
A REMARK ON GRASSMANN AND VERONESE EMBEDDINGS OF

P3 IN CHARACTERISTIC 2.
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Abstract. We answer a question raised in a recent paper by I. Cardinali and A.
Pasini. Over an algebraically closed field of characteristic 2, we show that a certain
projection of P9 to P8 induces an isomorphism of algebraic varieties from the quadratic
Veronese embedding of P3 to the standard embedding of the orthogonal Grassmanian
of lines of a quadric in P4.

1. Introduction and notation

The purpose of this note is to settle a question left open in a recent paper [2] concerning
a certain morphism between the quadratic Veronese embedding of P3 and another em-
bedding constructed using a Grassmannian of lines. In odd characteristic the morphism
is an isomorphism of varieties, induced by a linear isomorphism of the ambient projective
spaces. In characteristic 2 the linear map inducing the morphism is not an isomorphism,
so the question of whether the morphism is an isomorphism was not resolved. In this
note we show that it is indeed an isomorphism. The embeddings are introduced in §§2-4,
and the precise question is stated in §5. In view of our specific objective we work entirely
in characteristic 2, although this assumption is not necessary for the general discussion
of the Veronese and Grassmanian varieties. The hypothesis enters in an essential way
when we consider the subvariety of the Grassmanian defined by isotropic lines of a qua-
dratic form in §4. In [2] Cardinali and Pasini observe that in characteristic 2 only, this
subvariety is contained in a hyperplane of the ambient projective space. Their question
is directly related to this phenomenon.

In addition to [2], further background material can be found in the texts of Harris [3]
and Borel [1]. Harris’s book contains a detailed description of Grassmanian and Veronese
varieties, and [1, §AG.11] treats the concepts of varieties and morphisms defined over a
subfield of an algebraically closed field.

Let k be an algebraically closed field of characteristic 2. Let W be a 4-dimensional
vector space over k carrying a nonsingular alternating bilinear form B(−,−). Let e0, e1,
e2, e3 be a symplectic basis of W , so that B(ei, ej) = δj,3−i, and let x0, x1, x2, x3 be the
corresponding symplectic coordinates.
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2. The quadratic Veronese embedding

Let Sym2(W ) denote the subspace of symmetric tensors in W ⊗W . If we take the
basis consisting of the vectors ei ⊗ ei and ei ⊗ ej + ej ⊗ ei, then the Veronese map

(1) ver : P(W )→ P(Sym2(W )), 〈v〉 7→ 〈v ⊗ v〉.
is given in coordinates by

(2) (a0 : a1 : a2 : a3) 7→ (aiaj)i≤j .

We will use a slightly different basis, namely

(3) e0 ⊗ e3 + e3 ⊗ e0 + e1 ⊗ e2 + e2 ⊗ e1, e0 ⊗ e0, e0 ⊗ e1 + e1 ⊗ e0, e1 ⊗ e1,
e0 ⊗ e3 + e3 ⊗ e0, e0 ⊗ e2 + e2 ⊗ e0, e2 ⊗ e2, e1 ⊗ e3 + e3 ⊗ e1, e2 ⊗ e3 + e3 ⊗ e2, e3 ⊗ e3.

In these coordinates the map is given by

(4) (a0 : a1 : a2 : a3) 7→ (a1a2 : a20 : a0a1 : a21 : a0a3 − a1a2 : a0a2 : a22 : a1a3 : a2a3 : a23).

The image V of the Veronese map is called the quadratic Veronese variety.

3. The Klein quadric

Take the basis ei∧ej , i < j, for ∧2(W ), with coordinates pij . Each line 〈v, w〉 of P(W ),
determines a point 〈v ∧ w〉 of P(∧2(W )), so we get an embedding {lines of P(W )} →
P(∧2(W )). If v = (a0 : a1 : a2 : a3) and w = (b0 : b1 : b2 : b3) then the image of the line
is the point with coordinates pij = aibj − ajbi. The image of the set of all lines is the
Klein quadric K, which is the set of points in P(∧2(W )) satisfying the equation

p01p23 − p02p13 + p03p12 = 0.

Let V be the 5-dimensional subspace of ∧2(W ) defined by p03 + p12 = 0. In V we
choose coordinates from the restrictions of the pij to V as follows: X0 = p01, X1 = p02,
X2 = p03, X3 = p13, X4 = p23.

A line 〈v, w〉 is totally isotropic with respect to B if and only if its image lies in the
intersection of K with the image of V in P(∧2(W )), so the set of totally B-isotropic lines
in P(W ) is mapped to the quadric Q in P(V ) defined by the quadratic form

(5) χ := X0X4 −X1X3 −X2
2 .

