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MAS4107 Linear Algebra 2

Peter Sin
University of Florida

email: sin@math.ufl.edu

General Prerequisites

Familiarity with the notion of mathematical proof and some experience in read-
ing and writing proofs. Familiarity with standard mathematical notation such as
summations and notations of set theory.

Linear Algebra Prerequisites

Familiarity with the notion of linear independence. Gaussian elimination (reduction
by row operations) to solve systems of equations. This is the most important
algorithm and it will be assumed and used freely in the classes, for example to find
coordinate vectors with respect to basis and to compute the matrix of a linear map,
to test for linear dependence, etc. The determinant of a square matrix by cofactors
and also by row operations.
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0. Introduction

These notes include some topics from MAS4105, which you should have seen in one
form or another, but probably presented in a totally different way. They have been
written in a terse style, so you should read very slowly and with patience. Please
feel free to email me with any questions or comments. The notes are in electronic
form so sections can be changed very easily to incorporate improvements.
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1. Groups and Fields

1.1. Groups

The theory of groups is an important and interesting area of mathematics in its own
right, but we introduce the concept here as an aid to understanding the concepts
of fields and later vector spaces, the main subjects of this course.

Definition 1.1. A group is a set G with a binary operation (which we indicate by
∗ here) satisfying the following axioms:

1. (Identity element) There exists an element e ∈ G such that for all g ∈ G we
have e ∗ g = g ∗ e = g.

2. (Associativity) For any three elements f , g, h ∈ G we have (f∗g)∗h = f∗(g∗h).

3. (Inverses) For each element g ∈ G, there exists an element g′ ∈ G such that
g ∗ g′ = e = g′ ∗ g.

Exercise 1.1. Show that a group has a unique identity element. Show that for each
element g in a group G there is exactly one element which satisfies the properties
of g′ in the Inverses axiom.

Definition 1.2. A binary operation is called commutative if the additional property
holds that for any two elements g and h, we have g ∗ h = h ∗ g. A group whose
operation is commutative is often called an abelian group.

Most of the groups we will consider are abelian, including the following examples.

Example 1.2. Let G = Z and let ∗ be addition Check that this is a group. Which
integer is e? Given an integer, what is it’s inverse element in this group?
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Example 1.3. Let G be the set of nonzero positive real numbers and let ∗ be
multiplication. Is this a group?

Example 1.4. Let G be the set of positive integers. Is this a group under either
addition or multiplication?

1.2. Fields

Fields are algebraic systems with many properties similar to the set R of real num-
bers, which is an example of a field. In linear algebra, fields play the role of ’scalars’.
Most of the basic theory for vectors and matrices with real entries holds over arbi-
trary fields, and it is often profitable to work in the more general context of fields.

The definition of fields involves two binary operations, which are usually called
addition and multiplication and indicated with notation α+ β for the sum and αβ
for the product of two elements. You already know some examples, such as the field
R of real numbers and the field Q of rational numbers, and it is an easy exercise to
check that these satisfy the following definition.

Definition 1.3. A field is a set F which has two commutative binary operations,
called addition and multiplication such that:

1. F is a group under addition.

2. F \ {0} is a group under multiplication, where 0 is the identity element of the
additive group.

3. (Distributive Law) For all elements α, β, γ ∈ F we have α(β+ γ) = αβ+αγ.

Remark 1.1. The identity element of the multiplicative group is usually denoted by
1. The Distributive Law is the axiom which ties together the two binary operations.
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The existence of inverses for addition means that we have subtraction and the
existence of inverses for multiplication means we have division (by elements other
than 0). So a field is basically an algebraic system where one can perform all
four of the usual operations of arithmetic and the familiar properties such as the
associative, commutative and distibutive laws hold.

Exercise 1.5. Determine which of the following are fields (using the usual addition
and multiplication): Z, N, Q, C.

Example 1.6. Consider the set with two elements 0 and 1. The recipe for addition
and multiplication is to think of 0 as “even” and 1 as “odd”. Then, since the sum
of two odd integers is even, we have 1 + 1 = 0, and similarly 1.1 = 1, etc. Check
that this is a field. For the more ambitious, show that apart from renaming the
elements, the above addition and multiplication are the only way to have a field
with two elements.
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2. Vector Spaces

2.1. Vectors

What is a vector? In courses on analytic geometry, vectors in the plane or in space
are often described as arrows and represent physical quantities having magnitude
and direction. This is certainly an good intuitive way to think of vectors in euclidean
space, and it is how vectors first arose and how they are often applied. However,
many students find it difficult to connect this idea of vectors with the more general
algebraic definition given in linear algebra courses. If this is the case it may be better
to temporarily drop the imprecise geometric intuition until you are comfortable
working with the algebraic axioms, and remember that a vector is simply an element
in a special kind of abelian group called a vector space, no more, no less. So, once
we have the definition of vector spaces we will know what vectors are. The definition
of vector spaces involves two sets, an abelian group V and a field F . The elements
of V are called vectors, and those of F are called scalars. The group operation in V
is written as addition. We also have addition and multiplication in F . (Note that
the “+” sign is used for both additions, although they are not related.)In a vector
space, there is also a notion of scalar multiplication of vectors, namely, a way of
combining each v ∈ V and α ∈ F to give a new vector denoted αv.

Definition 2.1. A vector space over a field F is an abelian group V , equipped with
a scalar multiplication such that the following properties hold:

1. α(v + w) = αv + αw, ∀v, w ∈ V , ∀α ∈ F .

2. α(βv) = (αβ)v, ∀v ∈ V , ∀α, β ∈ F .

3. (α+ β)v = αv + βv, ∀v ∈ V , ∀α, β ∈ F .

4. 1v = v, where 1 is the multiplicative identity of F .
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Notation 2.2. The additive identity in V will be denoted by 0, using bold type to
distinguish this vector from the scalar element 0.

Exercise 2.1. Prove that for all v ∈ V we have 0v = 0.

Remark 2.1. Our convention is that field elements (scalars) multiply vectors from
the left. So, the symbol vα is meaningless at this point.

2.2. Examples

You should check your understanding of all new concepts against the list of assorted
examples in this subsection.

Example 2.2. Fn, n-tuples of elements of F , with entrywise addition and scalar
multiplication.

Example 2.3. Matm×n(F ), matrices with m rows and n columns with entries from
the field F . Addition and scalar muliplication are entrywise.

Example 2.4. The space Poly(F ) of polynomials over F . This is the set of all
expressions of the form

p(t) = α0 + α1t+ · · ·αdtd,

where d ∈ N and αi ∈ F . Two polynomials are added by adding the coefficients
of like powers of t. Scalar multiplication simply multiplies every term by the given
scalar. It is important to realize that we are not thinking of polyniomials as func-
tions here. The variable t here is just a placeholder. Therefore two polynomials
are equal iff they have the same coefficients. For example if F is the field with two
elements, the functions t2 and t are the same. To see this just plug in 0 and 1. But
t and t2 are considered distinct polynomials.
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Example 2.5. Polyk(F ), the subset of Poly(F ) consisting of polynomials of degree
at most k, with the same rules for addition and scalar multiplication as for Poly(F ).

Example 2.6. Let X be a set and FX the set of all functions from X to F . The
sum of two functions is defined as (f+g)(x) = f(x)+g(x) and scalar multiplication
by (αf)(x) = αf(x).

Exercise 2.7. Discuss which of the examples can be regarded as special cases of
example 2.6, by identifying X in each case.

Notation 2.3. For economy of language, we adopt the convention that unless
otherwise stated, vector spaces will be over the field F and denoted by Roman
capitals V , W , etc. Vectors will be denoted by lower case roman letters v, v′, w,
etc. and sclars by lower case Greek letters α, β, etc.
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3. Subspaces, Linear Dependence and Generation

3.1. Linear combinations

In a vector space V addition of vectors and scalar multiplication of vectors both
result in vectors. Starting with vectors v1,. . . , vk a vector of the form

v = α1v1 + α2v2 + · · ·+ αkvk, where αi ∈ F, (1)

is called a linear combination of the vectors v1,. . . , vk. The scalars αi may be any
elements of F , including 0. More generally, if S is any set of vectors, the linear
combinations of S are defined to be the linear combinations of finite subsets of S.

Exercise 3.1. Let S be a set of vectors (not necessarily finite). Show that any
linear combination of linear combinations of S is a linear combination of S.

Definition 3.1. Let S be a subset of a vector space V . The linear span of S ,
denoted 〈S〉, is the set of all linear combinations of S. (By convention, we take 〈∅〉
to be {0}.)

3.2. Subspaces

Definition 3.2. A subset W of a vector space V over F is a subspace if it is a
vector space over F under the same addition and scalar multiplication.

Exercise 3.2. A non-empty W subset of V is a subspace if and only if it it contains
the sum of any two elements of W (closed under addition) and all scalar multiples
of elements of W (closed under scalar multiplication).

