Linear similarity of graphs

Peter Sin
University of Florida

Introduction

Paley and Peisert graphs

Matrix similarity over rings of algebraic integers

ℓ-local similarity, for $\ell \neq p$

p-local similarity

Jacobi sums
Matrix invariants

Γ simple graph, A its 0 – 1 adjacency matrix.

A is symmetric so similar (by orthogonal matrices) to a diagonal matrix

\[D = PAP^{-1} \]

A is integral, so is equivalent (by unimodular matrices) to its Smith Normal Form

\[E = UAV \]
Γ simple graph, A its $0 - 1$ adjacency matrix. A is symmetric so *similar* (by orthogonal matrices) to a diagonal matrix

$$D = PAP^{-1}$$

A is integral, so is *equivalent* (by unimodular matrices) to its *Smith Normal Form*

$$E = UAV$$
Matrix invariants

Γ simple graph, \(A\) its 0–1 adjacency matrix.

\(A\) is symmetric so similar (by orthogonal matrices) to a diagonal matrix

\[D = PAP^{-1} \]

\(A\) is integral, so is equivalent (by unimodular matrices) to its Smith Normal Form

\[E = UAV \]
If Γ' is another graph, we can ask if A and A' are both similar (graphs cospectral) and equivalent.

Many examples exist, e.g. the saltire pair.

But there may be some $c \in \mathbb{Z}$ such that $A + cl$ and $A' + cl$ are not equivalent.
If Γ' is another graph, we can ask if A and A' are both similar (graphs cospectral) and equivalent. Many examples exist, e.g. the saltire pair.

- But there may be some $c \in \mathbb{Z}$ such that $A + cl$ and $A' + cl$ are not equivalent.
If Γ' is another graph, we can ask if A and A' are both similar (graphs cospectral) and equivalent. Many examples exist, e.g. the saltire pair.

- But there may be some $c \in \mathbb{Z}$ such that $A + cl$ and $A' + cl$ are not equivalent.
http://mathoverflow.net/questions/52169/adjacency-matrices-of-graphs/
Hall showed that the adjacency matrices A and A' are similar by a unimodular integral matrix. Hence for any integers a, b, $aA + bl$ and $aA' + bl$ are both equivalent and similar. But $A + J$ is not equivalent to $A' + J$, where J is the matrix whose entries are all equal to 1.

Question
Do there exist nonisomorphic graphs Γ and Γ' such that for all a, b, $c \in \mathbb{Z}$, the matrices $aA + bl + cJ$ and $aA' + bl + cJ$ are similar and equivalent?

These integral combinations are called *generalized adjacency matrices* and include the adjacency matrix of the complementary graph, the $(-1, 1, 0)$-adjacency matrix, and (for regular graphs) the Laplacian matrices.
Hall showed that the adjacency matrices A and A' are similar by a unimodular integral matrix. Hence for any integers a, b, $aA + bl$ and $aA' + bl$ are both equivalent and similar. But $A + J$ is not equivalent to $A' + J$, where J is the matrix whose entries are all equal to 1.

Question

Do there exist nonisomorphic graphs Γ and Γ' such that for all a, b, $c \in \mathbb{Z}$, the matrices $aA + bl + cJ$ and $aA' + bl + cJ$ are similar and equivalent?

These integral combinations are called *generalized adjacency matrices* and include the adjacency matrix of the complementary graph, the $(-1, 1, 0)$-adjacency matrix, and (for regular graphs) the Laplacian matrices.
Hall showed that the adjacency matrices A and A' are similar by a unimodular integral matrix. Hence for any integers a, b, $aA + bl$ and $aA' + bl$ are both equivalent and similar.

But $A + J$ is not equivalent to $A' + J$, where J is the matrix whose entries are all equal to 1.

Question

Do there exist nonisomorphic graphs Γ and Γ' such that for all $a, b, c \in \mathbb{Z}$, the matrices $aA + bl + cj$ and $aA' + bl + cj$ are similar and equivalent?

These integral combinations are called *generalized adjacency matrices* and include the adjacency matrix of the complementary graph, the $(-1, 1, 0)$-adjacency matrix, and (for regular graphs) the Laplacian matrices.
Hall showed that the adjacency matrices A and A' are similar by a unimodular integral matrix.

Hence for any integers a, b, $aA + bl$ and $aA' + bl$ are both equivalent and similar.

But $A + J$ is not equivalent to $A' + J$, where J is the matrix whose entries are all equal to 1.

Question

Do there exist nonisomorphic graphs Γ and Γ' such that for all a, b, $c \in \mathbb{Z}$, the matrices $aA + bl + cJ$ and $aA' + bl + cJ$ are similar and equivalent?

These integral combinations are called *generalized adjacency matrices* and include the adjacency matrix of the complementary graph, the $(-1, 1, 0)$-adjacency matrix, and (for regular graphs) the Laplacian matrices.
Hall showed that the adjacency matrices A and A' are similar by a unimodular integral matrix. Hence for any integers a, b, $aA + bl$ and $aA' + bl$ are both equivalent and similar.

But $A + J$ is not equivalent to $A' + J$, where J is the matrix whose entries are all equal to 1.

Question
Do there exist nonisomorphic graphs Γ and Γ' such that for all a, b, $c \in \mathbb{Z}$, the matrices $aA + bl + cJ$ and $aA' + bl + cJ$ are similar and equivalent?

These integral combinations are called *generalized adjacency matrices* and include the adjacency matrix of the complementary graph, the $(-1, 1, 0)$-adjacency matrix, and (for regular graphs) the Laplacian matrices.
Hall showed that the adjacency matrices A and A' are similar by a unimodular integral matrix. Hence for any integers a, b, $aA + bl$ and $aA' + bl$ are both equivalent and similar. But $A + J$ is not equivalent to $A' + J$, where J is the matrix whose entries are all equal to 1.

Question
Do there exist nonisomorphic graphs Γ and Γ' such that for all a, b, $c \in \mathbb{Z}$, the matrices $aA + bl + cJ$ and $aA' + bl + cJ$ are similar and equivalent?

