

Theorem

Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

Theorem
The set of critical configurations has a natural group operation making it isomorphic to the critical group $K(\Gamma)$.

Critical groups of graphs

Outline
Laplacian matrix of a graph
Chip-firing game

Smith normal form

Some families of graphs with known critical groups
Paley graphs
Critical group of Paley graphs

Equivalence and Smith normal form

Henry John Stephen Smith (1826-1883)

Given an integer matrix X, there exist unimodular integer matrices P and Q such that

$$
P X Q=\left[\begin{array}{c:c}
Y & 0 \\
\hdashline 0 & 0
\end{array}\right], \quad Y=\operatorname{diag}\left(s_{1}, s_{2}, \ldots s_{r}\right), \quad s_{1}\left|s_{2}\right| \cdots \mid s_{r} .
$$

Critical groups of graphs

Outline
\section*{Laplacian matrix of a graph}

Chip-firing game

Smith normal form
Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

- Trees, $K(\Gamma)=\{0\}$.
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- n-cycle, $n \geq 3, K\left(C_{n}\right) \cong \mathbf{Z} / n \mathbf{Z}$.
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- n-cycle, $n \geq 3, K\left(C_{n}\right) \cong \mathbf{Z} / n \mathbf{Z}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- n-cycle, $n \geq 3, K\left(C_{n}\right) \cong \mathbf{Z} / n \mathbf{Z}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner).
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- n-cycle, $n \geq 3, K\left(C_{n}\right) \cong \mathbf{Z} / n \mathbf{Z}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner).
- Conference graphs on a square-free number of vertices (Lorenzini).

Critical groups of graphs

Outline
Laplacian matrix of a graph
Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs
Critical group of Paley graphs

Raymond E. A. C. Paley (1907-33)

Paley graphs $\mathrm{P}(q)$

- Vertex set is $\mathbb{F}_{q}, q=p^{t} \equiv 1(\bmod 4)$

Paley graphs $\mathrm{P}(q)$

- Vertex set is $\mathbb{F}_{q}, q=p^{t} \equiv 1(\bmod 4)$
- $S=$ set of nonzero squares in \mathbb{F}_{q}

Paley graphs $\mathrm{P}(q)$

- Vertex set is $\mathbb{F}_{q}, q=p^{t} \equiv 1(\bmod 4)$
- $S=$ set of nonzero squares in \mathbb{F}_{q}
- two vertices x and y are joined by an edge iff $x-y \in S$.

Paley graphs are Cayley graphs

We can view $\mathrm{P}(q)$ as a Cayley graph on $\left(\mathbb{F}_{q},+\right)$ with connecting set S

Arthur Cayley (1821-95)

Paley graphs are strongly regular graphs

It is well known and easily checked that $\mathrm{P}(q)$ is a strongly regular graph and that its eigenvalues are $k=\frac{q-1}{2}, r=\frac{-1+\sqrt{q}}{2}$ and $s=\frac{-1-\sqrt{q}}{2}$, with multiplicities $1, \frac{q-1}{2}$ and $\frac{q-1}{2}$, respectively.

Critical groups of graphs

Outline

Laplacian matrix of a graph

Chip-firing game
Smith normal form
Some families of graphs with known critical groups
Paley graphs
Critical group of Paley graphs

Symmetries

$$
|K(\mathrm{P}(q))|=\frac{1}{q}\left(\frac{q+\sqrt{q}}{2}\right)^{k}\left(\frac{q-\sqrt{q}}{2}\right)^{k}=q^{\frac{q-3}{2}} \mu^{k}
$$

where $\mu=\frac{q-1}{4}$.

Symmetries

$$
|K(\mathrm{P}(q))|=\frac{1}{q}\left(\frac{q+\sqrt{q}}{2}\right)^{k}\left(\frac{q-\sqrt{q}}{2}\right)^{k}=q^{\frac{q-3}{2}} \mu^{k}
$$

where $\mu=\frac{q-1}{4}$.
$-\operatorname{Aut}(\mathrm{P}(q)) \geq \mathbb{F}_{q} \rtimes S$.

Symmetries

$$
|K(P(q))|=\frac{1}{q}\left(\frac{q+\sqrt{q}}{2}\right)^{k}\left(\frac{q-\sqrt{q}}{2}\right)^{k}=q^{\frac{q-3}{2}} \mu^{k}
$$

where $\mu=\frac{q-1}{4}$.