Exercise 3.3. Let S be any subset of V . Then 〈S〉 is a subspace and any subspace
which contains S contains 〈S〉.
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3.3. Linear dependence

Let v1,. . . , vk ∈ V (k ≥ 1). Consider the problem of expressing 0 as a linear
combination (1) of v1,. . . , vk ∈ V . An obvious solution would be to choose all
scalars αi to be 0, so the question is meaningful only if this trivial case is excluded.

Definition 3.3. The vectors v1,. . . , vk ∈ V are linearly dependent if there exist
scalars α1,. . . , αk such that

α1v1 + · · ·+ αkvk = 0, (2)

with at least one of the αi not equal to 0.
More generally, a set S of vectors is linearly dependent if there is a finite subset

of S which is linearly dependent.

Definition 3.4. A set S of vectors in V is linearly independent if it is not linearly
dependent.
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4. Bases and Coordinates

4.1. Bases

Definition 4.1. A subset B of V is a basis of V iff

1. B is linearly independent; and

2. The linear span of B is equal to V .

Lemma 4.1. Suppose B is a basis of V . Then each v ∈ V may be expressed as a
linear combination of B. Furthermore, this expression is unique (up to addition or
deletion of terms consisting of vectors in B multiplied by 0).

Proof. Exercise.

Definition 4.2. A subset S of V with the property that 〈S〉 = V is called a
generating set for V .

Definition 4.3. V is finite-dimensional if it has a finite generating set. If not, we
say V is infinite-dimensional

Lemma 4.2. Every finite-dimensional vector space has a basis.

Proof. Let {v1, . . . , vn} be a generating set of smallest possible size. If it were not
linearly independent, then one of the vi would be a linear combination of the others
and the set obtained by removing it would still be a generating set, contradicting
the minimality.

Remark 4.1. The existence of bases in an arbitrary vector space depends on the
Axiom of Choice.
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Lemma 4.3. ( Exchange Lemma)Suppose v1,. . . , vn form a generating set for V
and x1,. . . , xm are linearly independent. Then n ≥ m and there are m of the vi (call
them v1,. . . , vm) which can be replaced by the xi so that the resulting set x1,. . . ,
xm, vm+1,. . . , vn form a generating set.

Proof. By induction on m, the case m = 0 being trivial. Assume true for m − 1.
Then since x1,. . . , xm−1 are linearly independent, the induction hypothesis tells us
that m− 1 ≤ n and allows us to number the vi in a way that x1,. . . , xm−1, vm,. . . ,
vn form a generating set. Therefore xm can be written as a linear combination

xm =
m−1∑
i=1

αixi +
n∑

i=m

βivi (3)

Now since x1,. . . , xm are linearly independent, at least one βi must be nonzero, so
n ≥ m. Renumbering the vi if necessary, we can assume βm 6= 0. The lemma will
be established if we show that x1,. . . , xm, vm+1,. . . , vn is a generating set. Since we
know by the inductive hypothesis that x1,. . . , xm−1, vm,. . . , vn form a generating
set, it is enough to show that vm is a linear combination of x1,. . . , xm, vm+1,. . . ,
vn. But this follows by rearranging equation (3) since we can divide by the nonzero
coefficient βm.

Corollary 4.4. In a finite-dimensional vector space all bases have the same number
of elements.

Proof. Let B and B′ be bases of size n and m respectively. Then since B is a
generating set and B′ is linearly independent, we have m ≤ n be the Exchange
Lemma. Now, interchanging the roles of B and B′ shows n ≤ m also.

Exercise 4.1. Prove that in a finite-dimensional vector space any linearly indepen-
dent set can be expanded to a basis and any generating set can be contracted to a
basis.
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Definition 4.4. Dimension. If V is a finite-dimensional vector space over F then
its dimension, denoted dimV is defined to be the common size of all its bases.

4.2. Coordinates

Suppose dimV = n and let B = {v1, . . . , vn} be a basis. Then by Lemma 4.1, each
vector v determines a unique n-tuple of scalars by the formula

v = α1v1 + · · ·+ αnvn.

Definition 4.5. The tuple (α1, . . . , αn) determined by v is denoted [ v ]B and called
the coordinate vector of v with respect to the ordered bases B. Coordinate vectors
are to be thought of as column vectors, but sometimes written as row vectors to
save space. This abuse of notation is safe as long as one is careful in places where
more precision is needed.

Conversely, each n-tuple of scalars determines a unique vector, also by (4.2). In
other word, the choice of an ordered bases B produces a one-one correspondence
φB : V → Fn, sending v to [ v ]B.

Definition 4.6. The map φB is called is called the coordinate map with respect to
B.

Note that if we start with an element of Fn, we can find the corresponding vector
in v simply by substituting in (4.2). However, if we start with a vector, we have to
solve a system of linear equations in order to compute its coordinate vector.

Notation 4.7. Let ei the element of Fn with 1 in the i-th entry and 0 in all other
entries.

Exercise 4.2. Show that for the i-th elelemnt vi in an ordered basis B we have
[ vi ]B = ei.
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5. Linear Maps and Matrices

5.1. Linear maps

Definition 5.1. Let V and W be vector spaces over F . A map T : V → W is
linear iff it satisfies the conditions:

1. T (v + v′) = Tv + Tv′, ∀v, v′ ∈ V .

2. T (αv) = αTv, ∀v ∈ V , ∀α ∈ F .

Example 5.1. The identity map id : V → V , defined by id(v) = v, ∀v ∈ V is a
trivial example, but one which will be important in the next Chapter.

Example 5.2. If T : V →W and S : W → Y are linear maps, then the composite
S ◦ T : V → Y defined by (ST )(v) = S(T (v)) is a linear map.

Example 5.3. The coordinate map φB : V → Fn with respect to a basis B is a a
linear map.

Exercise 5.4. Prove that if a linear map T : V →W is a one-one correspondence,
then the inverse mapping T−1 : W → V is also linear.

Definition 5.2. A bijective linear map is called an isomorphism. Vector spaces
related by an isomorphism are said to be isomorphic.

Exercise 5.5. Prove that the coordinate map φB : V → Fn is an isomorphism.
Prove that two finite-dimensional vector spaces over F are isomorphic if and only
of they have the same dimension.

Theorem 5.1. Let V and W be vector spaces over F . Suppose v1,. . . , vn is a basis
of V . Then, given any n vectors w1,. . . , wn in W , there exists a unique linear map
T : V →W such that Tvi = wi, for i = 1,. . . , n.
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Proof. The uniquenes of T , if it exists, follows from the fact that two linear maps
which agree on a set of vectors must agree on all linear cobinations of that set. It
remains to show that T exists. Define S : Fn →W by S(α1, . . . , αn) =

∑n
i=1 αiwi.

This map is easily checked to be linear. Since we are given a basis B of V , we have
a coordinate map φB : V → Fn. Let T be the composite map S ◦ φB : V → W .
By Exercise 4.2) and the definiton of S we have so Tvi = S(φB(vi)) = S(ei) = wi
as required.

5.2. Matrices

Definition 5.3. Let V and W be vector spaces over F Let B = {v1, . . . , vn} be a
basis of V and C = {w1, . . . , wm} a basis of W . Let T : V →W be a linear map. We
define the matrix [ T ]CB of T with respect to these bases (and their given numbering)
to be the m× n matrix whose j-th column is equal to [ Tvj ]C , for j = 1,. . . , n.

Remark 5.1. If we renumber the elements of B, the matrix we will obtain will not
be quite the same, the columns will be permuted. Likewise, renumbering C results
in a row permutation. So to specify the matrix exactly, the ordering of the basis
must be specified.

Exercise 5.6. Suppose dimV = n and dimW = m and let ordered bases B and
C be given. Show that every m × n matrix with entries in F occurs as the matrix
[ T ]CB for some linear map T : V →W . (Hint: Theorem 5.1)

Definition 5.4. Matrix multiplication. Let A be an m × n matrix with entries in
F and let B be an n×p matrix. The product AB is defined to be the m×p matrix
whose (i, j) entry is

∑n
k=1 aikbkj , for i = 1,. . . , m and j = 1,. . . , p. (The matrix

product is not defined unless the number of columns of A equals the number of rows
of B.)
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Example 5.7. A column vector of length n, for instance a coordinate vector, may
be viewed as an n× 1 matrix and hence multiplied on the left by an m× n matrix.

Exercise 5.8. Show that multiplying column vectors on the left by a fixed m× n
matrix A is a linear map from Fn to Fm.

Exercise 5.9. Think of the columns of B as column vectors. Show that the j-th
column of AB is the matrix product of A with the j-th column of B.