These integral combinations are called *generalized adjacency matrices* and include the adjacency matrix of the complementary graph, the $(-1, 1, 0)$-adjacency matrix, and (for regular graphs) the Laplacian matrices.
The adjacency matrix A of a strongly regular graph $\text{SRG}(v, k, \lambda, \mu)$ satisfies

\[A^2 + (\mu - \lambda)A + (\mu - k)I = \mu J \]

Thus if Γ and Γ' are SRGs with the same parameters, and $\mu \neq 0$, any invertible matrix C transforming A to A' must fix J and conjugate $aA + bl + cJ$ to $aA' + bl + cJ$.
The adjacency matrix A of a strongly regular graph $\text{SRG}(v, k, \lambda, \mu)$ satisfies

$$A^2 + (\mu - \lambda)A + (\mu - k)I = \mu J$$

Thus if Γ and Γ' are SRGs with the same parameters, and $\mu \neq 0$, any invertible matrix C transforming A to A' must fix J and conjugate $aA + bI + cJ$ to $aA' + bI + cJ$.
The rest of this talk is to give an infinite sequence of pairs of graphs such that for all integers a, b, c, the matrices $aA + bl + cJ$ and $aA' + bl + cJ$ are both similar and equivalent. The examples come from Paley graphs and Peisert graphs over fields of order p^2, $p \equiv 3 \pmod{4}$. I stumbled across them in the process of computing critical groups (Smith Normal forms of Laplacians). Techniques I’ll describe for proving equivalence grew out work a paper of Chandler-S-Xiang (2014) computing the critical groups of Paley graphs.
A family of examples

The rest of this talk is to give an infinite sequence of pairs of graphs such that for all integers a, b, c, the matrices $aA + bl + cJ$ and $aA' + bl + cJ$ are both similar and equivalent. The examples come from Paley graphs and Peisert graphs over fields of order p^2, $p \equiv 3 \pmod{4}$. I stumbled across them in the process of computing critical groups (Smith Normal forms of Laplacians). Techniques I’ll describe for proving equivalence grew out work a paper of Chandler-S-Xiang (2014) computing the critical groups of Paley graphs.
A family of examples

The rest of this talk is to give an infinite sequence of pairs of graphs such that for all integers a, b, c, the matrices $aA + bl + cJ$ and $aA' + bl + cJ$ are both similar and equivalent. The examples come from Paley graphs and Peisert graphs over fields of order p^2, $p \equiv 3 \pmod{4}$. I stumbled across them in the process of computing critical groups (Smith Normal forms of Laplacians). Techniques I’ll describe for proving equivalence grew out work a paper of Chandler-S-Xiang (2014) computing the critical groups of Paley graphs.
Outline

Introduction

Paley and Peisert graphs

Matrix similarity over rings of algebraic integers

ℓ-local similarity, for $\ell \neq p$

p-local similarity

Jacobi sums
Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.

Let $q \equiv 1 \pmod{4}$, $S = \mathbb{F}_q^2$. The Paley graph $\Gamma(q)$ is the Cayley graph based on the group $(\mathbb{F}_q, +)$ with generating set S.

Let $q = p^{2e}$, $p \equiv 3 \pmod{4}$, and β a generator of \mathbb{F}_q^\times. Set $S' = \mathbb{F}_q^\times 4 \cup \beta \mathbb{F}_q^\times 4$. The Peisert graph $\Gamma'(q)$ is the Cayley graph based on the group $(\mathbb{F}_q, +)$ with generating set S'.

When both are defined $\Gamma(q)$ and $\Gamma'(q)$ are strongly regular graphs with the same parameters $(q, \frac{(q-1)}{2}, \frac{(q-5)}{4}, \frac{(q-1)}{4})$. Hence they are cospectral.

Peisert (2001) showed that $\Gamma(q) \not\cong \Gamma'(q)$ if $q \neq 9$.
Both graphs can be defined easily as Cayley graphs.

Let $q \equiv 1 \pmod{4}$, $S = \mathbb{F}_q^2$. The *Paley graph* $\Gamma(q)$ is the Cayley graph based on the group $(\mathbb{F}_q, +)$ with generating set S.

Let $q = p^{2e}$, $p \equiv 3 \pmod{4}$, and β a generator of \mathbb{F}_q^\times. Set $S' = \mathbb{F}_q^4 \cup \beta\mathbb{F}_q^4$. The *Peisert graph* $\Gamma'(q)$ is the Cayley graph based on the group $(\mathbb{F}_q, +)$ with generating set S'.

When both are defined $\Gamma(q)$ and $\Gamma'(q)$ are strongly regular graphs with the same parameters $(q, \frac{(q-1)}{2}, \frac{(q-5)}{4}, \frac{(q-1)}{4})$. Hence they are cospectral.

Peisert (2001) showed that $\Gamma(q) \not\cong \Gamma'(q)$ if $q \neq 9$.

Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs. Let $q \equiv 1 \pmod{4}$, $S = \mathbb{F}_q^\times 2$. The *Paley graph* $\Gamma(q)$ is the Cayley graph based on the group $(\mathbb{F}_q, +)$ with generating set S.

Let $q = p^{2^e}$, $p \equiv 3 \pmod{4}$, and β a generator of \mathbb{F}_q^\times. Set $S' = \mathbb{F}_q^\times 4 \cup \beta \mathbb{F}_q^\times 4$. The *Peisert graph* $\Gamma'(q)$ is the Cayley graph based on the group $(\mathbb{F}_q, +)$ with generating set S'.

When both are defined $\Gamma(q)$ and $\Gamma'(q)$ are strongly regular graphs with the same parameters $(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4})$. Hence they are cospectral.

Peisert (2001) showed that $\Gamma(q) \not\cong \Gamma'(q)$ if $q \neq 9$.
Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.

Let $q \equiv 1 \pmod{4}$, $S = \mathbb{F}_q^\times 2$. The \textit{Paley graph} $\Gamma(q)$ is the Cayley graph based on the group $(\mathbb{F}_q, +)$ with generating set S.

Let $q = p^{2e}$, $p \equiv 3 \pmod{4}$. and β a generator of \mathbb{F}_q^\times. Set $S' = \mathbb{F}_q^\times 4 \cup \beta\mathbb{F}_q^\times 4$. The \textit{Peisert graph} $\Gamma'(q)$ is the Cayley graph based on the group $(\mathbb{F}_q, +)$ with generating set S'.

When both are defined $\Gamma(q)$ and $\Gamma'(q)$ are strongly regular graphs with the same parameters $(q, \frac{(q-1)}{2}, \frac{(q-5)}{4}, \frac{(q-1)}{4})$. Hence they are cospectral.

Peisert (2001) showed that $\Gamma(q) \not\cong \Gamma'(q)$ if $q \neq 9$.
Paley graphs, Peisert graphs

Both graphs can be defined easily as Cayley graphs.
Let $q \equiv 1 \pmod{4}$, $S = \mathbb{F}_q^\times 2$. The *Paley graph* $\Gamma(q)$ is the Cayley graph based on the group $(\mathbb{F}_q, +)$ with generating set S.