4. The Grassmann embedding of lines in P(V )

Under the Klein correspondence, we have seen that a totally isotropic line in P(W ),
defines a point of P(V ). Also, given a point 〈v0〉 of P(W ), we may consider the set of
isotropic lines through that point. We claim that the images of these lines form a line
in P(V ). To see this, extend v0 to a basis {v0, v1, v2, v3} of W such that v⊥0 is spanned
by {v0, v1, v2}. Then it is easy to check that the line joining the two points 〈v0 ∧ v1〉
and 〈v0 ∧ v2〉 has as its points the images of the 2-dimensional isotropic subspaces of W
containing v0.

Hence we have a map from P(W ) to the set of lines in P(V ).
If L = 〈A,B〉 is a line in P(V ), it defines a point 〈A ∧ B〉 in P(∧2(V )) ∼= P9 and we

have an embedding
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(6) gr : P(W )→ P(∧2(V )).

Suppose L lies in Q. If A = (A0 : A1 : A2 : A3 : A4) and B = (B0 : B1 : B2 : B3 : B4)
then

(7) A0B4 +A4B0 +A1B3 +A3B1 = 0,

since this is the symmetric bilinear form associated with the quadratic form χ defining
Q. Here, we have used the assumption of characteristic 2 and, as will become clear, it is
the special form of (7) that makes characteristic 2 exceptional.

We take coordinates qij , (0 ≤ i < j ≤ 4) on ∧2(V ) induced by our coordinates Xi on
V . Then if L lies in Q, the point 〈A∧B〉 lies in the image of the hyperplane H of ∧2(V )
defined by the equation q04 + q13 = 0, by (7). On H we take the same coordinates, but
omit the q13 coordinate.

Let G ⊆ P(∧2(V )) denote the set of images in P(∧2(V )) of all lines in P(V ) and let
Gχ ⊂ P(H) denote the set of images in P(H) of all lines in Q.

5. Isomorphism of the varieties V and Gχ
Let T = 〈e0⊗e3+e3⊗e0+e1⊗e2+e2⊗e1〉 ⊆ Sym2(W ). The space of Sp(W )-fixed points

inW⊗W is one-dimensional, by the simplicity ofW , and it is easy to check that this space
equals T . In [2] it is shown that there is a k Sp(W )-module map π̃ : Sym2(W )→ ∧2(V )
whose kernel is T and whose image is H. (The existence and uniqueness of π̃ follow
from fact that Sym2(W ) is isomorphic to a Weyl module whose highest weight appears
also as the highest weight in ∧2(V ), with multiplicity one.) If we take coordinates on
P(Sym2(W )) ∼= P9 with respect to the basis (3) above, and coordinates on P(H) ∼= P8

as described in the last section, the induced map π : P(Sym2(W )) → P(H) is simply
projection relative to the first coordinate position.

In [2], it is shown that π|V defines a bijection from V to Gχ, but the question of
whether the map is an isomorphism of algebraic varieties is left open. (See p.102 in [2].)
We shall prove that the map is indeed an isomorphism, by explicitly defining the inverse
morphism.

We have defined the sets V ⊆ P(Sym2(W )) ∼= P9 and Gχ ⊆ P(H) ∼= P8. Both V and
Gχ are projective varieties, and they are defined over F2.

The coordinates with respect to our basis (3) of the image in V of the point p = (a0 :
a1 : a2 : a3) ∈ P(W ) is given in (4).

Let us now compute the image of the point p under the Grassman embedding gr above.
Using the same notation, we take p = 〈v0〉, with v0 = (a0, a1, a2, a3), v1 = (b0, b1, b2, b3),
v2 = (c0, c1, c2, c3) and v3 = (d0, d1, d2, d3) forming a symplectic basis. Then the points
〈v0 ∧ v1〉 and 〈v0 ∧ v2〉 of P(V ) have (X0 : X1 : X2 : X3 : X4)-coordinates

(a0b1 − a1b0 : a0b2 − a2b0 : a0b3 − a3b0 : a1b3 − a3b1 : a2b3 − a3b2),

and

(a0c1 − a1c0 : a0c2 − a2c0 : a0c3 − a3c0 : a1c3 − a3c1 : a2c3 − a3c2).
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Next we consider the line joining these two points as a point of P(∧2(V )) with Plücker
coordinates qij , 0 ≤ i < j ≤ 4 induced by the coordinates Xi of V .

The q0,1-coordinate of this line is therefore

(8)

(a0b1 − a1b0)(a0c2 − a2c0)− (a0b2 − a2b0)(a0c1 − a1c0)
= a20b1c2 − a0a2b1c0 − a0a1b0c2 + a1a2b0c0

− a20b2c1 + a0a1b2c0 + a0a2b0c1 − a1a2b0c0

= a0

∣∣∣∣∣∣
a0 a1 a2
b0 b1 b2
c0 c1 c2

∣∣∣∣∣∣ .
The q0,4-coordinate of this line is,

(9)

(a0b1 − a1b0)(a2c3 − a3c2)− (a2b3 − a3b2)(a0c1 − a1c0)
= a0a2b1c3 − a0a2b3c1 + a0a3b2c1 − a0a3b1c2 + a0a1b2c3 − a0a1b3c2
− a1a2b0c3 + a1a2b3c0 − a1a3b2c0 + a1a3b0c2 − a1a0b3c2 + a1a0b2c3