Theorem 5.2. Let T : V →W be a linear map and let B be an ordered basis of V
and C one of W . Then for all v ∈ V we have

[ Tv ]C = [ T ]CB[ v ]B (4)

Proof. Consider first the composite map φC ◦ T : V → Fm, where m = dimW .
The left hand side of the equation is the image of v under this map. The right
hand side is the image of v under the composite map consisting of φB : V → Fn

followed by the map Fn → Fm given by left multiplication by the matrix [ T ]CB.
Since both these composite maps are linear maps from V to Fm, they will be equal
if they agree on the elements of the basis B. Let vi be the i-th element of B. Then
φC(T (vi)) is the i-th column of [ T ]CB, by Definition 5.3. On the other hand

[ T ]CB[ vi ]B = [ T ]CBei,

which is also equal to the i-th column of [ T ]CB.

It is helpful to think of Theorem 5.2 as saying that in the following diagram
both ways to go from top left to bottom right give the same answer. The diagram
is said to be commutative.
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B C

V

φB
��

T // W

φC
��

Fn
[T ]CB // Fm

(5)

5.3. Composition of maps and matrices

Theorem 5.3. Let T : V → W and S : W → Y be linear maps and let B, C and
D be (ordered) bases of V , W and Y respectively. Then we have

[ S◦T ]DB = [ S ]DC [ T ]CB. (6)

Proof. By definition, the i-th column of [ S◦T ]DB is [ S(T (vi) ]D, where vi is the i-th
element of B. By Theorem 5.2, and the definition of matrix multiplcation, we have

[ S(T (vi) ]D = [ S ]DC [ T (vi) ]C = [ S ]DC (i-th column of [ T ]CB) = i-th column of [ S ]DC [ T ]CB.

Let us interpret this in terms of commutative diagrams. Consider the diagram
obtained by combining two versions of (5).
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B C D

V

φB
��

T // W

φC
��

S // Y

φD
��

Fn
[T ]CB // Fm

[S ]DC // F p

(7)

Theorem 5.3 says that the matrix of the composite of the two maps in the top
row is obtained by mutliplying the two matrices in the bottom row together. This
can be extended to composites of three or more maps.

Exercise 5.10. (Harder) Use the above observation (applied to three maps) to-
gether with Exercise 5.6 and the fact that composition of maps is associative to
prove that matrix multiplication is associative, i.e., if A, B and C are matrices
whose shapes allow them to be multiplied, then (AB)C = A(BC).
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6. Change of Basis

If we have a linear map T : V →W and bases B and C of V and W respectvely, then
we have seen how to compute the coordinates of vectors and the matrix of the map.
Now we want to consider what happens if we choose different bases. Of course, we
can compute coordinates and matrices just as easily in the new basis, but the point
is to understand how the coordinate vectors and matrix in the new bases are related
to the corresponding objects computed in the old bases. A proper understanding
of this material is the key to applications of coordinates in many fields including
geometry and engineering. We already have the two general formulae Theorem 5.2
and Theorem 5.3 needed for this pupose. But these formulae are so general that
some skill is needed in to apply them effectively. In particular, one must make the
right choice of V , W , B, C, T , etc. to suit each particular proof. The diagrams of
the previous chapter provide a convenient notation indicating these choices.

6.1. Change of Coordinates

We begin by looking at the effect of changing bases on the coordinates of a vector.
Let B and B′ be two bases. We want to compare [ v ]B with [ v ]B′ for all v ∈ V . To
do this, we (5.2) with W = V T = id, and C = B′, which gives

Theorem 6.1. (Change of coordinates formula)

[ v ]B′ = [ id ]B
′

B [ v ]B. (8)

We wish to study the matrix [ id ]B
′

B and its counterpart [ id ]BB′ further.
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Equation (8) corresponds to the diagram

B B′

V

φB
��

idV // V

φB′
��

Fn
[ id ]B

′
B // Fn

(9)

and there is also a similar diagram with B and B′ swapped. Combining these,
we have

B′ B B′

V

φB′
��

idV // V

φB
��

idV // V

φB′
��

Fn
[ id ]BB′ // Fn

[ id ]B
′
B // Fn

(10)

The compositon of the top row is the identity, so by Theorem 5.3 we have

[ idV ]B
′

B [ idV ]BB′ = [ idV ]B
′

B′ = In. (11)

By symmetry we also have [ idV ]BB′ [ idV ]B
′

B = In.

Definition 6.1. Two n× n matrices A and B are said to be inverse to each other
if AB = In = BA. It is left as an exercise to show that the inverse of a matrix is
unique if it exists. If A has an inverse, we write it as A−1.
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We have proved the following result.

Lemma 6.2. With the same notation as above, the matrices [ id ]B
′

B and [ id ]BB′ are
inverse to each other.

6.2. Change of bases and matrices

Let B and B′ be two bases of the n-dimensional vector space V and let C and C′ be
two bases of the m-dimensional vector space W . Let T : V → W be a linear map.
Our goal is to relate [ T ]C

′

B′ and [ T ]CB

Theorem 6.3. With the above notation, we have

[ T ]C
′

B′ = [ idW ]C
′

C [ T ]CB[ idV ]BB′ . (12)

Proof. This follows by applying Theorem 5.3 to the following diagram. It is a good
test of understanding of this material to try to fill in the detailed reasoning.

B′ B C C′

V

φB′
��

idV // V

φB
��

T // W

φC
��

idW // W

φC′
��

Fn
[ id ]B

′
B // Fn

[ id ]CB // Fm
[ id ]C

′
C // Fm

(13)
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Theorem 6.3 is very general. it holds for all choices of vector spaces, bases and
linear maps. Many applications involve special cases where some of these choices
are the same. As an example we give the important case V = W , B = C, B′ = C′.
Let A = [ id ]B

′

B . Then [ id ]BB′ = A−1 by Lemma 6.2, so we obtain the following result.

Corollary 6.4. Let T : V → V be a linear map and let B and B′ be two bases of
V . Then

[ T ]B
′

B′ = A[ T ]BBA
−1. (14)
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7. More on Linear Maps

7.1. The kernel and image of a linear map

Definition 7.1. Let T : V →W be a linear map. The kernel of T is the set

Ker T = {v ∈ V | Tv = 0W }. (15)

The image of T is the set

Im T = {w ∈W |∃v ∈ V,w = Tv} (16)

Exercise 7.1. Ker T is a subspace of V and Im T is a subspace of W .

Exercise 7.2. Let T : V →W be a linear map, Suppose V and W have dimensions
n and m respectively. Let v1,. . . vk form a basis for Ker T .
(a) Explain why we can expand this to a basis v1,. . . , vk,. . . , vn of V .

Set w1 = Tvk+1,. . . , wn−k = Tvn.
(b) Prove that w1, . . . ,wn−k form a basis of Im T .
(c) Deduce that dim Ker T + dim Im T = dimV .
(d) Let B be the above basis of V and let C be a basis of W obtained by expanding
the above basis of Im T . Compute the matrix [ T ]CB.
(e) Deduce that given any m× n matrix, there exist invertible matrices P (m×m)
and Q (n× n) such that PAQ has the simple form of the matrix in (d).

Definition 7.2. The dimension of Im T is called the rank of T and the dimension
of Ker T is called the nullity of T .
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8. Linear Endomorphisms

In this section we shall focus on the special situation of a linear map T : V → V
from a vector space V to itself. Such linear maps are called endomorphisms and
the set of all endomorphisms of V is denoted by End(V ). Here, and in other texts,
there will be references to “the matrix of T with respect to the basis B”. Of course
the general definiton of the matrix of T requires us to specify two bases, not just
one. But in the context of endomorphisms, it means that one should take the same
basis twice, for V in its roles as the domain and as the codomain of T .

We have already seen that the matrix of T in one basis will be similar to the
matrix of T in any other basis. One of the objectives of this theory is to pick out
of all these similar matrices, special ones which have a particularly simple form.
As we have seen, this is equivalent to finding bases which are especially compatible
with T .

8.1. Invariant subspaces

Definition 8.1. A subspace U of V is said to be T -invariant iff T (U) ⊆ U . For
example, V , {0}, Ker T and Im T are all T -invariant. (Exercise: Prove the last
two.)

Exercise 8.1. Suppose U is a T -invariant subspace of V . Let B be a basis of V
obtained by expanding a basis of U . Show that the matrix of T in this basis has
the form (

A B
0 C

)
,

where A is an r × r submatrix (r = dimU), 0 is an (n− r)× r submatrix of zeros
and B and C are submatrices of sizes r× (n− r) and (n− r)× (n− r) respectively.
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Let T |U∈ End(U) denote the restriction of T to U . Show that A is the matrix of
T with respect to the basis of U with which we started.

Exercise 8.2. Suppose we have a chain of T -invariant subspaces U1 ⊂ U2 · · · ⊂ Ut,
with dimUi = di. Start with a basis of U1, expand it to a basis of U2, expand again
to a basis of U3, etc. until finally we have a basis of V . What will the matrix of T
look line in this basis?

8.2. Eigenvectors and Eigenvalues

The simplest invariant subspaces are the one-dimensional ones.