Let $q = p^{2e}$, $p \equiv 3 \pmod{4}$, and β a generator of \mathbb{F}_q^\times. Set $S' = \mathbb{F}_q^\times 4 \cup \beta \mathbb{F}_q^\times 4$. The *Peisert graph* $\Gamma'(q)$ is the Cayley graph based on the group $(\mathbb{F}_q, +)$ with generating set S'.

When both are defined $\Gamma(q)$ and $\Gamma'(q)$ are strongly regular graphs with the same parameters $(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4})$. Hence they are cospectral.

Peisert (2001) showed that $\Gamma(q) \not\cong \Gamma'(q)$ if $q \neq 9$.
Outline

Introduction

Paley and Peisert graphs

Matrix similarity over rings of algebraic integers

\(\ell\)-local similarity, for \(\ell \neq p\)

\(p\)-local similarity

Jacobi sums
Theorem

(Guralnick (1980), Taussky(1979), Dade(1963), Reiner-Zassenhaus (1971)) Let D be the ring of algebraic integers in a number field K. Suppose that B and B' are square matrices with entries in D Then the following are equivalent.

(i) B and B' are similar over D_P for every prime ideal P of D.

(ii) B and B' are similar over some finite integral extension of D.

(iii) There is a finite extension L of K, such that for each prime P of D, there is a prime Q of the ring E of integers of L, with $Q \supseteq P$, such that B and B' are similar over the local ring E_Q.

Note that the SNF is locally determined.
Theorem

(Guralnick (1980), Taussky (1979), Dade (1963), Reiner-Zassenhaus (1971)) Let D be the ring of algebraic integers in a number field K. Suppose that B and B' are square matrices with entries in D. Then the following are equivalent.

(i) B and B' are similar over D_P for every prime ideal P of D.

(ii) B and B' are similar over some finite integral extension of D.

(iii) There is a finite extension L of K, such that for each prime P of D, there is a prime Q of the ring E of integers of L, with $Q \supseteq P$, such that B and B' are similar over the local ring E_Q.

Note that the SNF is locally determined.
Theorem

(Guralnick (1980), Taussky (1979), Dade (1963), Reiner-Zassenhaus (1971)) Let D be the ring of algebraic integers in a number field K. Suppose that B and B' are square matrices with entries in D. Then the following are equivalent.

(i) B and B' are similar over D_P for every prime ideal P of D.

(ii) B and B' are similar over some finite integral extension of D.

(iii) There is a finite extension L of K, such that for each prime P of D, there is a prime Q of the ring E of integers of L, with $Q \supseteq P$, such that B and B' are similar over the local ring E_Q.

Note that the SNF is locally determined.
Theorem
(Guralnick (1980), Taussky (1979), Dade (1963), Reiner-Zassenhaus (1971)) Let D be the ring of algebraic integers in a number field K. Suppose that B and B' are square matrices with entries in D. Then the following are equivalent.

(i) B and B' are similar over D_P for every prime ideal P of D.

(ii) B and B' are similar over some finite integral extension of D.

(iii) There is a finite extension L of K, such that for each prime P of D, there is a prime Q of the ring E of integers of L, with $Q \supseteq P$, such that B and B' are similar over the local ring E_Q.

Note that the SNF is locally determined.
Theorem

(Guralnick (1980), Taussky(1979), Dade(1963), Reiner-Zassenhaus (1971)) Let D be the ring of algebraic integers in a number field K. Suppose that B and B' are square matrices with entries in D. Then the following are equivalent.

(i) B and B' are similar over D_P for every prime ideal P of D.

(ii) B and B' are similar over some finite integral extension of D.

(iii) There is a finite extension L of K, such that for each prime P of D, there is a prime Q of the ring E of integers of L, with $Q \supseteq P$, such that B and B' are similar over the local ring E_Q.

Note that the SNF is locally determined.
Outline

Introduction

Paley and Peisert graphs

Matrix similarity over rings of algebraic integers

\(\ell \)-local similarity, for \(\ell \neq p \)

\(p \)-local similarity

Jacobi sums
Discrete Fourier transform

Let X, the complex character table of $(\mathbb{F}_q, +)$ with elements ordered in the same way as for the rows and columns of $A(q)$. X is invertible as a matrix in the ring $\mathbb{Z}[\zeta][\frac{1}{\rho}]$, ζ a complex primitive p-th root of unity. (McWilliams-Mann (1968))

$$X A(q) X^{-1} = \text{diag}(\psi(S))_\psi$$
$$= U \text{diag}(\psi(S'))_{\psi} U^{-1} = UXA'(q)X^{-1}U^{-1}. \quad (1)$$

where ψ runs over the additive characters of \mathbb{F}_q and $\psi(S) = \sum_{y \in S} \psi(y)$. Thus, the $\psi(S)$ are the eigenvalues of A.

Since A' and A are cospectral, we can extend the equation with some permutation matrix U.
X, complex character table of $(\mathbb{F}_q, +)$ with elements ordered in the same way as for the rows and columns of $A(q)$.

X is invertible as a matrix in the ring $\mathbb{Z}[\zeta][\frac{1}{p}]$, ζ a complex primitive p-th root of unity.

(McWilliams-Mann (1968))

$$XA(q)X^{-1} = \text{diag}(\psi(S))\psi$$

$$= U \text{diag}(\psi(S'))\psi U^{-1} = UXA'(q)X^{-1}U^{-1}. \quad (1)$$

where ψ runs over the additive characters of \mathbb{F}_q and $\psi(S) = \sum_{y \in S} \psi(y)$. Thus, the $\psi(S)$ are the eigenvalues of A.

Since A' and A are cospectral, we can extend the equation with some permutation matrix U.
Discrete Fourier transform

X, complex character table of $(\mathbb{F}_q, +)$ with elements ordered in the same way as for the rows and columns of $A(q)$.

X is invertible as a matrix in the ring $\mathbb{Z}[\zeta][\frac{1}{p}]$, ζ a complex primitive p-th root of unity.

(McWilliams-Mann (1968))

$$XA(q)X^{-1} = \text{diag}(\psi(S))_{\psi}$$

$$= U \text{diag}(\psi(S'))_{\psi} U^{-1} = UXA'(q)X^{-1}U^{-1}. \quad (1)$$

where ψ runs over the additive characters of \mathbb{F}_q and $\psi(S) = \sum_{y \in S} \psi(y)$. Thus, the $\psi(S)$ are the eigenvalues of A.

