1.2.7. The meaning of the equation f = g is that f(x) = g(x) for all $x \in S$. In this problem, we have $S = \{0, 1\}$. We compute:

$$f(0) = 2.0 + 1 = 1,$$

$$g(0) = 1 + 4.0 - 2.0^{2} = 1,$$

$$f(1) = 2.1 + 1 = 3,$$

$$g(1) = 1 + 4.1 - 2.1^{2} = 3.$$

(1)

Thus, f(0) = g(0) and f(1) = g(1), so f = g.

By definition of addition of functions, f + g is the function which sends an element $x \in S$ to the real number f(x) + g(x). We compute:

$$(f+g)(0) = f(0) + g(0) = 1 + 1 = 2,$$

$$(f+g)(1) = f(1) + g(1) = 3 + 3 = 6,$$

$$h(0) = 5^{0} + 1 = 2,$$

$$h(1) = 5^{1} + 1 = 6.$$
(2)

Thus, (f+g)(0) = h(0) and (f+g)(1) = h(1), so f+g = h.

1.3.5. For any $n \times n$ matrix M, let Let $M_{i,j}$ denote the entry of M in row i and column j, for $1 \leq i, j \leq n$. Then $(M^t)_{ij} = M_{ji}$ by definition, so it is immediate from the definition of symmetric matrices that M is symmetric if and only if $M_{ij} = M_{ji}$ for all $1 \leq i, j \leq n$. Now let A be an arbitrary square matrix and let n be the number of rows (or columns) of A. Then by the definition of matrix addition and the definition of A^t , we have for all $1 \leq i, j \leq n$,

$$(A+A^{t})_{ij} = A_{ij} + (A^{t})_{ij} = A_{ij} + A_{ji} = A_{ji} + A_{ij} = A_{ji} + (A^{t})_{ji} = (A+A^{t})_{ji}.$$
(3)

Thus, $A + A^t$ is symmetric.