Definition 8.2. Let T ∈ End(V ). Suppose there is a nonzero vector v ∈ V and
λ ∈ F such that Tv = λv. Then v is called an eigenvector of T with eigenvalue λ.

Theorem 8.1. Let T ∈ End(V ). The following are equivalent.

1. V has a basis consisting of eigenvectors of T .

2. There is a basis B such that [ T ]BB is a diagonal matrix.

Proof. Exercise.

Definition 8.3. T ∈ End(V ) is called diagonalizable if V has a basis of eigenvectors
of T .

Definition 8.4. An n×n matrix is called diagonalizable if it is the matrix (in any
basis) of a diagonalizable linear map. Thus a matrix is diagonalizable if and only if
it is similar to a diagonal matrix.

Theorem 8.2. Suppose v1,. . . , vk ∈ V are eigenvectors of T ∈ End(V ) with distinct
eigenvalues λ1,. . . , λk. Then v1,. . . , vk are linearly independent.
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Proof. Suppose for a contradiction that they are dependent. Choose a nontrivial
dependence relation involving the smallest possible number (r, say) of the vi. By
changing notation if necessary, we can assume that the relation is

α1v1 + · · ·+ αrvr = 0.

By minimality, we know that all the αi are nonzero. Also it is clear that r ≥ 2
(why?). Apply T and use the fact that we have eigenvectors to obtain

α1λ1v1 + · · ·+ αrλrvr = 0.

Multiplying (8.2) by λ1 and subtracting (8.2) yields

α2(λ1 − λ2)v2 + · · ·+ αr(λ1 − λr)vr = 0.

Since the λj are distinct, this is a nontrivial linear independence relation involving
r − 1 of the vi, contradicting our assumption.
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9. Quotient Spaces

Let V be a vector space over F and let U be a subspace of V . For each v ∈ V , let

v + U = {v + u | u ∈ U}.

These are certain subsets of V .

Lemma 9.1. Let v, v′ ∈ V . Then v + U = v′ + U if and only if v − v′ ∈ U .

We define a relation on V by the rule that v ∼ v′ iff v +U = v′ +U . This is an
equivalence relation, as is easily checked. Therefore, V is partitioned into the sets
v + U . It is clear that v ∈ v + U but it is important to remember that v does not
have any special status among the elements of v + U since if v′ is another element
of v + U then v′ + U = v + U .

Definition 9.1. The set whose elements are the distinct sets v + U is denoted by
V/U .

Theorem 9.2. V/U is a vector space under the addition and scalar multiplication
given by the following formulae:

1. (v + U) + (v′ + U) := (v + v′) + U ∀v, v′ ∈ V .

2. α(v + U) := αv + U ∀v ∈ V , ∀α ∈ F .

Proof. Since we are attempting to define addition of equivalence classes in terms of
addition of representative elements in the classes, we must check that our definition
is independent of our choice of v ∈ v+U and v′ ∈ v′+U . Suppose v1+U = v+U and
v′1+U = v′+U . Then by Lemma 9.1, we have v1−v ∈ U and v′1−v′ ∈ U . Then since
U is a subspace, we have (v1+v′1)−(v+v′) ∈ U . Therefore (v1+v′1)+U = (v+v′)+U .
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This shows that addition is well-defined. Similarly, one can check that the definition
of scalar mutiplication does depend on choice of representative element in the class
v+U . It is now very easy to check that the axioms of a vector space hold for V/U .
Because of the way we have defined the addition and scalar multiplication for V/U ,
you will see that the validity of the axioms for V/U will follow from their validity
for V .

Definition 9.2. The map π : V → V/U defined by πv = v+U is called the natural
map from V to V/U .

Exercise 9.1. Show that π is a linear map. What are its kernel and image?

Exercise 9.2. Suppose T : V →W is a linear map and the subspace U is contained
in Ker T . Prove that there is a linear map T : V/U →W such that T (v+U) = Tv,
for all v ∈ V .

Definition 9.3. The map T : V/U →W is called the linear map induced by T .

Exercise 9.3. Suppose T ∈ End(V ) and U is a T -invariant subspace. Show that
there exists a linear map T ∈ End(V/U) such that T (v + U) = Tv + U , for all
v ∈ V .

Definition 9.4. The map T ∈ End(V/U) is called the endomorphism of V/U
induced by T .

Exercise 9.4. Suppose T ∈ End(V ) and U is a T -invariant subspace. Let v1,. . . ,
vk be a basis of U , and extend them to a basis B: v1,. . . , vn of V . Explain why
vk+1 + U ,. . . , vn + U form a basis of V/U . We have seen that the matrix of T in
the basis B has the form (

A B
0 C

)
.



Introduction

Groups and Fields

Vector Spaces

Subspaces, Linear . . .

Bases and Coordinates

Linear Maps and . . .

Change of Basis

More on Linear Maps

Linear Endomorphisms

Quotient Spaces

Spaces of Linear . . .

Direct Sums

Minimal polynomial

Bilinear Forms

Hermitian Forms

Euclidean and . . .

Self-Adjoint Linear . . .

Notation

JJ J I II

Back

Full Screen

Close

Quit

Let T |U∈ End(U) denote the restriction of T to U . In a previous exercise we saw
that A ia the matrix of T |U with respect to the above basis of U . Now show that
C is the matrix of T with respect to the above basis of V/U .
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10. Spaces of Linear maps and the Dual Space

10.1. The space of linear maps

Definition 10.1. Let V and W be vector spaces over F . The set of all linear maps
T : V →W is called Hom(V,W ). Addition and scalar multiplication are defined by

(T + S)v = Tv + Sv, (αT )v = α(Tv), ∀T, S ∈ Hom(V,W ),∀v ∈ V,∀α ∈ F.

Lemma 10.1. Hom(V,W ) is a vector space.

Proof. Exercise.

Exercise 10.1. Suppose dimV = n and dimW = m and let ordered bases B and C
be given. Show that the mapping from Hom(V,W ) to Matm×n(F ) sending a linear
map T to its matrix [ T ]CB is an isomorphism (a bijective linear map).

Exercise 10.2. Show that the set of all maps from any set X into a vector space
V is a vector space using the formulae (10.1) for the operations. (Compare with
Example 2.6.) Thus, Hom(V,W ) could have been defined as a subspace of this
larger space.

10.2. The dual space

Definition 10.2. The space Hom(V, F ) is called the dual space of V and denoted
V ∗.

If V is finite dimensional, then we can already see from Exercise 10.1 that
dimV ∗ = dimV , but let’s take a closer look. Suppose B = {v1, . . . , vn} is a basis
of V . For any n values µi ∈ F , there exists a unique linear map sending vi to µi
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(What general principle is this?). Thus for each i we let xi be the unique linear
such that

xi(vj) =

{
1, if i = j,

0, if i 6= j,

Let v ∈ V , then xi(v) is equal to the i-th coordinate of v with respect to the basis
B. For this reason, the xi are called the coordinate functions associated with the
basis B.

Lemma 10.2. The set of the xi form a basis of V ∗.

Proof. Exercise.

The set of coordinate functions is also known as the dual basis of the basis B.

Definition 10.3. Let A be an m × n matrix. The transpose of A, denoted At is
the n×m matrix whose i-th column is the i-th row of A.

Exercise 10.3. If the matrix product AB is defined, then (AB)t = BtAt.

Notation 10.4. In situations where one must consider both a V and V ∗ at the
same time, it is convenient to write the coordinate vectors of V with respect to B
are as columns and the coordinate vectors of V ∗ with respect to the dual basis B∗
in transposed form as rows. For example, we have for each f ∈ V ∗ and v ∈ V , the
formula

f(v) = [ f ]B∗
t[ v ]B,

where we regard the 1× 1 matrix on the right hand side as a field element.

Remark 10.1. Exercise 10.3 shows that when we use row vectors as coordinate
vectors, the matrix of a linear map should be transposed and multiply on the right.
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Definition 10.5. Let T : V → W be a linear map. We define T ∗ : W ∗ → V ∗, by
(T ∗f)v = f(Tv), ∀f ∈W ∗ and ∀v ∈ V .

Lemma 10.3. Let B and C be bases of V and W respectively and let B∗ and C∗ be
the dual bases. Let T ∈ Hom(V,W ) and let A = [ T ]CB. Then the following hold.

1. If we write the coordinate vectors of V ∗ in the usual way as column vectors,
then [ T ∗ ]B

∗

C∗ = At.

2. For v ∈ V , f ∈W ∗, we have

(T ∗f)(v) = f(Tv) = [ f ]C∗
tA[ v ]B

Proof. The proof of this lemma is problem 1 on assignment 3. (Hint: The notation
and remark above are used to prove (2.)

Next we consider the double dual V ∗∗ := (V ∗)∗. Let V be any vector space
(possibly infinite-dimensional) For each v ∈ V , the mapping Ev : V ∗ → F is defined
by Ev(f) = f(v), ∀f ∈ V ∗.