Since A' and A are cospectral, we can extend the equation with some permutation matrix U.
Discrete Fourier transform

X, complex character table of $(\mathbb{F}_q, +)$ with elements ordered in the same way as for the rows and columns of $A(q)$.

X is invertible as a matrix in the ring $\mathbb{Z}[\zeta][\frac{1}{p}]$, ζ a complex primitive p-th root of unity.

(McWilliams-Mann (1968))

$$XA(q)X^{-1} = \text{diag}(\psi(S))_\psi$$

$$= U \text{diag}(\psi(S'))_\psi U^{-1} = UXA'(q)X^{-1}U^{-1}. \quad (1)$$

where ψ runs over the additive characters of \mathbb{F}_q and

$\psi(S) = \sum_{y \in S} \psi(y)$. Thus, the $\psi(S)$ are the eigenvalues of A.

Since A' and A are cospectral, we can extend the equation with some permutation matrix U.
ℓ-local similarity

For any prime $\ell \neq p$, choose a prime ideal Λ of $\mathbb{Z}[\zeta]$ containing ℓ.

Equation (1) can be viewed as similarity over $\mathbb{Z}[\zeta]_\Lambda$.

$$XA(q)X^{-1} = UXA'(q)X^{-1}U^{-1}.$$

Proposition

Assume $q = p^{2e}$, $p \equiv 3 \pmod{4}$. For each prime $\ell \neq p$, $A(q)$ is similar to $A'(q)$ over $\mathbb{Z}[\zeta]_\Lambda$, where Λ is a prime ideal containing ℓ.
For any prime $\ell \neq p$, choose a prime ideal Λ of $\mathbb{Z}[\zeta]$ containing ℓ.

Equation (1) can be viewed as similarity over $\mathbb{Z}[\zeta]_{\Lambda}$.

$$XA(q)X^{-1} = UXA'(q)X^{-1}U^{-1}.$$

Proposition

Assume $q = p^{2e}$, $p \equiv 3 \pmod{4}$. For each prime $\ell \neq p$, $A(q)$ is similar to $A'(q)$ over $\mathbb{Z}[\zeta]_{\Lambda}$, where Λ is a prime ideal containing ℓ.
\(\ell \)-local similarity

For any prime \(\ell \neq p \), choose a prime ideal \(\Lambda \) of \(\mathbb{Z}[\zeta] \) containing \(\ell \).

Equation (1) can be viewed as similarity over \(\mathbb{Z}[\zeta]_{\Lambda} \).

\[
XA(q)X^{-1} = UXA'(q)X^{-1}U^{-1}.
\]

Proposition

Assume \(q = p^{2e} \), \(p \equiv 3 \pmod{4} \). For each prime \(\ell \neq p \), \(A(q) \) is similar to \(A'(q) \) over \(\mathbb{Z}[\zeta]_{\Lambda} \), where \(\Lambda \) is a prime ideal containing \(\ell \).
Outline

Introduction

Paley and Peisert graphs

Matrix similarity over rings of algebraic integers

\(\ell\)-local similarity, for \(\ell \neq p\)

\(p\)-local similarity

Jacobi sums
From now on assume $q = p^2$, $p \equiv 3 \pmod{4}$.

We wish to show that $A = A(p^2)$ is similar to $A' = A'(p^2)$ over the localization of some ring of algebraic integers at a prime containing p.

For convenience, replace A and A' by $K = 2A + I$ and $K' = 2A' + I$.
From now on assume $q = p^2, p \equiv 3 \pmod{4}$.
We wish to show that $A = A(p^2)$ is similar to $A' = A'(p^2)$
over the localization of some ring of algebraic integers at a prime containing p.
For convenience, replace A and A' by $K = 2A + I$ and $K' = 2A' + I$.
From now on assume \(q = p^2, \ p \equiv 3 \pmod{4} \).

We wish to show that \(A = A(p^2) \) is similar to \(A' = A'(p^2) \) over the localization of some ring of algebraic integers at a prime containing \(p \).

For convenience, replace \(A \) and \(A' \) by \(K = 2A + I \) and \(K' = 2A' + I \).
The module $R_{\mathbb{F}_q}$

- $R_0 = \mathbb{Z}[t]/\Phi_{q-1}(t) \cong \mathbb{Z}[\xi]$, ξ a primitive $(q - 1)$-st root of unity.
- p is unramified in R_0, so if P is a prime ideal of R_0 containing p, then $R = (R_0)_P$ is a DVR with maximal ideal pR and $R/pR \cong \mathbb{F}_q$.
- $R_{\mathbb{F}_q}$ has basis elements $[x]$ for $x \in \mathbb{F}_q$.
- $\mu_K, \mu_{K'} : R_{\mathbb{F}_q} \to R_{\mathbb{F}_q}$, left multiplication.
The module $R^\mathbb{F}_q$

- $R_0 = \mathbb{Z}[t]/\Phi_{q-1}(t) \cong \mathbb{Z}[\xi]$, ξ a primitive $(q - 1)$-st root of unity.

- p is unramified in R_0, so if P is a prime ideal of R_0 containing p, then $R = (R_0)_P$ is a DVR with maximal ideal pR and $R/pR \cong \mathbb{F}_q$.

- $R^\mathbb{F}_q$ has basis elements $[x]$ for $x \in \mathbb{F}_q$.

- $\mu_K, \mu_K' : R^\mathbb{F}_q \to R^\mathbb{F}_q$, left multiplication.
The module $R_{F,q}$

- $R_0 = \mathbb{Z}[t]/\Phi_{q-1}(t) \cong \mathbb{Z}[\xi]$, ξ a primitive $(q - 1)$-st root of unity.

- p is unramified in R_0, so if P is a prime ideal of R_0 containing p, then $R = (R_0)_P$ is a DVR with maximal ideal pR and $R/pR \cong F_q$.

- $R_{F,q}$ has basis elements $[x]$ for $x \in F_q$.

- $\mu_K, \mu_{K'} : R_{F,q} \to R_{F,q}$, left multiplication.
The module $R^{\mathbb{F}_q}$

- $R_0 = \mathbb{Z}[t]/\Phi_{q-1}(t) \cong \mathbb{Z}[\xi]$, ξ a primitive $(q - 1)$-st root of unity.
- p is unramified in R_0, so if P is a prime ideal of R_0 containing p, then $R = (R_0)_P$ is a DVR with maximal ideal pR and $R/pR \cong \mathbb{F}_q$.
- $R^{\mathbb{F}_q}$ has basis elements $[x]$ for $x \in \mathbb{F}_q$.
- $\mu_K, \mu_K' : R^{\mathbb{F}_q} \rightarrow R^{\mathbb{F}_q}$, left multiplication.
\(T : \mathbb{F}_q^\times \to R^\times \), \(T(\beta^j) = \xi^j \), Teichmüller character, generates \(\text{Hom}(\mathbb{F}_q^\times, R^\times) \).