- $\operatorname{Aut}(\mathrm{P}(q)) \geq \mathbb{F}_{q} \rtimes S$.
- $K(\mathrm{P}(q))=K(\mathrm{P}(q))_{p} \oplus K(\mathrm{P}(q))_{p^{\prime}}$

Symmetries

$$
|K(\mathrm{P}(q))|=\frac{1}{q}\left(\frac{q+\sqrt{q}}{2}\right)^{k}\left(\frac{q-\sqrt{q}}{2}\right)^{k}=q^{\frac{q-3}{2}} \mu^{k}
$$

where $\mu=\frac{q-1}{4}$.

- $\operatorname{Aut}(\mathrm{P}(q)) \geq \mathbb{F}_{q} \rtimes S$.
- $K(\mathrm{P}(q))=K(\mathrm{P}(q))_{p} \oplus K(\mathrm{P}(q))_{p^{\prime}}$
- Use \mathbb{F}_{q}-action to help compute p^{\prime}-part.

Symmetries

$$
|K(P(q))|=\frac{1}{q}\left(\frac{q+\sqrt{q}}{2}\right)^{k}\left(\frac{q-\sqrt{q}}{2}\right)^{k}=q^{\frac{q-3}{2}} \mu^{k}
$$

where $\mu=\frac{q-1}{4}$.

- $\operatorname{Aut}(\mathrm{P}(q)) \geq \mathbb{F}_{q} \rtimes S$.
- $K(\mathrm{P}(q))=K(\mathrm{P}(q))_{p} \oplus K(\mathrm{P}(q))_{p^{\prime}}$
- Use \mathbb{F}_{q}-action to help compute p^{\prime}-part.
- Use S-action to help compute p-part.

p^{\prime}-part

Joseph Fourier (1768-1830)

Discrete Fourier Transform

- X, complex character table of $\left(\mathbb{F}_{q},+\right)$

Discrete Fourier Transform

- X, complex character table of $\left(\mathbb{F}_{q},+\right)$
- X is a matrix over $\mathbf{Z}[\zeta], \zeta$ a complex primitive p-th root of unity.

Discrete Fourier Transform

- X, complex character table of $\left(\mathbb{F}_{q},+\right)$
- X is a matrix over $\mathbf{Z}[\zeta], \zeta$ a complex primitive p-th root of unity.
- $\frac{1}{q} X \bar{X}^{t}=l$.

Discrete Fourier Transform

- X, complex character table of $\left(\mathbb{F}_{q},+\right)$
- X is a matrix over $\mathbf{Z}[\zeta], \zeta$ a complex primitive p-th root of unity.
- $\frac{1}{q} X \bar{X}^{t}=l$.

$$
\begin{equation*}
\frac{1}{q} X L \bar{X}^{t}=\operatorname{diag}(k-\psi(S))_{\psi} \tag{1}
\end{equation*}
$$

Discrete Fourier Transform

- X, complex character table of $\left(\mathbb{F}_{q},+\right)$
- X is a matrix over $\mathbf{Z}[\zeta], \zeta$ a complex primitive p-th root of unity.
- $\frac{1}{q} X \bar{X}^{t}=l$.

$$
\begin{equation*}
\frac{1}{q} X L \bar{X}^{t}=\operatorname{diag}(k-\psi(S))_{\psi} \tag{1}
\end{equation*}
$$

- Interpret this as $P L Q$-equivalence over suitable local rings of integers.

Theorem
$K(\mathrm{P}(q))_{p^{\prime}} \cong(\mathbf{Z} / \mu \mathbf{Z})^{2 \mu}$, where $\mu=\frac{q-1}{4}$.

The p-part

Carl Gustav Jacob Jacobi (1804-51)

\mathbb{F}_{q}^{\times}-action

- $R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.

\mathbb{F}_{q}^{\times}-action

- $R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}$Teichmüller character.

\mathbb{F}_{q}^{\times}-action

- $R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}$Teichmüller character.
- T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.

\mathbb{F}_{q}^{\times}-action

- $R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}$Teichmüller character.
- T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- Let $R^{\mathbb{F} q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_{q}; write the basis element corresponding to $x \in \mathbb{F}_{q}$ as $[x]$.

\mathbb{F}_{q}^{\times}-action

- $R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}$Teichmüller character.
- T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- Let $R^{\mathbb{F} q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_{q}; write the basis element corresponding to $x \in \mathbb{F}_{q}$ as $[x]$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}$, permuting the basis by field multiplication,

\mathbb{F}_{q}^{\times}-action

- $R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}$Teichmüller character.
- T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- Let $R^{\mathbb{F} q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_{q}; write the basis element corresponding to $x \in \mathbb{F}_{q}$ as $[x]$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}$, permuting the basis by field multiplication,
- $R^{\mathbb{F} q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}_{q}^{\times}}$of a trivial module with the regular module for \mathbb{F}_{q}^{\times}.

