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Matrix invariants

Γ simple graph, A its 0− 1 adjacency matrix.
A is symmetric so similar (by orthogonal matrices) to a
diagonal matrix

D = PAP−1

A is integral, so is equivalent (by unimodular matrices) to
its Smith Normal Form

E = UAV
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If Γ′ is another graph, we can ask if A and A′ are both
similar (graphs cospectral) and equivalent.
Many examples exist, e.g. the saltire pair.

I But there may be some c ∈ Z such that A + cI and A′ + cI
are not equivalent.
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Example from T. Hall on MathOverflow

http://mathoverflow.net/questions/52169/
adjacency-matrices-of-graphs/

http://mathoverflow.net/questions/52169/adjacency-matrices-of-graphs/
http://mathoverflow.net/questions/52169/adjacency-matrices-of-graphs/


Hall showed that the adjacency matrices A and A′ are
similar by a unimodular integral matrix.
Hence for any integers a, b, aA + bI and aA′ + bI are both
equivalent and similar.
But A + J is not equivalent to A′ + J, where J is the matrix
whose entries are all equal to 1.

Question
Do there exist nonisomorphic graphs Γ and Γ′ such that for all
a, b, c ∈ Z, the matrices aA + bI + cJ and aA′ + bI + cJ are
similar and equivalent?

These integral combinations are called generalized
adjacency matrices and include the adjacency matrix of
the complementary graph, the (−1,1,0)-adjacency matrix,
and (for regular graphs) the Laplacian matrices.
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Strongly regular graphs

The adjacency matrix A of a strongly regular graph
SRG(v , k , λ, µ) satisfies

A2 + (µ− λ)A + (µ− k)I = µJ

Thus if Γ and Γ′ are SRGs with the same parameters, and
µ 6= 0, any invertible matrix C transforming A to A′ must fix
J and conjugate aA + bI + cJ to aA′ + bI + cJ.
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A family of examples

The rest of this talk is to give an infinite sequence of pairs of
graphs such that for all integers a, b, c, the matrices
aA + bI + cJ and aA′ + bI + cJ are both similar and equivalent.
The examples come from Paley graphs and Peisert graphs over
fields of order p2, p ≡ 3 (mod 4). I stumbled across them in the
process of computing critical groups (Smith Normal forms of
Laplacians). Techniques I’ll describe for proving equivalence
grew out work a paper of Chandler-S-Xiang (2014) computing
the critical groups of Paley graphs.
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Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.

Let q ≡ 1 (mod 4), S = F×q
2. The Paley graph Γ(q) is the

Cayley graph based on the group (Fq,+) with generating
set S.
Let q = p2e, p ≡ 3 (mod 4). and β a generator of F×q . Set
S′ = F×q

4 ∪ βF×q
4. The Peisert graph Γ′(q) is the Cayley

graph based on the group (Fq,+) with generating set S′.
When both are defined Γ(q) and Γ′(q) are strongly regular
graphs with the same parameters (q, (q−1)

2 , (q−5)
4 , (q−1)

4 ).
Hence they are cospectral.
Peisert (2001) showed that Γ(q) � Γ′(q) if q 6= 9.



Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.

Let q ≡ 1 (mod 4), S = F×q
2. The Paley graph Γ(q) is the

Cayley graph based on the group (Fq,+) with generating
set S.
Let q = p2e, p ≡ 3 (mod 4). and β a generator of F×q . Set
S′ = F×q

4 ∪ βF×q
4. The Peisert graph Γ′(q) is the Cayley

graph based on the group (Fq,+) with generating set S′.
When both are defined Γ(q) and Γ′(q) are strongly regular
graphs with the same parameters (q, (q−1)

2 , (q−5)
4 , (q−1)

4 ).
Hence they are cospectral.
Peisert (2001) showed that Γ(q) � Γ′(q) if q 6= 9.



Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.

Let q ≡ 1 (mod 4), S = F×q
2. The Paley graph Γ(q) is the

Cayley graph based on the group (Fq,+) with generating
set S.
Let q = p2e, p ≡ 3 (mod 4). and β a generator of F×q . Set
S′ = F×q

4 ∪ βF×q
4. The Peisert graph Γ′(q) is the Cayley

graph based on the group (Fq,+) with generating set S′.
When both are defined Γ(q) and Γ′(q) are strongly regular
graphs with the same parameters (q, (q−1)

2 , (q−5)
4 , (q−1)

4 ).
Hence they are cospectral.
Peisert (2001) showed that Γ(q) � Γ′(q) if q 6= 9.



Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.

Let q ≡ 1 (mod 4), S = F×q
2. The Paley graph Γ(q) is the

Cayley graph based on the group (Fq,+) with generating
set S.
Let q = p2e, p ≡ 3 (mod 4). and β a generator of F×q . Set
S′ = F×q

4 ∪ βF×q
4. The Peisert graph Γ′(q) is the Cayley

graph based on the group (Fq,+) with generating set S′.
When both are defined Γ(q) and Γ′(q) are strongly regular
graphs with the same parameters (q, (q−1)

2 , (q−5)
4 , (q−1)

4 ).
Hence they are cospectral.
Peisert (2001) showed that Γ(q) � Γ′(q) if q 6= 9.



Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.

Let q ≡ 1 (mod 4), S = F×q
2. The Paley graph Γ(q) is the

Cayley graph based on the group (Fq,+) with generating
set S.
Let q = p2e, p ≡ 3 (mod 4). and β a generator of F×q . Set
S′ = F×q

4 ∪ βF×q
4. The Peisert graph Γ′(q) is the Cayley

graph based on the group (Fq,+) with generating set S′.
When both are defined Γ(q) and Γ′(q) are strongly regular
graphs with the same parameters (q, (q−1)

2 , (q−5)
4 , (q−1)

4 ).
Hence they are cospectral.
Peisert (2001) showed that Γ(q) � Γ′(q) if q 6= 9.



Outline

Introduction

Paley and Peisert graphs

Matrix similarity over rings of algebraic integers

`-local similarity, for ` 6= p

p-local similarity

Jacobi sums



Theorem
(Guralnick (1980), Taussky(1979), Dade(1963),
Reiner-Zassenhaus (1971)) Let D be the ring of algebraic
integers in a number field K . Suppose that B and B′ are square
matrices with entries in D Then the following are equivalent.

(i) B and B′ are similar over DP for every prime ideal P of D.
(ii) B and B′ are similar over some finite integral extension of

D.
(iii) There is a finite extension L of K , such that for each for

each prime P of D, there is a prime Q of the ring E of
integers of L, with Q ⊇ P, such that B and B′ are similar
over the local ring EQ.

Note that the SNF is locally determined.
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Discrete Fourier transform

X , complex character table of (Fq,+) with elements
ordered in the same way as for the rows and columns of
A(q).
X is invertible as a matrix in the ring Z[ζ][ 1

p ], ζ a complex
primitive p-th root of unity.
(McWilliams-Mann (1968))

XA(q)X−1 = diag(ψ(S))ψ

= U diag(ψ(S′))ψU−1 = UXA′(q)X−1U−1. (1)

where ψ runs over the additive characters of Fq and
ψ(S) =

∑
y∈S ψ(y). Thus, the ψ(S) are the eigenvalues of

A.
Since A′ and A are cospectral, we can extend the equation
with some permutation matrix U.
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`-local similarity

For any prime ` 6= p, choose a prime ideal Λ of Z[ζ]
containing `.
Equation (1) can be viewed as similarity over Z[ζ]Λ.

XA(q)X−1 = UXA′(q)X−1U−1.

Proposition
Assume q = p2e, p ≡ 3 (mod 4). For each prime ` 6= p, A(q) is
similar to A′(q) over Z[ζ]Λ, where Λ is a prime ideal containing `.
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From now on assume q = p2, p ≡ 3 (mod 4).
We wish to show that A = A(p2) is similar to A′ = A′(p2)
over the localization of some ring of algebraic integers at a
prime containing p.
For convenience, replace A and A′ by K = 2A + I and
K ′ = 2A′ + I.
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The module RFq

I R0 = Z [t ]/Φq−1(t) ∼= Z[ξ], ξ a primitive (q − 1)-st root of
unity.

I p is unramified in R0, so if P is a prime ideal of R0
containing p, then R = (R0)P is a DVR with maximal ideal
pR and R/pR ∼= Fq.

I RFq has basis elements [x ] for x ∈ Fq.
I µK , µK ′ : RFq → RFq , left multiplication.
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I T : F×q → R×, T (β j) = ξj , Teichmüller character, generates
Hom(F×q ,R×).

I F×q acts on RFq = R[0]⊕ RF
×
q

I RF
×
q decomposes further into the direct sum of

F×q -invariant components of rank 1, affording the
characters T i , i = 0,. . . ,q − 2.

I The component affording T i is spanned by

ei =
∑

x∈F×q

T i(x−1)[x ].

I New basis {ei | i = 1, . . .q − 2} ∪ {1, [0]},
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F×q
4-decomposition

Next consider the action of the subgroup H = F×q
4 of fourth

powers.
r := (q−1)

4 .
T i ,T i+r ,T i+2r , and T i+3r are equal on H.
For i /∈ {0, r ,2r ,3r} the elements ei , ei+r , ei+2r and ei+3r
span the H-isotypic component

Mi = {m ∈ RFq | ym = T i(y)m, ∀y ∈ H}

of RFq for 1 ≤ i ≤ q−5
4 .

I M0, the submodule of H-fixed points in RFq . Basis
elements 1 =

∑
x∈Fq

x = e0 + [0], [0], er , e2r and e3r .

I RFq = M0 ⊕
⊕ q−5

4
i=1 Mi .

I µK and µK ′ preserve Mi as they are RH-module
homomophisms.

I Can re-order new basis so that the matrices of µK and µK ′

are block-diagonal with q−5
4 4× 4 blocks and a single 5× 5

block.
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of RFq for 1 ≤ i ≤ q−5
4 .