- \(\mathbb{F}_q^\times \) acts on \(R_{\mathbb{F}_q} = R[0] \oplus R_{\mathbb{F}_q}^\times \)

- \(R_{\mathbb{F}_q}^\times \) decomposes further into the direct sum of \(\mathbb{F}_q^\times \)-invariant components of rank 1, affording the characters \(T^i, i = 0, \ldots, q - 2 \).

- The component affording \(T^i \) is spanned by

\[
e_i = \sum_{x \in \mathbb{F}_q^\times} T^i(x^{-1})[x].
\]

- New basis \(\{ e_i \mid i = 1, \ldots q - 2 \} \cup \{ 1, [0] \} \),
$T : \mathbb{F}_q^\times \to R^\times$, $T(\beta^j) = \xi^j$, Teichmüller character, generates $\text{Hom}(\mathbb{F}_q^\times, R^\times)$.

\mathbb{F}_q^\times acts on $R^{\mathbb{F}_q} = R[0] \oplus R^{\mathbb{F}_q^\times}$

$R^{\mathbb{F}_q^\times}$ decomposes further into the direct sum of \mathbb{F}_q^\times-invariant components of rank 1, affording the characters T^i, $i = 0, \ldots, q - 2$.

The component affording T^i is spanned by

$$e_i = \sum_{x \in \mathbb{F}_q^\times} T^i(x^{-1})[x].$$

New basis $\{ e_i \mid i = 1, \ldots, q - 2 \} \cup \{ 1, [0] \}$,
\(T : \mathbb{F}_q^\times \to R^\times \), \(T(\beta^i) = \xi^i \), Teichmüller character, generates \(\text{Hom}(\mathbb{F}_q^\times, R^\times) \).

\(\mathbb{F}_q^\times \) acts on \(R^{\mathbb{F}_q} = R[0] \oplus R^{\mathbb{F}_q} \)

\(R^{\mathbb{F}_q} \) decomposes further into the direct sum of \(\mathbb{F}_q^\times \)-invariant components of rank 1, affording the characters \(T^i, i = 0, \ldots, q - 2 \).

The component affording \(T^i \) is spanned by

\[e_i = \sum_{x \in \mathbb{F}_q^\times} T^i(x^{-1})[x]. \]

New basis \(\{ e_i \mid i = 1, \ldots q - 2 \} \cup \{ 1, [0] \} \),
\(T : \mathbb{F}_q^\times \rightarrow R^\times, \ T(\beta^j) = \xi^j, \) Teichmüller character, generates \(\text{Hom}(\mathbb{F}_q^\times, R^\times). \)

\(\mathbb{F}_q^\times \) acts on \(R^{\mathbb{F}_q} = R[0] \oplus R^{\mathbb{F}_q^\times} \)

\(R^{\mathbb{F}_q^\times} \) decomposes further into the direct sum of \(\mathbb{F}_q^\times \)-invariant components of rank 1, affording the characters \(T^i, \ i = 0, \ldots, q - 2. \)

The component affording \(T^i \) is spanned by

\[
e_i = \sum_{x \in \mathbb{F}_q^\times} T^i(x^{-1})[x].
\]

New basis \(\{ e_i \mid i = 1, \ldots q - 2 \} \cup \{ 1, [0] \}, \)
\[T: \mathbb{F}_q^\times \rightarrow R^\times, \ T(\beta^j) = \xi^j, \ \text{Teichmüller character, generates} \ \text{Hom}(\mathbb{F}_q^\times, R^\times). \]

\[\mathbb{F}_q^\times \text{ acts on } R^{\mathbb{F}_q} = R[0] \oplus R^{\mathbb{F}_q^\times} \]

\[R^{\mathbb{F}_q^\times} \text{ decomposes further into the direct sum of } \mathbb{F}_q^\times \text{-invariant components of rank 1, affording the characters } T^i, \ i = 0, \ldots, q - 2. \]

\[\text{The component affording } T^i \text{ is spanned by} \]

\[e_i = \sum_{x \in \mathbb{F}_q^\times} T^i(x^{-1})[x]. \]

\[\text{New basis } \{ e_i \mid i = 1, \ldots q - 2 \} \cup \{ 1, [0] \}, \]
Next consider the action of the subgroup $H = \mathbb{F}_q^4$ of fourth powers.

$r := \frac{(q-1)}{4}$.

$T^i, T^{i+r}, T^{i+2r},$ and T^{i+3r} are equal on H. For $i \notin \{0, r, 2r, 3r\}$ the elements e_i, e_{i+r}, e_{i+2r} and e_{i+3r} span the H-isotypic component

$$M_i = \{ m \in R^{\mathbb{F}_q} \mid ym = T^i(y)m, \forall y \in H \}$$

of $R^{\mathbb{F}_q}$ for $1 \leq i \leq \frac{q-5}{4}$.

M_0, the submodule of H-fixed points in $R^{\mathbb{F}_q}$. Basis elements $1 = \sum_{x \in \mathbb{F}_q} x = e_0 + [0], [0], e_r, e_{2r}$ and e_{3r}.

$R^{\mathbb{F}_q} = M_0 \oplus \bigoplus_{i=1}^{q-5} 4 M_i$.

μ_K and $\mu_{K'}$ preserve M_i as they are RH-module homomorphisms.

Can re-order new basis so that the matrices of μ_K and $\mu_{K'}$ are block-diagonal with $\frac{q-5}{4} \times 4$ blocks and a single 5×5 block.
Next consider the action of the subgroup $H = \mathbb{F}_q^4$ of fourth powers.

$$r : = \frac{(q-1)}{4}.$$

$T^i, T^{i+r}, T^{i+2r},$ and T^{i+3r} are equal on H.

For $i \not\in \{0, r, 2r, 3r\}$ the elements e_i, e_{i+r}, e_{i+2r} and e_{i+3r} span the H-isotypic component

$$M_i = \{ m \in R^{\mathbb{F}_q} \mid ym = T^i(y)m, \quad \forall y \in H \}$$

of $R^{\mathbb{F}_q}$ for $1 \leq i \leq \frac{q-5}{4}$.

