Write your proofs using complete English sentences as well as mathematical formulae.
Bonus points may be awarded for particularly well-argued proofs.
In this exam \mathbb{R} denotes the field of real numbers.

Name: \qquad

1. Give examples of the following.
(a) (2 points) A linearly dependent set of vectors in \mathbb{R}^{3} such that at least one of the vectors is not a linear combination of the others.
(b) (3 points) A vector space that has no finite generating set. Justify your answer.
2. (5 points) Determine whether the following set is a basis of $P_{2}(\mathbb{R})$.

$$
\left\{1+2 x+x^{2}, 3+x^{2}, x+x^{2}\right\}
$$

3. Let V be the space of 2×2 matrices with real entries, and let W be the subset defined by

$$
W=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2 \times 2}(\mathbb{R}): a+b+c=0\right\}
$$

(a) (4 points) Prove that W is a subspace of V.
(b) (4 points) Find a basis of W.
(c) (2 points) What is the dimension of W ?