Exercise 10.4. Check that Ev is linear, therefore an element of V ∗∗.

Next, define a map Ψ : V → V ∗∗ by Ψ(v) = Ev.

Theorem 10.4. The map Ψ is an injective linear map. If V is finite-dimensional,
then Ψ is an isomorphism.

Proof. This is exercise 2 of assignment 3.

Remark 10.2. We have already seen that any two vector spaces over F of the
same dimension are isomorphic, hence V is isomorphic with V ∗∗ and even with
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V ∗. So why do we bother with Theorem 10.4? The answer to this question is that
the map Ψ has been defined without making any choices of bases and is therefore
“canonical” or “natural”. Another example was the map T ∗ : W ∗ → V ∗ and
another is the natural map from V to V/U . Can you think of any others?

Exercise 10.5. Find a natural isomorphism of Hom(F, V ) with V .

Exercise 10.6. For subspace U of a vector space V , let

U⊥ = {f ∈ V ∗ | f(u) = 0, ∀u ∈ U}.

Show that U⊥ is a subspace of V ∗. Prove that dimU + dimU⊥ = dimV . (Hint:
consider the linear map from V ∗ to U∗ induced by the inclusion map of U into V .)
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11. Direct Sums

Definition 11.1. If U1 and U2 are subspaces of V , their sum U1 +U2 is defined to
be the subspace generated by U1∪U2. More generally, for any collection {Ui | i ∈ I}
of subspaces, the sum is the subspace they generate.

Exercise 11.1. Let U and W be subspaces of V . Prove that dimU + dimW =
dim(U +W ) + dim(U ∩W ).

Definition 11.2. If U1 and U2 are subspaces of V , we say that V is the direct sum
of U1 and U2 if V = U1 +U2 and U1 ∩U2 = {0}. In this case we write V = V1⊕ V2.

More generally, we say that V is the direct sum of subspaces U1,. . . , Ur if
V = U1 + · · · + Ur and for each i, Ui ∩ (

∑
j 6= iUj) = {0}. In this case we write

V = U1 ⊕ · · · ⊕ Ur.

These definitions should be compared to the definition of linear independence.

Lemma 11.1. The following are equivalent:

1. V = U1 ⊕ · · · ⊕ Ur.

2. Every element v ∈ V has a unique expression as v = u1 + · · · + ur, with
ui ∈ Ui.

Proof. Suppose V = U1 ⊕ · · · ⊕ Ur. Then certainly each element can be written
as in (2). Suppose v = u1 + · · · + ur = u′1 + · · · + u′r. Then for any i, we have
u′i−ui =

∑
j 6=i(uj−u′j). This element therefore belongs to both Ui and to

∑
j 6=i Uj ,

so must be the zero vector. Thus ui = u′i. Since i was arbitrary, we see that the
expression for v is unique. Thus, (1) implies (2).

Now assume (2). It is then clear that V = U1 + · · ·Ur, so we must show that the
second condition in the definition of direct sum holds. Let i be arbitrary. Suppose
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we have v ∈ Ui ∩ (
∑

j 6=i Uj). Then there exist elements uj ∈ Uj (j 6= i such that
v =

∑
j 6=i uj . Then −v +

∑
j 6=i uj = 0 and, since v ∈ Ui, this is an expression for

0 as in (2). Since 0 is also equal the sum of the 0 vectors from each subspace,
the uniqueness in (2) implies v = 0. Since i was arbnitrary, we have proved that
V = U1 ⊕ · · · ⊕ Ur.

Lemma 11.2. Suppose V = U1⊕· · ·⊕Ur. Let Bi be a basis of Ui. Then B := ∪ri=1Bi
is a basis of V .

Proof. Exercise.

Exercise 11.2. Show that if U1 is a subspace of V , then there exists a subspace U2

such that V = U1 ⊕ U2. Explain with examples, why there may be many different
possiblities for the subspace U2.

Exercise 11.3. Suppose V = U1 ⊕ · · · ⊕Ur and each Ui is a T -invariant subspace,
for T ∈ End(V ). Show that V has a basis in which the matrix of T has “block-
diagonal” form, consisting of r square blocks down the main diagonal and zeroes
elsewhere.
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12. Minimal polynomial

Let T ∈ End(V ). We have defined how to multiply endomorphisms (by composition)
and also how to add endomorphisms. Therefore it is clear what is meant by a
polynomial in T (the constant term is the corresponding scalar multiple of idV ).
Since composition and addition of endomorphisms satisfy the distributive law, it
also makes sense to factorize a polynomial in T . Let p(x) ∈ F [x] be a polynomial.
We say that T satisfies p(x) if the endomorphism p(T ) is the zero endomorphism.

Lemma 12.1. If dimV = n then every endomorphism T satisfies a polynomial of
degree n2.

Proof. The endomorphisms idV , T ,. . .Tn
2

must be linearly dependent since dim End(V ) =
n2. A linear dependence relation gives the desired polynomial realtion for T .

Definition 12.1. We say that T has minimal polynomial m(x) if m(x) has highest
coefficient 1 and has the smallest degree of any nonzero polynomial satisfied by T .

Lemma 12.2. If T has minimal polynomial m(x) and T satisfies p(x), then m(x)
divides p(x). In particular, T has a unique minimal polynomial.

Proof. By long division of polynomials, we can write

p(x) = q(x)m(x) + r(x),

where q(x) and r(x) are polynomials and r(x) is either zero or of degree strictly less
than the degree of m(x). Then,

0 = p(T ) = q(T )m(T ) + r(T ) = r(T ).

Thus, T satisfies r(x). By minimality of m(x), we must have r(x) = 0.
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Corollary 12.3. Let T ∈ End(V ) and let U be a T -invariant subspace of V . Let
T |U∈ End(U) be the restriction of T to U and let T ∈ End(V/U) be the induced
endomorphism of V/U . The the minimal polynomials of T |U and T divide the
minimal polynomial of T .

Proof. It follows from the definitions that T |U and T satisfy any polynomial which
T satisfies. So the result follows from Lemma 12.2.

Theorem 12.4. T is diagonalizable if and only if its minimal polynomial factorizes
as a product of distinct linear factors.

Proof. Suppose first that T is diagonalizable. Then it has a basis B of eigenvectors.
Let λ1,. . . , λr be the distinct eigenvalues which occur. Then since the elements
of B which have eigenvalue λi are mapped to 0 by T − λiidV , it is clear that all
elements of B are mapped to 0 by

∏r
i=1(T − λiid), so by Lemma 12.2, the minimal

polynomial of T factorizes into distinct linear factors. We now prove the converse.
Letm(x) =

∏r
i=1(x−λi) be the minimal polynomial of T . Setm1(x) =

∏r−1
i=1 (x−λi).

By minimality of m(x), we that there exists v ∈ V with m1(T )v 6= 0. Since

0 = m(T )v = [(T − λridV )m1(T )]v = (T − λridV )(m1(T )v),

we see that Ker (T − λridV ) 6= {0}. Set Vλr = Ker (T − λridV ) and set U =
Im (T − λridV ). Then by problem 1 on the second assignment, we know that Vλr
and U are T -invariant subspaces. We will show that

V = Vλr ⊕ U.

Suppose we know this. Then T |U satisfies m(x) ( by the corollary above) and
dimU < dimV . Therefore if we argue by induction on dimension, the inductive
hypothesis would tell us that U has a basis of eigenvectors. Since T |Vλr certainly
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has a basis of eigenvectors, it follows that V has a basis of eigenvectors, i.e T is
diagonalizable.

It remains to prove (12). By considering dimensions, we see that it is enough to
show Vλr∩U = {0} (Why?). Let v ∈ Vλr∩U . Then since v ∈ Vλr , we have Tv = λrv,
so m1(T )v = [

∏r−1
i=1 (λr − λi)]v, a nozero scalar multiple of v. On the other hand,

since v ∈ U there is some v′ ∈ V with v = (T −λridV )v′, so m1(T )v = m(T )v′ = 0.
This proves (12).

Exercise 12.1. Suppose T and S are two diagonalizable endomorphisms of V such
that ST = TS. Show that they are simultaneously diagonalizable, that is, there is
a basis consisting of eigenvectors for both T and S.

Exercise 12.2. Prove that if T is diagonalizable with distinct eigenvalues λ1, . . . ,
λr, then the minimum polynomial of T is

∏r
i=1(x− λi).

Exercise 12.3. Show (using only what we have proved) that every eigenvalue of
an endomorphism T is a root of the minimal polynomial of T . Conversely, show
that each root in F of the minimal polynomial of T is an eigenvalue of T .

Definition 12.2. Let T ∈ End(V ) and λ ∈ F. The subspace

Vλ = {v ∈ V | Tv = λv}

is called the eigenspace of T with eigenvalue λ, or λ-eigenspace for short.

Note that Vλ = {v ∈ V | (T − λid)v = 0}. This description motivates the
following definition.