\mathbb{F}_{q}^{\times}-action

- $R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}$Teichmüller character.
- T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- Let $R^{\mathbb{F} q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_{q}; write the basis element corresponding to $x \in \mathbb{F}_{q}$ as $[x]$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}$, permuting the basis by field multiplication,
- $R^{\mathbb{F} q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}^{\times}}$of a trivial module with the regular module for \mathbb{F}_{q}^{\times}.
$-R^{\mathbb{F}_{a}^{\times}}=\oplus_{i=0}^{q-2} E_{i}, E_{i}$ affording T^{i}.

\mathbb{F}_{q}^{\times}-action

- $R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
- $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}$Teichmüller character.
- T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
- Let $R^{\mathbb{F} q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_{q}; write the basis element corresponding to $x \in \mathbb{F}_{q}$ as $[x]$.
- \mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F} q}$, permuting the basis by field multiplication,
- $R^{\mathbb{F} q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}^{\times}}$of a trivial module with the regular module for \mathbb{F}_{q}^{\times}.
- $R^{\mathbb{F} \times}=\oplus_{i=0}^{q-2} E_{i}, E_{i}$ affording T^{i}.
- A basis element for E_{i} is

$$
e_{i}=\sum_{x \in \mathbb{P}_{a}^{\times}} T^{i}\left(x^{-1}\right)[x] .
$$

S-action

- Consider action S on $R^{\mathbb{F}}{ }^{\times} . T^{i}=T^{i+k}$ on S.

S-action

- Consider action S on $R^{\mathbb{F}_{q}^{\times}} . T^{i}=T^{i+k}$ on S.
- S-isotypic components on $R^{\mathbb{F}_{a}^{\times}}$are each 2-dimensional.

S-action

- Consider action S on $R^{\mathbb{F}_{q}^{\times}} . T^{i}=T^{i+k}$ on S.
- S-isotypic components on $R^{\mathbb{F}_{a}^{\times}}$are each 2-dimensional.
- $\left\{e_{i}, e_{i+k}\right\}$ is basis of $M_{i}=E_{i}+E_{i+k}$

S-action

- Consider action S on $R^{\mathbb{F}_{q}^{\times}} . T^{i}=T^{i+k}$ on S.
- S-isotypic components on $R^{\mathbb{F}_{a}^{\times}}$are each 2-dimensional.
- $\left\{e_{i}, e_{i+k}\right\}$ is basis of $M_{i}=E_{i}+E_{i+k}$
- The S-fixed subspace M_{0} has basis $\left\{1,[0], e_{k}\right\}$.

S-action

- Consider action S on $R^{\mathbb{F}_{q}^{\times}} . T^{i}=T^{i+k}$ on S.
- S-isotypic components on $R^{\mathbb{F}_{a}^{\times}}$are each 2-dimensional.
- $\left\{e_{i}, e_{i+k}\right\}$ is basis of $M_{i}=E_{i}+E_{i+k}$
- The S-fixed subspace M_{0} has basis $\left\{1,[0], e_{k}\right\}$.
- L is S-equivariant endomorphisms of $R^{\mathbb{F} q}$,

$$
L([x])=k[x]-\sum_{s \in S}[x+s], x \in \mathbb{F}_{q}
$$

S-action

- Consider action S on $R^{\mathbb{F}_{q}^{\times}} . T^{i}=T^{i+k}$ on S.
- S-isotypic components on $R^{\mathbb{F}}{ }_{a}^{\times}$are each 2-dimensional.
- $\left\{e_{i}, e_{i+k}\right\}$ is basis of $M_{i}=E_{i}+E_{i+k}$
- The S-fixed subspace M_{0} has basis $\left\{1,[0], e_{k}\right\}$.
- L is S-equivariant endomorphisms of $R^{\mathbb{F} q}$,

$$
L([x])=k[x]-\sum_{s \in S}[x+s], x \in \mathbb{F}_{q}
$$

- L maps each M_{i} to itself.