= a0

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ + a1

∣∣∣∣∣∣
a0 a2 a3
b0 b2 b3
c0 c2 c3

∣∣∣∣∣∣ .
One can find similar expressions for all of the qi,j-coordinates.
Now consider the vector v0 ∧ v1 ∧ v2 ∈ ∧3(W ). It defines an element f ∈W ∗ by

v0 ∧ v1 ∧ v2 ∧ w = f(w)e0 ∧ e1 ∧ e2 ∧ e3,
where the ei are our standard symplectic basis. In coordinates, if w = (r0, r1, r2, r3), we
have

f(w) =

∣∣∣∣∣∣∣∣
a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
r0 r1 r2 r3

∣∣∣∣∣∣∣∣ = r0∆123 + r1∆023 + r2∆013 + r3∆012

where

∆ijk =

∣∣∣∣∣∣
ai aj ak
bi bj bk
ci cj ck

∣∣∣∣∣∣ .
So in the basis x0, x1, x2, x3 of W ∗, we have f = ∆123x0 + ∆023x1 + ∆013x2 + ∆012x3.

We have f(v0) = f(v1) = f(v2) = 0 and since the vi also form a symplectic basis, we
have f(v3) = 1. So f(w) = B(w, v0), which implies that f = a3x0 + a2x1 + a1x2 + a0x3.
Hence we conclude that ∆012 = a0, ∆013 = a1, ∆023 = a2, and ∆123 = a3. Thus, the q0,1
and q0,4-coordinates of the line in question are a20 and a0a3 + a1a2 respectively (when
viewed as a point in either P(∧2(V )) or P(H)).

By similar computations, we find that the image in Gχ ⊂ P(H) of p ∈ P(W ) under the
map gr has coordinates

(10) (a20 : a0a1 : a21 : a0a3 + a1a2 : a0a2 : a22 : a1a3 : a2a3 : a23).

From (4) and (10) we see that π maps V bijectively to Gχ.
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We will now construct the inverse morphism to π|V .

We denote the coordinates of H by Zi, i = 1,. . . ,9. and set Ũi = {h ∈ P(H) : Zi(h) 6=
0} and Ui = Ũi ∩ Gχ.

Then from (10) we see that

Gχ = U1 ∪ U3 ∪ U6 ∪ U9,

since a0, a1, a2 and a3 cannot be simultaneously zero.
We will define morphisms φi : Ũi → P(Sym2(W )) for i ∈ {1, 3, 6, 9} with the properties

that

(i) φi|Ui
maps into V;

(ii) φi|Ui
and φj |Uj

agree on Ui ∩ Uj ;
(iii) π|V ◦ φi|Ui

is the identity map of Ui;

(iv) φi|Ui
◦ π|V is the identity map of π|V

−1(Ui).

These properties mean that the morphisms φi|Ui
constitute an inverse isomorphism φ to

π|V .

On Ũ1, we take local affine coordinates Zj/Z1, j = 2,. . . , 9, and define for t = (1 : t2 :

t3 : t4 : t5 : t6 : t7 : t8 : t9) ∈ Ũ1

(11) φ1(t) = (t2t5 : 1 : t2 : t3 : t4 : t5 : t6 : t7 : t8 : t9) ∈ P(Sym2(W )).

On Ũ3, we take local affine coordinates Zj/Z3, 1 ≤ j ≤ 9, j 6= 3, and define for

t = (t1 : t2 : 1 : t4 : t5 : t6 : t7 : t8 : t9) ∈ Ũ3

(12) φ3(t) = (t4 + t2t7 : t1 : t2 : 1 : t4 : t5 : t6 : t7 : t8 : t9) ∈ P(Sym2(W )).

On Ũ6, we take local affine coordinates Zj/Z6, 1 ≤ j ≤ 9, j 6= 6, and define for

t = (t1 : t2 : t3 : t4 : t5 : 1 : t7 : t8 : t9) ∈ Ũ6

(13) φ6(t) = (t4 + t5t8 : t1 : t2 : t3 : t4 : t5 : 1 : t7 : t8 : t9) ∈ P(Sym2(W )).

On Ũ9, we take local affine coordinates Zj/Z9, 1 ≤ j ≤ 8, and define for t = (t1 : t2 :

t3 : t4 : t5 : t6 : t7 : t8 : 1) ∈ Ũ9

(14) φ9(t) = (t7t8 : t1 : t2 : t3 : t4 : t5 : t6 : t7 : t8 : 1) ∈ P(Sym2(W )).

In each of the four cases a point of the form (10) is mapped to the point (4) and the
properties (i)-(iv) can be verified immediately. Thus π|V and φ are inverse isomorphisms.
Moreover, they are defined over F2. Thus, we have established the following statement.

Theorem 5.1. The map π|V : V → Gχ is an isomorphism of algebraic varieties, defined
over F2.
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