Definition 12.3. Let T ∈ End(V ) and λ ∈ F. The subspace

Eλ = {v ∈ V | ∃k ∈ N, (T − λid)kv = 0}
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is called the algebraic eigenspace of T with eigenvalue λ. Note that the k may be
different for different v.

Thus, Vλ consists of those vectors sent to 0 by T−λid, while Eλ consists of those
vectors sent to 0 by some power of T − λid. Clearly Vλ ⊆ Eλ. If you think about
it, you have already given examples where the inclusion is proper. Sometimes, for
extra precision, Vλ is called the geometric eigenspace. From now on, for simplicity,
we will write T − λ to mean T − λidV .

Theorem 12.5. Suppose all roots of the minimal polynomial of T (i.e. all the
eigenvalues of T ) lie in F . Then V is the direct sum of the algebraic eigenpaces of
T .

Proof. The proof of this theorem is very similar to that of Theorem 12.4. We argue
by induction on the dimension of V . The theorem is evident for dimension zero
or 1. So let dimV > 1 and assume that the theorem holds for all vector spaces of
smaller dimension. We will try to use these hypotheses to deduce the theorem for
V . The hypothesis says that we may factorize the minimal polynomial of T as

m(x) =

r∏
i=1

(x− λi)ei , where ei ∈ N.

Set m1(x) =
∏r−1
i=1 (x − λi)ei . Then, by minimality of m(x), there exists v ∈ V

such that m1(T )v 6= 0. Since

0 = m(T )v = (T − λr)er(m1(T )v),

we see that the endomorphism S = (T − λr)
er has a nonzero kernel. Since S

commutes with T , we know that Ker S and Im S are T -invariant subspaces. We
claim that

V = Ker S ⊕ Im S.
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Suppose we can prove this claim. Then by Corollary 12.3, we know that the minimal
polynomial of the restriction of T to Im S also has all its roots in F . (Indeed its
roots are among those of m(x).) Since Im S has smaller dimension than V , th
inductive hypothesis tells us that Im S is the direct sum of algebraic eigenspaces
of (the restriction of ) T . Since Ker S is an algebraic eigenspace for the restriction
of T , it then follows easily that V is a direct sum of algebraic eigenspaces of T , so
the theorem is proved. The proof of (12) is similar to the corresponding proof of
Theorem 12.4 and is left as an exercise.

This theorem reduced the study of endomorphisms whose eigenvalues lie in F , to
the study of their restrictions to the algebraic eigenspaces. So we can consider the
situation V = Eλ. If we are interested in T , we may as well consider T−λ. We know
that (T − λ)e = 0 for some e ≥ 1. Endomorphisms which become zero when raised
to some power are called nilpotent. You looked at these in Assignment 2. In sum-
mary, our discussion reduces the question of classifying all endomorphisms whose
eigenvalues all lie in F to the question of classifying all nilpotent endomorphisms.

Remark 12.1. A field F is algebraically closed if every non-constant polynomial
has a root, or, equivalently, if every non-constant polynomial is a product of linear
factors. The field of complex numbers is an example of an algebraically closed field
(Fundamental Theorem of Algebra). It can be proved that every field is (isomorphic
with) a subfield of an algebraically closed field. Clearly if F is algebraically closed,
then all vector space endomorphisms satisfy the hypotheses of Theorem 12.5

Exercise 12.4. Show that if an endomorphism has all its eigenvalues in F , then
there is a basis in which its matrix is in triangular form. (This is Problem 4 on
Assignment 4.)
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13. Bilinear Forms

Definition 13.1. A bilinear form on a vector space V is a map B : V ×V → F (of
two variables) which is linear in each variable:

B(λu+ v, w) = λB(u,w) +B(v, w),∀u, v, w ∈ V, λ ∈ F

and
B(w, λu+ v) = λB(w, u) +B(w, u),∀u, v, w ∈ V, λ ∈ F

Example 13.1. The dot product of Rn.

Example 13.2. The usual inner product a.b =
∑
aibi of Cn is not bilinear. It is

an example of a sesquilinear or hermitian form, which is discussed later.

Example 13.3. The cross product of R3 is not an example of a bilinear form, since
it maps into V , not F , though it does satisfy the bilnearity properties.

Example 13.4. The function B((a, b), (c, d)) = ad− bc is a bilinear form on F 2.

Exercise 13.5. Let B be a bilinear form on V . Fix v ∈ V and define fv(w) =
B(v, w) and gv(w) = B(w, v)∀w ∈ V . Show that fv and gv lie in V ∗ and that the
mappings θL : v 7→ fv and θR : v 7→ gv are linear maps from V to V ∗.

13.1. Coordinates

Let B = {v1, . . . , vn} be a basis of V . Then because of bilinearity, a bilinearform
B is determined completely by the n2 values B(vi, vj). Let A be the matrix whose
(i, j) entry is B(vi, vj). Then one can check that

B(v, w) = [ v ]tBA[w ]B.
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Conversely, starting with any n × n matrix A, the equation (13.1) can be used to
define a function B which, by the rules of matrix algebra, is a bilinear form with
matrix A in the given basis. Thus, once a basis is fixed, we have a bijection between
bilinear forms and n× n matrices.

We now want to see what happens to the matrix of B if we change basis. Let
B′ be a second basis. Then, for all v ∈ V , we have [ v ]B = P [ v ]B′ , where P = [ id ]BB′
is the invertible matrix for the change of basis. Substituting in (13.1) gives

B(v, w) = [ v ]tB′P
tAP [w ]B.

It follows that the matrix of B with respect to B′ is P tAP .

Definition 13.2. Two n× n matrices A and C (over F ) are said to be congruent
if there exists an invertible n× n matrix P such that P tAP = C.

It is easily verified that congruence is an equivalence relation. We have seen
that the matrices of a bilinear form B with respect to different bases are congruent.
Conversely, congruent matrices represent the same bilinear form in different bases,
since given a bases B every invertible n×n matrix is of the form [ id ]BB′ for a unique
basis B′.

Exercise 13.6. Suppose B has matrix A in the basis B. Let B∗ be the dual basis
How is A related to [ θL ]B

∗

B and [ θR ]B
∗

B ? Deduce that the kernels of θL and θR have
the same dimension.

Definition 13.3. Let B be a bilinear form. The left radical of B, denoted RadL(B)
is the set

{v ∈ V | B(v, w) = 0,∀w ∈ V }.

It is clear that RadL(B) is a subspace – in fact it is nothing other than the
kernel of θL. The right radical RadR(B) is defined analogously. By Exercise 13.6
the left radical is zero if and only if the right radical is zero.



Introduction

Groups and Fields

Vector Spaces

Subspaces, Linear . . .

Bases and Coordinates

Linear Maps and . . .

Change of Basis

More on Linear Maps

Linear Endomorphisms

Quotient Spaces

Spaces of Linear . . .

Direct Sums

Minimal polynomial

Bilinear Forms

Hermitian Forms

Euclidean and . . .

Self-Adjoint Linear . . .

Notation

JJ J I II

Back

Full Screen

Close

Quit

Definition 13.4. If the left and right radicals of a bilinear form are zero, then the
form is said to be non-singular.

Thus, if B is nonsingular then θL and θR are isomorphisms of V onto V ∗ and
conversely if either map is an isomorphism then B is nonsingular.

13.2. Symmetric bilinear forms

We assume in this subsection that the characteristic of F is not 2 i.e. 1 + 1 6= 0 in
F .

Definition 13.5. A bilinear form B on V is symmetric if B(v, w) = B(w, v), ∀v,
w ∈ V .

Definition 13.6. Given a symmetric bilinear form B, the function Q : V → F
defined by Q(v) = 1

2B(v, v) is called the quadratic form associated with B.

The reason for this terminology is that if x1,. . . , xn are coordinate functions
for V , then by (13.1) the function Q is expressed as a homogeneous quadratic
polynomial in the xi.

Lemma 13.1. (Polarization) We have for v, w ∈ V ,

2B(v, w) = B(v + w, v + w)−B(v, v)−B(w,w).

The symmetric bilinear form B is completely determined by the quadratic form Q.

Proof. Direct calculation.

Let us now consider the matrix of a symmetric bilinear form. For any given
basis, the matrix A of B will be symmetric, i.e. A = At. Our next task is to look
for bases in which this matrix has a nice form.
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Theorem 13.2. Assume that the characteristic of F is not 2. Then V has a basis
{vi} such that B(vi, vj) = 0 for i 6= j.