I M0, the submodule of H-fixed points in RFq . Basis
elements 1 =
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x = e0 + [0], [0], er , e2r and e3r .

I RFq = M0 ⊕
⊕ q−5

4
i=1 Mi .

I µK and µK ′ preserve Mi as they are RH-module
homomophisms.

I Can re-order new basis so that the matrices of µK and µK ′

are block-diagonal with q−5
4 4× 4 blocks and a single 5× 5
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Jacobi Sums

Definition
Let θ and ψ be multiplicative characters of F×q taking values in
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T i(x−1)[x ]



Jacobi Sums

Definition
Let θ and ψ be multiplicative characters of F×q taking values in
R×. The Jacobi sum is

J(θ, ψ) =
∑
x∈Fq

θ(x)ψ(1− x).

(At x = 0, nonprinc. chars take value 0, princ. char takes value
1.)

µA(ei) =
∑

x∈F×q

∑
y∈S

T i(x−1)[x + y ]



Jacobi Sums

Definition
Let θ and ψ be multiplicative characters of F×q taking values in
R×. The Jacobi sum is

J(θ, ψ) =
∑
x∈Fq

θ(x)ψ(1− x).

(At x = 0, nonprinc. chars take value 0, princ. char takes value
1.)

µA(ei) =
∑

x∈F×q

∑
y∈S

T i(x−1)[x + y ]

=
∑

x∈F×q

∑
y∈Fq

χS(y)T i(x−1)[x + y ]



Jacobi Sums

Definition
Let θ and ψ be multiplicative characters of F×q taking values in
R×. The Jacobi sum is

J(θ, ψ) =
∑
x∈Fq

θ(x)ψ(1− x).

(At x = 0, nonprinc. chars take value 0, princ. char takes value
1.)

µA(ei) =
∑

x∈F×q

∑
y∈S

T i(x−1)[x + y ]

=
∑

x∈F×q

∑
y∈Fq

χS(y)T i(x−1)[x + y ]

=
∑
z∈Fq

∑
x∈F×q

χS(z − x)T i(x−1)[z].



Notation

I Recall r = (p2−1)
4 .

I η = ξr , α = (η−1)
2 , α = (η+1)

2
I Write J(T−i ,T−j) as J(i , j) for short.
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The matrix of µK on Mi is

Ki =

 0 J(i+2r ,2r) 0 0
J(i,2r) 0 0 0

0 0 0 J(i+3r ,2r)
0 0 J(i+r ,2r) 0


The matrix of µK ′ on Mi is

K ′i

 0 0 αJ(i+r ,3r) αJ(i+3r ,r)
0 0 αJ(i+r ,r) αJ(i+3r ,3r)

αJ(i,r) αJ(i+2r ,3r) 0 0
αJ(i,3r) αJ(i+2r ,r) 0 0





The matrix of µK on M0 is

K ′0


q 1 −1 0 0
0 0 q 0 0
0 1 0 0 0
0 0 0 0 J(3r ,2r)
0 0 0 J(r ,2r) 0


The matrix µK ′ on M0 is

K ′0


q 1 −α 0 −α
0 0 qα 0 qα
0 α 0 αJ(2r ,3r) 0
0 0 αJ(r , r) 0 αJ(3r ,3r)
0 α 0 αJ(2r , r) 0





Outline of proof of R-similarity of Ki and K ′i

Proof of similarity of K ′i with Ki involves finding a new basis.
The definition of the new basis is not uniform for all i but
depends on the p-adic valuations of the Jacobi sums
appearing in these matrices.
By close examination of Jacobi sums, we can reduce to
just three cases, corresponding to whether Ki has p-rank
1, 2, or 3.
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p-adic valuation of Jacobi Sums

Let j ∈ Z with j 6≡ 0 (mod (p2 − 1)).
p-digit expresssion: j = a0 + a1p, 0 ≤ ai ≤ p − 1.
Set s(j) = a0 + a1.

r = p2−1
4 = 3p−1

4 + p−3
4 p.

3r = p2−1
4 = p−3

4 + 3p−1
4 p.

s(r) = s(3r) = p − 1.
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More on Jacobi sums

By Stickelberger’s Theorem and relation between Gauss
sums and Jacobi sums, we know that when i , j and i + j
are not divisible by p2 − 1 the p-adic valuation of J(i , j) is
equal to

c(i , j) :=
1

p − 1
(s(i) + s(j)− s(i + j)),

This valuation can be viewed as the number of carries,
when adding the p-expansions of i and j , modulo p2 − 1.
Finally, we also need the exact values (Berndt-Evans
(1979))

J(r , r) = J(r ,2r) = J(3r ,2r) = J(3r ,3r) = p.
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Concluding remarks

For all primes `, A(q) is similar to A′(q) over Z(`).
For all integers a,b,c the generalized adjacency matrices
aA(q) + bI + cJ and aA′(q) + bI + cJ are cospectral and
equivalent.
For which values of q are they are similar over Z?
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Thank you for your attention!
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