\blacktriangleright M_0, the submodule of H-fixed points in $R^{\mathbb{F}_q}$. Basis elements $1 = \sum_{x \in \mathbb{F}_q} x = e_0 + [0], [0], e_r, e_{2r}$ and e_{3r}.

\blacktriangleright $R^{\mathbb{F}_q} = M_0 \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_i$.

\blacktriangleright μ_K and $\mu_{K'}$ preserve M_i as they are RH-module homomorphisms.

\blacktriangleright Can re-order new basis so that the matrices of μ_K and $\mu_{K'}$ are block-diagonal with $\frac{q-5}{4}$ 4×4 blocks and a single 5×5 block.
Next consider the action of the subgroup $H = \mathbb{F}_q^4$ of fourth powers.

$$r := \frac{(q-1)}{4}.$$

T^i, T^{i+r}, T^{i+2r}, and T^{i+3r} are equal on H.

For $i \notin \{0, r, 2r, 3r\}$ the elements e_i, e_{i+r}, e_{i+2r} and e_{i+3r} span the H-isotypic component

$$M_i = \{ m \in R^{\mathbb{F}_q} \mid ym = T^i(y)m, \quad \forall y \in H \}$$

of $R^{\mathbb{F}_q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_0, the submodule of H-fixed points in $R^{\mathbb{F}_q}$. Basis elements $1 = \sum_{x \in \mathbb{F}_q} x = e_0 + [0], [0], e_r, e_{2r}$ and e_{3r}.

- $R^{\mathbb{F}_q} = M_0 \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_i$.

- μ_K and μ_K' preserve M_i as they are RH-module homomorphisms.

- Can re-order new basis so that the matrices of μ_K and μ_K' are block-diagonal with $\frac{q-5}{4}$ 4×4 blocks and a single 5×5 block.
$\mathbb{F}_q^\times 4$-decomposition

Next consider the action of the subgroup $H = \mathbb{F}_q^\times 4$ of fourth powers.

$$r := \frac{(q-1)}{4}.$$

T^i, T^{i+r}, T^{i+2r}, and T^{i+3r} are equal on H.

For $i \notin \{0, r, 2r, 3r\}$ the elements e_i, e_{i+r}, e_{i+2r} and e_{i+3r} span the H-isotypic component

$$M_i = \{ m \in R_{\mathbb{F}_q} | ym = T^i(y)m, \quad \forall y \in H \}$$

of $R_{\mathbb{F}_q}$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_0, the submodule of H-fixed points in $R_{\mathbb{F}_q}$. Basis elements $1 = \sum_{x \in \mathbb{F}_q} x = e_0 + [0], [0], e_r, e_{2r}$ and e_{3r}.

- $R_{\mathbb{F}_q} = M_0 \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_i$.

- μ_K and μ_K' preserve M_i as they are RH-module homomorphisms.

- Can re-order new basis so that the matrices of μ_K and μ_K' are block-diagonal with $\frac{q-5}{4}$ 4×4 blocks and a single 5×5 block.
Next consider the action of the subgroup $H = \mathbb{F}_q^\times$ of fourth powers.
\[r := \frac{(q-1)}{4}. \]
T^i, T^{i+r}, T^{i+2r}, and T^{i+3r} are equal on H. For $i \notin \{0, r, 2r, 3r\}$ the elements e_i, e_{i+r}, e_{i+2r} and e_{i+3r} span the H-isotypic component
\[M_i = \{ m \in \mathbb{F}_q \mid ym = T^i(y)m, \quad \forall y \in H \} \]
of \mathbb{F}_q^\times for $1 \leq i \leq \frac{q-5}{4}$.

- M_0, the submodule of H-fixed points in \mathbb{F}_q^\times. Basis elements $1 = \sum_{x \in \mathbb{F}_q} x = e_0 + [0], [0], e_r, e_{2r}$ and e_{3r}.

- $\mathbb{F}_q = M_0 \oplus \bigoplus_{i=1}^{q-5} M_i$.

- μ_K and μ_K' preserve M_i as they are RH-module homomorphisms.

- Can re-order new basis so that the matrices of μ_K and μ_K' are block-diagonal with $\frac{q-5}{4} 4 \times 4$ blocks and a single 5×5 block.
Next consider the action of the subgroup $H = \mathbb{F}_q^\times 4$ of fourth powers.

$r := \frac{(q-1)}{4}$.

T^i, T^{i+r}, T^{i+2r}, and T^{i+3r} are equal on H.

For $i \notin \{0, r, 2r, 3r\}$ the elements e_i, e_{i+r}, e_{i+2r} and e_{i+3r} span the H-isotypic component

$$M_i = \{ m \in R^{\mathbb{F}_q} \mid ym = T^i(y)m, \quad \forall y \in H \}$$

of $R^{\mathbb{F}_q}$ for $1 \leq i \leq \frac{q-5}{4}$.

M_0, the submodule of H-fixed points in $R^{\mathbb{F}_q}$. Basis elements $1 = \sum_{x \in \mathbb{F}_q} x = e_0 + [0], [0], e_r, e_{2r}$ and e_{3r}.

$R^{\mathbb{F}_q} = M_0 \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_i$.

μ_K and $\mu_{K'}$ preserve M_i as they are RH-module homomorphisms.

Can re-order new basis so that the matrices of μ_K and $\mu_{K'}$ are block-diagonal with $\frac{q-5}{4}$ 4×4 blocks and a single 5×5 block.
Next consider the action of the subgroup $H = \mathbb{F}_q^\times$ of fourth powers.

$r := \frac{(q-1)}{4}$.

$T^i, T^{i+r}, T^{i+2r}, \text{ and } T^{i+3r}$ are equal on H.

For $i \notin \{0, r, 2r, 3r\}$ the elements e_i, e_{i+r}, e_{i+2r} and e_{i+3r} span the H-isotypic component

$$M_i = \{ m \in R\mathbb{F}_q \mid ym = T^i(y)m, \quad \forall y \in H \}$$

of $R\mathbb{F}_q$ for $1 \leq i \leq \frac{q-5}{4}$.

- M_0, the submodule of H-fixed points in $R\mathbb{F}_q$. Basis elements $1 = \sum_{x \in \mathbb{F}_q} x = e_0 + [0], [0], e_r, e_{2r}$ and e_{3r}.

- $R\mathbb{F}_q = M_0 \oplus \bigoplus_{i=1}^{\frac{q-5}{4}} M_i$.

- μ_K and $\mu_{K'}$ preserve M_i as they are RH-module homomorphisms.