Proof. We argue by induction on dimV . There is nothing to prove if dimV = 1.
Also, the theorem holds if B is identically zero. So we assume that dimV = n > 1
and that B(v, w) 6= 0 for some v, w ∈ V . By polarization, there must exist v1 ∈ V
with B(v1, v1) 6= 0. Set U = {v ∈ V | B(v1, v) = 0}.Then U is equal to the kernel
of the map fv1 ∈ V ∗. This map is nonzero , hence its image is F . It follows that
dimU = n− 1. By induction, U has a basis v2,. . . vn such that B(vi, vj) = 0 for all
i, j = 2, . . . , n with i 6= j. By definition of U , this holds also if we include v1. It
remains to check that v1, . . . , vn form a basis for V and for this, it suffuces to show
that they span V . Let v ∈ V . Then it is easy to check that v − B(v,v1)

B(v1,v1)
v1 ∈ U .

Corollary 13.3. If the characteristic of F is not 2, then every symmetric matrix
is congruent to a diagonal matrix.

The number of nonzero diagonal entries is called the rank of B (or of the
associated quadratic form). It is simply the rank (in the usual sense) of any matrix
of B, since this is not changed under congruence.

Which diagonal matrices are congruent? The answer is usually very difficult,
but over the complex and real numbers we can give the complete answer.

Corollary 13.4. Every symmetric complex matrix is congruent to a diagonal ma-
trix with 1s and 0s on the diagonal.

Proof. Exercise

Corollary 13.5. Every quadratic form on a vector space over C (or any alge-
braically closed field of chracteristic 6= 2) can be written in suitable coordinates as
Q = x21 + · · ·x2r, where r is the rank of Q.
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Corollary 13.6. Every symmetric real matrix is congruent to a diagonal matrix
with 1s, −1s and 0s on the diagonal.

Proof. Exercise.

Corollary 13.7. Every quadratic form on a real vector space can be written in
suitable coordinates as Q = x21 + · · ·x2p − x2p+1 − · · · − x2p+q.

Exercise 13.7. Prove that if a real quadratic form is expressed as in Corollary 13.7
in two coordinate systems, then the number of 1s and −1s and 0s will be the same
in each coordinate system. (This result is called Sylvester’s Law of Inertia). The
number p− q is called the signature.

Definition 13.7. A quadratic form on a real vector space is positive definite (resp.
semi-definite) if Q(v) > 0 (resp. q(v) ≥ 0) for every nonzero vector v. If −Q is
positive definite (semi-definite) we say Q is negative definite (semidefinite).

We have shown that in suitable coordinates, all positive definite forms look
just like the usual squared length function of euclidean geometry. Another form of
importance in geometry and physics is the form Q = −x21 − x22 − x33 + x24, which
defines the metric on spacetime in the theory of Special Relativity. This form is
definite, neither positive nor negative (semi-)definite.

Exercise 13.8. Show that there are no positive definite quadratic forms on a com-
plex vector space.

Exercise 13.9. Find the rank and signature of the form x1x2 + x2x3 + x3x1.

Exercise 13.10. Show that if a quadratic formQ on a real vector space is indefinite,
then there is a nonzero vector v such that Q(v)=0. Give an example to show that
this is false for vector spaces over the rational numbers.
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Notation 13.8. In the case of symmetric bilinear forms, there is no distinction
between θL and θR, RadL(B) and RadR(B), so we can just use θ, and refer to the
radical Rad(B).

13.3. Skew-symmetric bilinear forms

A bilinear form is called skew-symmetric or or antisymmetric or alternating if
B(v, v) = 0 for every v ∈ V . For such a form we have

0 = B(v + u, v + u) = B(v, v) +B(v, u) +B(u, v) +B(u, u) = B(v, u) +B(u, v).

so B(u, v) = −B(v, u). From this it follows that the left and right radicals are
equal.

Let U be a subspace of V such that V = U ⊕ Rad(B). If we form a basis of V
from bases of U and of Rad(B), then the matrix of B in this basis will have the
form (

A1 0
0 0

)
,

where A1 is the matrix of the restriction of B to U , with respect to the given basis
of U . It follows from this that the restriction of B to U is non-singular. In this way,
the study of skew-symmetric forms can be reduced to that of non-singular ones.
The same remark is also valid for symmetric bilinear forms.

Theorem 13.8. Let B be a non-singular skew-symmetric bilinear form on V . Then
V has even dimension n = 2m and there is a basis e1, . . . , em,f1, . . . , fm such that
B(ei, fj) = δij, B(ei, ej) = 0 and B(fi, fj) = 0 for all i, j.

Proof. We argue by induction on dimension. It is clear that the only skew-symmetric
form on a one-dimensional vector space is the zero form. Suppose dimV ≥ 2. Let
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e ∈ V be any nonzero vector. By nonsingularity and bilinearity, there exists f ∈ V
such that B(e, f) = 1. Let V1 = 〈e, f〉 and let U = {u ∈ V |B(u, v) = 0∀v ∈ V1}.
Then U is a subspace of V (equal to the intersection of Ker θ(e) and Ker θ(f)).
We claim that V = V1 ⊕ U . Let v ∈ V . Then v − B(v, f)e − B(e, v)f ∈ U , so
V = V1 + U . Next suppose u ∈ U ∩ V1. Then B(u,w) = 0 for all elements w of
V1, since u ∈ U , and for all elements of U , since w ∈ V1. But since V = V1 + U ,
this shows that u = 0. Thus we have proved our claim that V = V1 ⊕ U . Next
we observe that the restriction of the form to U is nonsingular. This is because
if u ∈ U satisfies B(u, u′) for all u′ ∈ U , then since V = V1 ⊕ U , we would have
B(u, v) = 0 for all v ∈ V , so u = 0.

Let n = dimV . Then dimU = n − 2 and U has a nonsingular alternating
bilinear form. Thew inductive hypothesis applies to tell us first that n− 2 is even.
Hence n is even. Write n = 2m. The inductive hypothesis also tells us that U has
a basis and a basis e2, . . . , em,f2, . . . , fm such that B(ei, fj) = δij , B(ei, ej) = 0
and B(fi, fj) = 0 for all i, j. Setting e1 = e and f1 = f , it is now easy to verify
that we have the required basis for V .

A basis of the type described in this theorem is called a symplectic basis.
This theorem tells us that all skew-symmetric forms on V which have the same

rank will look alike in suitable coordinates, or, in terms of matrices, any two n× n
skew-symmetric matrices of the same rank are congruent.
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14. Hermitian Forms

Throughout this section, F is taken to be the field C of complex numbers. Since
there are no positive definite quadratic forms over the complex numbers, another
type of form is needed to define the notion of distance in complex spaces.

Definition 14.1. A hermitian form on a complex vector space V is a mapping
h : V ×V → C which is linear in the first variable and satisfies hermitian symmetry
h(v, w) = h(w, v), where the bar denotes complex conjugation.

Thus, h is“conjugate-linear” in the second variable.
The theory parallels the discussion of symmetric bilinear forms.
As in the case of symmetric bilinear forms we have a polarization identity. Set

f(v) = h(v, v). Then

4h(v, w) = f(v + w)− f(v − w) + if(v + iw)− if(v − iw).

so h and f determine each other.
Let B = {v1, . . . , vn} be a basis of V . Let aij = h(vi, vj). Then h is determined

by the matrix A = (aij) and this matrix satisfies the relation A = A
t
. Any matrix

satisfying this relation is called hermitian. The form can be computed by the
formula

h(v, w) = [ v ]tBA[w ]B.

If we change basis from B to B′, the matrix of the form will be changed to P tAP ,
where P = [ id ]BB′ .

Theorem 14.1. Let h be a hermitian form on a complex vector space. Then in
suitable coordinates, we can write

h(x, x) = |x1|2 + · · ·+ |xp|2 − |xp+1|2 − · · · − |xr|2,
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where p and r depend only on h and not on the choice of basis.

Proof. Exercise. If you need help, look at the case of quadratic forms.

We can define positive (or negative) (semi-)definite hermitian forms just as for
quadratic forms. We see that the hermitian forms where p = r = n are positive
definite.
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15. Euclidean and Unitary Spaces

15.1. Euclidean spaces and the orthogonal group

Definition 15.1. A euclidean space is a vector space over R which has a positive
definite symmetric bilinear form 〈, 〉.

The reduction theorem for real quadratic forms (Cor. 13.6) tells us that such a
form always has an orthonormal basis.

Let V be a euclidean space of dimension n.

Definition 15.2. For a subspace W ⊆ V , we set W⊥ = {u ∈ V | 〈u,w〉 = 0∀w ∈
W}.

Exercise 15.1. W⊥ is a subspace of V and V = W ⊕W⊥.

Definition 15.3. Let H be a hyperplane of V , i.e a subspace of dimension n− 1.
Then H⊥ is one-dimensional and there exists a unit vector u ∈ H⊥, determined
up to sign. The reflection in H τH is the unique linear transformation which is the
identity on H and sends u to −u. One can check that the explicit formula is

τH(v) = v − 2〈v, u〉u,

by verifying that the linear map thus given has the desired effect on H and u.

We next consider those endomorphisms of V which preserve the form. Such an
endomorphism must have kernel zero, since the form is positive definite, hence is
invertible, and it is easily seen that the inverse also preserves the form. Thus, the
totality of such endomorphisms forms a group.