Jacobi Sums

The Jacobi sum of two nontrivial characters T^{a} and T^{b} is

$$
J\left(T^{a}, T^{b}\right)=\sum_{x \in \mathbb{F}_{q}} T^{a}(x) T^{b}(1-x)
$$

Jacobi Sums

The Jacobi sum of two nontrivial characters T^{a} and T^{b} is

$$
J\left(T^{a}, T^{b}\right)=\sum_{x \in \mathbb{F}_{q}} T^{a}(x) T^{b}(1-x)
$$

Lemma
Suppose $0 \leq i \leq q-2$ and $i \neq 0, k$. Then

$$
L\left(e_{i}\right)=\frac{1}{2}\left(q e_{i}-J\left(T^{-i}, T^{k}\right) e_{i+k}\right)
$$

Jacobi Sums

The Jacobi sum of two nontrivial characters T^{a} and T^{b} is

$$
J\left(T^{a}, T^{b}\right)=\sum_{x \in \mathbb{F}_{q}} T^{a}(x) T^{b}(1-x)
$$

Lemma
Suppose $0 \leq i \leq q-2$ and $i \neq 0, k$. Then

$$
L\left(e_{i}\right)=\frac{1}{2}\left(q e_{i}-J\left(T^{-i}, T^{k}\right) e_{i+k}\right)
$$

Lemma
(i) $L(\mathbf{1})=0$.
(ii) $L\left(e_{k}\right)=\frac{1}{2}\left(1-q\left([0]-e_{k}\right)\right)$.
(iii) $L([0])=\frac{1}{2}\left(q[0]-e_{k}-\mathbf{1}\right)$.

Corollary

The Laplacian matrix L is equivalent over R to the diagonal matrix with diagonal entries $J\left(T^{-i}, T^{k}\right)$, for $i=1, \ldots, q-2$ and $i \neq k$, two 1 s and one zero.

Carl Friedrich Gauss (1777-1855) Ludwig Stickelberger (1850-1936)

Gauss and Jacobi

Gauss sums: If $1 \neq \chi \in \operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$,

$$
g(\chi)=\sum_{y \in \mathbb{F}_{q}^{\times}} \chi(y) \zeta^{\operatorname{tr}(y)}
$$

where ζ is a primitive p-th root of unity in some extension of R.

Gauss and Jacobi

Gauss sums: If $1 \neq \chi \in \operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$,

$$
g(\chi)=\sum_{y \in \mathbb{F}_{q}^{\times}} \chi(y) \zeta^{\operatorname{tr}(y)}
$$

where ζ is a primitive p-th root of unity in some extension of R.
Lemma
If χ and ψ are nontrivial multiplicative characters of \mathbb{F}_{q}^{\times}such that $\chi \psi$ is also nontrivial, then

$$
J(\chi, \psi)=\frac{g(\chi) g(\psi)}{g(\chi \psi)}
$$

Stickelberger's Congruence

Theorem
For $0<a<q-1$, write a p-adically as

$$
a=a_{0}+a_{1} p+\cdots+a_{t-1} p^{t-1}
$$

Then the number of times that p divides $g\left(T^{-a}\right)$ is $a_{0}+a_{1}+\cdots+a_{t-1}$.

Stickelberger's Congruence

Theorem
For $0<a<q-1$, write a p-adically as

$$
a=a_{0}+a_{1} p+\cdots+a_{t-1} p^{t-1}
$$

Then the number of times that p divides $g\left(T^{-a}\right)$ is $a_{0}+a_{1}+\cdots+a_{t-1}$.

Theorem
Let $a, b \in \mathbf{Z} /(q-1) \mathbf{Z}$, with $a, b, a+b \not \equiv 0(\bmod q-1)$. Then number of times that p divides $J\left(T^{-a}, T^{-b}\right)$ is equal to the number of carries in the addition $a+b(\bmod q-1)$ when a and b are written in p-digit form.

The Counting Problem

- $k=\frac{1}{2}(q-1)$

The Counting Problem

- $k=\frac{1}{2}(q-1)$
- What is the number of $i, 1 \leq i \leq q-2, i \neq k$ such that adding i to $\frac{q-1}{2}$ modulo $q-1$ involves exactly λ carries?

The Counting Problem

- $k=\frac{1}{2}(q-1)$
- What is the number of $i, 1 \leq i \leq q-2, i \neq k$ such that adding i to $\frac{q-1}{2}$ modulo $q-1$ involves exactly λ carries?
- This problem can be solved by applying the transfer matrix method.

The Counting Problem

- $k=\frac{1}{2}(q-1)$
- What is the number of $i, 1 \leq i \leq q-2, i \neq k$ such that adding i to $\frac{q-1}{2}$ modulo $q-1$ involves exactly λ carries?
- This problem can be solved by applying the transfer matrix method.
- Reformulate as a count of closed walks on a certain directed graph.