- Can re-order new basis so that the matrices of μ_K and $\mu_{K'}$ are block-diagonal with $\frac{q-5}{4}$ 4×4 blocks and a single 5×5 block.
Introduction

Paley and Peisert graphs

Matrix similarity over rings of algebraic integers

ℓ-local similarity, for $\ell \neq p$

p-local similarity

Jacobi sums
Definition
Let θ and ψ be multiplicative characters of \mathbb{F}_q^\times taking values in R^\times. The Jacobi sum is

$$J(\theta, \psi) = \sum_{x \in \mathbb{F}_q} \theta(x)\psi(1 - x).$$

(At $x = 0$, nonprinc. chars take value 0, princ. char takes value 1.)

$$e_i = \sum_{x \in \mathbb{F}_q^\times} T^i(x^{-1})[x]$$
Jacobi Sums

Definition
Let θ and ψ be multiplicative characters of \mathbb{F}_q^\times taking values in R^\times. The Jacobi sum is

$$J(\theta, \psi) = \sum_{x \in \mathbb{F}_q} \theta(x)\psi(1 - x).$$

(At $x = 0$, nonprinc. chars take value 0, princ. char takes value 1.)

$$\mu_A(e_i) = \sum_{x \in \mathbb{F}_q^\times} \sum_{y \in S} T^i(x^{-1})[x + y]$$
Jacobi Sums

Definition
Let θ and ψ be multiplicative characters of \mathbb{F}_q^\times taking values in R^\times. The Jacobi sum is

$$J(\theta, \psi) = \sum_{x \in \mathbb{F}_q} \theta(x)\psi(1 - x).$$

(At $x = 0$, nonprinc. chars take value 0, princ. char takes value 1.)

$$\mu_A(e_i) = \sum_{x \in \mathbb{F}_q^\times} \sum_{y \in S} T^i(x^{-1})[x + y]$$

$$= \sum_{x \in \mathbb{F}_q^\times} \sum_{y \in \mathbb{F}_q} \chi_S(y) T^i(x^{-1})[x + y]$$
Jacobi Sums

Definition
Let θ and ψ be multiplicative characters of F_q^\times taking values in R^\times. The Jacobi sum is

$$J(\theta, \psi) = \sum_{x \in F_q} \theta(x)\psi(1 - x).$$

(At $x = 0$, nonprinc. chars take value 0, princ. char takes value 1.)

$$\mu_A(e_i) = \sum_{x \in F_q^\times} \sum_{y \in S} T^i(x^{-1})[x + y]$$

$$= \sum_{x \in F_q^\times} \sum_{y \in F_q} \chi_S(y) T^i(x^{-1})[x + y]$$

$$= \sum_{z \in F_q} \sum_{x \in F_q^\times} \chi_S(z - x) T^i(x^{-1})[z].$$
Notation

- Recall \(r = \frac{(p^2-1)}{4} \).
- \(\eta = \xi^r, \alpha = \frac{(\eta-1)}{2}, \overline{\alpha} = \frac{(\eta+1)}{2} \)
- Write \(J(T^{-i}, T^{-j}) \) as \(J(i, j) \) for short.
Notation

- Recall $r = \frac{(p^2-1)}{4}$.
- $\eta = \xi^r$, $\alpha = \frac{(\eta-1)}{2}$, $\overline{\alpha} = \frac{(\eta+1)}{2}$.
- Write $J(T^{-i}, T^{-j})$ as $J(i, j)$ for short.
Notation

- Recall $r = \frac{(p^2-1)}{4}$.
- $\eta = \xi^r$, $\alpha = \frac{(\eta-1)}{2}$, $\bar{\alpha} = \frac{(\eta+1)}{2}$
- Write $J(T^{-i}, T^{-j})$ as $J(i, j)$ for short.
The matrix of μ_K on M_i is

$$K_i = \begin{bmatrix}
0 & J(i+2r,2r) & 0 & 0 \\
J(i,2r) & 0 & 0 & 0 \\
0 & 0 & 0 & J(i+3r,2r) \\
0 & 0 & J(i+r,2r) & 0
\end{bmatrix}$$

The matrix of $\mu_{K'}$ on M_i is

$$K'_i = \begin{bmatrix}
0 & 0 & \alpha J(i+r,3r) & \bar{\alpha} J(i+3r,r) \\
0 & 0 & \bar{\alpha} J(i+r,r) & \alpha J(i+3r,3r) \\
\bar{\alpha} J(i,r) & \alpha J(i+2r,3r) & 0 & 0 \\
\alpha J(i,3r) & \bar{\alpha} J(i+2r,r) & 0 & 0
\end{bmatrix}$$
The matrix of μ_K on M_0 is

$$K_0' = \begin{bmatrix}
q & 1 & -1 & 0 & 0 \\
0 & 0 & q & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & J(3r, 2r) \\
0 & 0 & 0 & J(r, 2r) & 0
\end{bmatrix}$$

The matrix $\mu_{K'}$ on M_0 is

$$K_0' = \begin{bmatrix}
q & 1 & -\alpha & 0 & -\bar{\alpha} \\
0 & 0 & q\alpha & 0 & q\bar{\alpha} \\
0 & \bar{\alpha} & 0 & \alpha J(2r, 3r) & 0 \\
0 & 0 & \bar{\alpha} J(r, r) & 0 & \alpha J(3r, 3r) \\
0 & \alpha & 0 & \bar{\alpha} J(2r, r) & 0
\end{bmatrix}$$
Outline of proof of R-similarity of K_i and K'_i

Proof of similarity of K'_i with K_i involves finding a new basis. The definition of the new basis is not uniform for all i but depends on the p-adic valuations of the Jacobi sums appearing in these matrices. By close examination of Jacobi sums, we can reduce to just three cases, corresponding to whether K_i has p-rank 1, 2, or 3.
Proof of similarity of K_i' with K_i involves finding a new basis. The definition of the new basis is not uniform for all i but depends on the p-adic valuations of the Jacobi sums appearing in these matrices.

By close examination of Jacobi sums, we can reduce to just three cases, corresponding to whether K_i has p-rank 1, 2, or 3.
Proof of similarity of K_i' with K_i involves finding a new basis. The definition of the new basis is not uniform for all i but depends on the p-adic valuations of the Jacobi sums appearing in these matrices. By close examination of Jacobi sums, we can reduce to just three cases, corresponding to whether K_i has p-rank 1, 2, or 3.
Let $j \in \mathbb{Z}$ with $j \not\equiv 0 \pmod{(p^2 - 1)}$.

p-digit expression: $j = a_0 + a_1 p$, $0 \leq a_i \leq p - 1$.