Definition 15.4. The group of linear maps of V which preserve the given positive
definite quadratic form is called the orthogonal group and denoted O(n) or On(R).
Its elements are called orthogonal transformations.
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It is easily checked that reflections in hyperplanes are orthogonal transforma-
tions. The next theorem shows that these reflections generate the whole orthogonal
group.

Exercise 15.2. Let A be the matrix of an orthogonal transformation with respect
to an orthonormal basis. Show that AtA = I. (Such a matrix is called an orthogonal
matrix.)

Theorem 15.1. Every orthogonal transformation is a product of ≤ n reflections in
hyperplanes.

Proof. Let σ ∈ O(n). We argue by induction on n, the case n = 1 being trivial,
since then the only orthogonal transformations are the identity and multiplication
by −1, which is a reflection in the hyperplane {0}. So we assume n > 1 and that
the theorem holds in dimension n−1. Assume first that there exists nonzero vector
v with σv = v. Set U = 〈v〉⊥. Then V = 〈v〉 ⊕ U , where U is of dimension n − 1.
Next, U is σ-invariant, for if u ∈ U we have

〈σu, v〉 = 〈σu, σv〉 = 〈u, v〉 = 0.

Let τ be the restriction of σ to U . Then τ is an orthogonal trnasformation of U .
By induction,

τ = τ1 · · · τr,

a product of r reflections τi in hyperplanes Ki of H. where r ≤ n− 1.
Let Hi = Ki + 〈v〉. Then Hi is a hyperplane of V . Let σi be the endomorphism

of V which is the identity on < v > and τi on H. Then one can check that σi is the
reflection in the hyperplane Hi of V . Thus, we obtain

σ = σ1 · · ·σr
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as a product of r ≤ n − 1 reflections. This was all under the assumption that σ
fixes the vector v. Now we treat the general case. Suppose x ∈ V and σx 6= x. Set
u = σx− x and let H =< u >⊥. We have

< σx+ x, σx− x >=< σx, σx > − < σx, x > − < x, σx > − < x, x >= 0.

so σx + x ∈ H. Let τ be the reflection in H. Then τ(σx + x) = σx + x and
τ(σx− x) = x− σx. Adding, we see τσx = x. Thus, the transformation τσ fixes a
vector and by that case, we can write

τσ = σ1 · · ·σr

as a porduct of r ≤ n− 1 reflections. Finally, since τ−1 = τ , we have

σ = τσ1 · · ·σr,

a product of at most n reflections.

15.2. Unitary spaces and the unitary group

Definition 15.5. A vector space over C which has a positive definite hermitian
form <,> is called a unitary space.

Let V be an n-dimensional unitary space. By Assignment 5, V has an orthonor-
mal basis.

We next consider the transformations of V which preserve the form, called
unitary transformations. The same reasoning as for euclidean spaces shows that
the set of such transformations form a group, called the unitary group and denoted
U(n) or Un(C).
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Exercise 15.3. Let A be the matrix of a unitary transformation with respect to
an orthonormal basis. Show that A

t
A = I. (Such matrices are called unitary

matrices).

Note that the unitary matrices which have real entries are precisely the or-
thogonal matrices. Thus general facts proved about unitary matrices also apply to
orthogonal matrices.

Theorem 15.2. A unitary transformation is diagonalizable and each eigenvalue λ
satisfies |λ| = 1

Proof. We argue by induction on n. If n = 1, it is easily seen that a unitary
transformation is a multiplication by λ1 with |λ| = 1. So assume n > 1 and that
the theorem holds for n − 1. Let T ∈ U(n). Since C is algebraically closed, T has
an eigenvector v1, and as in the case n = 1, the eigenvalue λ1 for v1 satisfies |λ| = 1.
Let W =< v1 >

⊥. Then V =< v1 > ⊕W and W is a T -invariant subspace of
dimension n− 1, with the restriction of T to W a unitary transformation of W (cf.
the proof of the previous theorem for orthogonal transformations). Therefore, by
induction, W has a basis v2, . . . , vn of eigenvectors of T with eigenvalues λ2, . . .λn
satisfying |λi| = 1. The basis v1, v2,. . . vn is the required basis of V of eigenvectors
for T , completing the proof of the theorem.

Corollary 15.3. 1. The minimal polynomial of a unitary transformation factors
into distinct linear factors of the form (x− eiθ).

2. The minimal polynomial of an orthogonal transformation of a euclidean space
has the following possible irreducible factors, each with multiplicity one:linear
factors of the form (x± 1) and quadratic factors of the form x2− 2 cos θx+ 1.

Proof. Part (1) is immediate from the theorem. To prove (2), we remember that
an orthogonal matrix is just unitary matrix which has real entries. Therefore,
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its minimal polynomial is a real polynomial, whose complex roots are as in (1).
Because the polynomial is real, the roots other than ±1 must occur in complex
conjuguate pairs eiθ and e−iθ. Each such pair gives an irredicble quadratic factor
(x− eiθ)(x− e−iθ) = x2 − 2 cos θ + 1 of the minimal polynomial.
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16. Self-Adjoint Linear Maps

The discussion of this section for unitary spaces can easily be modified for euclidean
spaces, but for clarity, we will consider just the unitary case.

Let V be a unitary space and <,> its positive definite hermitian form.

Definition 16.1. An endomorphism T of V is self-adjoint if < Tv,w >=< v, Tw >
for all v, w ∈ V .

The following results about a self-adjoint map T are simple consequences of the
definition and the proofs are left as exercises.

Lemma 16.1. The eigenvalues of T are real.

Lemma 16.2. Eigenvectors of T corresponding to distinct eigenvalues are orthog-
onal, i.e the value of the form is zero on such as pair.

Let Vλ be the (geometric) eigenspace of T for the eigenvalue λ.

Lemma 16.3. We have a decomposition

V = Vλ1 ⊕ · · · ⊕ Vλr ,

into mutually orthogonal eigenspaces.

Proof. We argue by induction on dimension. Let λ1 be an eigenvalue of T . Then,
as for any subspace, we can write

V = Vλ1 ⊕ (Vλ1)⊥.

It is clear that Vλ1 is T -invariant. Let w ∈ (Vλ1)⊥. Then for v ∈ Vλ1 , we have

< Tw, v >=< w, Tv >=< w, λ1v >= 0,



Introduction

Groups and Fields

Vector Spaces

Subspaces, Linear . . .

Bases and Coordinates

Linear Maps and . . .

Change of Basis

More on Linear Maps

Linear Endomorphisms

Quotient Spaces

Spaces of Linear . . .

Direct Sums

Minimal polynomial

Bilinear Forms

Hermitian Forms

Euclidean and . . .

Self-Adjoint Linear . . .

Notation

JJ J I II

Back

Full Screen

Close

Quit

which shows that (Vλ1)⊥ is T -invariant. The inductive hypothesis applies to (Vλ1)⊥,
so that

(Vλ1)⊥ = Vλ2 ⊕ · · · ⊕ Vλr ,
where λ2,. . . ,λr are the eigenvalues of T on (Vλ1)⊥. Note that none of these is
equal to λ1 since if w ∈ (Vλ1)⊥ was an eigenvector with eigenvalue λ1, it would
be orthogonal to itself. Thus we have the desired decmposition in to eigenspaces,
which are mutually orthogonal by the previous lemma.

We can now state and prove the Spectral Theorem.

Theorem 16.4. Assume T ∈ End(V ) is self-adjoint. Then V has an orthonormal
basis of eigenvectors for T .

Proof. Simply choose an orthonormal basis for each eigenspace Vλi of the preceding
lemma.

Exercise 16.1. Show that the matrix of a self-adjoint linear map with respect to
an orthonormal basis is hermitian, i.e A = A

t
. Show also that any hermitian matrix

arises in this way.

Corollary 16.5. Let A be an hermitian matrix. Then there is a unitary matrix U
such that

UAU−1 = UAU
t

is diagonal.

Since we have seen also that hermitian matrices arise as matrices of hermitian
forms, the above corollary also yields the following result about hermitian forms.

Corollary 16.6. Let h be an hermitian form. Then there exists an orthonormal
basis in which the form is diagonalized.
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17. Notation

• N the natural numbers 0, 1, 2,. . .

• Z the integers

• Q the rational numbers

• R the real numbers

• C the complex numbers

• ∀ universal quantifier (“for all”)

• ∃ existential quantifier (“there exists”)

• iff logical equivalence (“if and only if”)

• 0 the zero vector of a vector space

• [ v ]B the coordinate vector of v with respect to the ordered basis B

• Matm×n(F ) the set of m× n matrices with entries in F

• Poly(F ) the set of polynomials with coefficients in F

• φB the coordinate map with respect to the ordered basis B

• [ T ]CB the matrix of a linear map with respect to ordered bases B and C

• id, idV the identity map of V , id(v) = v

• In the identity n× n matrix
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