The Counting Problem

- $k=\frac{1}{2}(q-1)$
- What is the number of $i, 1 \leq i \leq q-2, i \neq k$ such that adding i to $\frac{q-1}{2}$ modulo $q-1$ involves exactly λ carries?
- This problem can be solved by applying the transfer matrix method.
- Reformulate as a count of closed walks on a certain directed graph.
- Transfer matrix method yields the generating function for our counting problem from the adjacency matrix of the digraph.

Theorem

Let $q=p^{t}$ be a prime power congruent to 1 modulo 4. Then the number of p-adic elementary divisors of $L(\mathrm{P}(q))$ which are equal to $p^{\lambda}, 0 \leq \lambda<t$, is

$$
f(t, \lambda)=\sum_{i=0}^{\min \{\lambda, t-\lambda\}} \frac{t}{t-i}\binom{t-i}{i}\binom{t-2 i}{\lambda-i}(-p)^{i}\left(\frac{p+1}{2}\right)^{t-2 i} .
$$

The number of p-adic elementary divisors of $L(\mathrm{P}(q))$ which are equal to p^{t} is $\left(\frac{p+1}{2}\right)^{t}-2$.

Example: $K\left(\mathrm{P}\left(5^{3}\right)\right)$

- $f(3,0)=3^{3}=27$

Example: $K\left(\mathrm{P}\left(5^{3}\right)\right)$

- $f(3,0)=3^{3}=27$
- $f(3,1)=\binom{3}{1} \cdot 3^{3}-\frac{3}{2}\binom{2}{1}\binom{1}{0} \cdot 5 \cdot 3=36$.

Example: $K\left(\mathrm{P}\left(5^{3}\right)\right)$

- $f(3,0)=3^{3}=27$
- $f(3,1)=\binom{3}{1} \cdot 3^{3}-\frac{3}{2}\binom{2}{1}\binom{1}{0} \cdot 5 \cdot 3=36$.

$$
K\left(\mathrm{P}\left(5^{3}\right)\right) \cong(\mathbf{Z} / 31 \mathbf{Z})^{62} \oplus(\mathbf{Z} / 5 \mathbf{Z})^{36} \oplus(\mathbf{Z} / \mathbf{2 5 Z})^{36} \oplus(\mathbf{Z} / 125 \mathbf{Z})^{25}
$$

Example: $K\left(\mathrm{P}\left(5^{4}\right)\right)$

- $f(4,0)=3^{4}=81$.

Example: $K\left(\mathrm{P}\left(5^{4}\right)\right)$

- $f(4,0)=3^{4}=81$.
- $f(4,1)=\binom{4}{1} \cdot 3^{4}-\frac{4}{3}\binom{3}{1}\binom{2}{0} \cdot 5 \cdot 3^{2}=144$.

Example: $K\left(\mathrm{P}\left(5^{4}\right)\right)$

- $f(4,0)=3^{4}=81$.
- $f(4,1)=\binom{4}{1} \cdot 3^{4}-\frac{4}{3}\binom{3}{1}\binom{2}{0} \cdot 5 \cdot 3^{2}=144$.
- $f(4,2)=\binom{4}{2} \cdot 3^{4}-\frac{4}{3}\binom{3}{1}\binom{2}{1} \cdot 5 \cdot 3^{2}+\frac{4}{2}\binom{2}{2}\binom{0}{0} \cdot 5^{2}=176$.

Example: $K\left(\mathrm{P}\left(5^{4}\right)\right)$

- $f(4,0)=3^{4}=81$.
- $f(4,1)=\binom{4}{1} \cdot 3^{4}-\frac{4}{3}\binom{3}{1}\binom{2}{0} \cdot 5 \cdot 3^{2}=144$.
- $f(4,2)=\binom{4}{2} \cdot 3^{4}-\frac{4}{3}\binom{3}{1}\binom{2}{1} \cdot 5 \cdot 3^{2}+\frac{4}{2}\binom{2}{2}\binom{0}{0} \cdot 5^{2}=176$.
$K\left(\mathrm{P}\left(5^{4}\right)\right) \cong(\mathbf{Z} / 156 \mathbf{Z})^{312} \oplus(\mathbf{Z} / 5 \mathbf{Z})^{144} \oplus(\mathbf{Z} / 25 \mathbf{Z})^{176}$
$\oplus(\mathbf{Z} / 125 \mathbf{Z})^{144} \oplus(\mathbf{Z} / 625 \mathbf{Z})^{79}$.

Thank you for your attention!