Set $s(j) = a_0 + a_1$.

$r = \frac{p^2 - 1}{4} = \frac{3(p-1)}{4} + \frac{p-3}{4} p$.

$3r = \frac{p^2 - 1}{4} = \frac{p-3}{4} + \frac{3(p-1)}{4} p$.

$s(r) = s(3r) = p - 1$.
Let $j \in \mathbb{Z}$ with $j \not\equiv 0 \pmod{(p^2 - 1)}$.

p-digit expression: $j = a_0 + a_1 p$, $0 \leq a_i \leq p - 1$.

Set $s(j) = a_0 + a_1$.

$r = \frac{p^2 - 1}{4} = \frac{3p - 1}{4} + \frac{p - 3}{4} p$.

$3r = \frac{p^2 - 1}{4} = \frac{p - 3}{4} + \frac{3p - 1}{4} p$.

$s(r) = s(3r) = p - 1$.
Let $j \in \mathbb{Z}$ with $j \not\equiv 0 \pmod{(p^2 - 1)}$.
p-digit expressssion: $j = a_0 + a_1 p$, $0 \leq a_i \leq p - 1$.
Set $s(j) = a_0 + a_1$.

$r = \frac{p^2 - 1}{4} = \frac{3p - 1}{4} + \frac{p - 3}{4} p$.

$3r = \frac{p^2 - 1}{4} = \frac{p - 3}{4} + \frac{3p - 1}{4} p$.

$s(r) = s(3r) = p - 1$.
p-adic valuation of Jacobi Sums

Let $j \in \mathbb{Z}$ with $j \not\equiv 0 \pmod{(p^2 - 1)}$.

p-digit expression: $j = a_0 + a_1 p$, $0 \leq a_i \leq p - 1$.

Set $s(j) = a_0 + a_1$.

$r = \frac{p^2 - 1}{4} = \frac{3p - 1}{4} + \frac{p - 3}{4} p$.

$3r = \frac{p^2 - 1}{4} = \frac{p - 3}{4} + \frac{3p - 1}{4} p$.

$s(r) = s(3r) = p - 1$.
Let \(j \in \mathbb{Z} \) with \(j \not\equiv 0 \ (\text{mod} \ (p^2 - 1)) \).

\(p \)-digit expression: \(j = a_0 + a_1 p, \ 0 \leq a_i \leq p - 1 \).

Set \(s(j) = a_0 + a_1 \).

\[
r = \frac{p^2 - 1}{4} = \frac{3p - 1}{4} + \frac{p - 3}{4} p.
\]

\[
3r = \frac{p^2 - 1}{4} = \frac{p - 3}{4} + \frac{3p - 1}{4} p.
\]

\(s(r) = s(3r) = p - 1 \).
Let $j \in \mathbb{Z}$ with $j \not\equiv 0 \pmod{(p^2 - 1)}$.

p-digit expression: $j = a_0 + a_1 p$, $0 \leq a_i \leq p - 1$.

Set $s(j) = a_0 + a_1$.

$r = \frac{p^2 - 1}{4} = \frac{3p - 1}{4} + \frac{p - 3}{4} p$.

$3r = \frac{p^2 - 1}{4} = \frac{p - 3}{4} + \frac{3p - 1}{4} p$.

$s(r) = s(3r) = p - 1$.
More on Jacobi sums

By Stickelberger’s Theorem and relation between Gauss sums and Jacobi sums, we know that when \(i, j \) and \(i + j \) are not divisible by \(p^2 - 1 \) the \(p \)-adic valuation of \(J(i, j) \) is equal to

\[
c(i, j) := \frac{1}{p - 1} (s(i) + s(j) - s(i + j)),
\]

This valuation can be viewed as the number of carries, when adding the \(p \)-expansions of \(i \) and \(j \), modulo \(p^2 - 1 \). Finally, we also need the exact values (Berndt-Evans (1979))

\[
J(r, r) = J(r, 2r) = J(3r, 2r) = J(3r, 3r) = p.
\]
More on Jacobi sums

By Stickelberger’s Theorem and relation between Gauss sums and Jacobi sums, we know that when \(i, j \) and \(i + j \) are not divisible by \(p^2 - 1 \) the \(p \)-adic valuation of \(J(i, j) \) is equal to

\[
c(i, j) := \frac{1}{p - 1} \left(s(i) + s(j) - s(i + j) \right),
\]

This valuation can be viewed as the number of carries, when adding the \(p \)-expansions of \(i \) and \(j \), modulo \(p^2 - 1 \).

Finally, we also need the exact values (Berndt-Evans (1979))

\[
J(r, r) = J(r, 2r) = J(3r, 2r) = J(3r, 3r) = p.
\]
By Stickelberger’s Theorem and relation between Gauss sums and Jacobi sums, we know that when \(i, j \) and \(i + j \) are not divisible by \(p^2 - 1 \) the \(p \)-adic valuation of \(J(i, j) \) is equal to

\[
c(i, j) := \frac{1}{p - 1} (s(i) + s(j) - s(i + j)),
\]

This valuation can be viewed as the number of carries, when adding the \(p \)-expansions of \(i \) and \(j \), modulo \(p^2 - 1 \). Finally, we also need the exact values (Berndt-Evans (1979))

\[
J(r, r) = J(r, 2r) = J(3r, 2r) = J(3r, 3r) = p.
\]
Concluding remarks

For all primes ℓ, $A(q)$ is similar to $A'(q)$ over $\mathbb{Z}(\ell)$.

For all integers a,b,c the generalized adjacency matrices $aA(q) + bl + cJ$ and $aA'(q) + bl + cJ$ are cospectral and equivalent.

For which values of q are they similar over \mathbb{Z}?
Concluding remarks

For all primes ℓ, $A(q)$ is similar to $A'(q)$ over $\mathbb{Z}(\ell)$.
For all integers a, b, c the generalized adjacency matrices $aA(q) + bl + cJ$ and $aA'(q) + bl + cJ$ are cospectral and equivalent.

For which values of q are they similar over \mathbb{Z}?
Concluding remarks

For all primes ℓ, $A(q)$ is similar to $A'(q)$ over \mathbb{Z}_ℓ.

For all integers a, b, c the generalized adjacency matrices $aA(q) + bl + cJ$ and $aA'(q) + bl + cJ$ are cospectral and equivalent.

For which values of q are they are similar over \mathbb{Z}?
Thank you for your attention!