1.4.12. Show that a subset W of a vector space V is a subspace if and only if Span(W) = W.

Suppose first that Span(W) = W. Then by Theorem 1.5 Span(W) is a subspace, so W is a subspace.

Conversely, suppose that W is a subspace. Then, by definition of subspace, W is non-empty, and W is closed under addition and scalar multiplication. It follows that every linear combination of vectors of W lies in W. Thus, $\text{Span}(W) \subseteq W$. On the other hand, for any $w \in W$, we have w = 1.w, so $w \in \text{Span}(W)$. This shows that $W \subseteq \text{Span}(W)$. We have proved that W = Span(W).

1.4.15. Let S_1 and S_2 be subsets of a vector space V. Prove that $\operatorname{Span}(S_1 \cap S_2) \subseteq \operatorname{Span}(S_1) \cap \operatorname{Span}(S_2)$. Give an example in which $\operatorname{Span}(S_1 \cap S_2)$ and $\operatorname{Span}(S_1) \cap \operatorname{Span}(S_2)$ are equal and one in which they are unequal.

Let $v \in \text{Span}(S_1 \cap S_2)$. Then, by definition of span, v can be expressed as a linear combination $v = a_1v_1 + \cdots + a_mv_m$, where m is a nonnegative integer, v_1, \ldots, v_m are elements of $S_1 \cap S_2$, and a_1, \ldots, a_m are scalars. The elements v_i lie in S_1 , so $v \in \text{Span}(S_1)$, and they also lie in S_2 , so $v \in \text{Span}(S_2)$ as well. Thus, $v \in \text{Span}(S_1) \cap \text{Span}(S_2)$. Since v was an arbitrary element of $\text{Span}(S_1 \cap S_2)$, we have proved that $\text{Span}(S_1 \cap S_2) \subseteq \text{Span}(S_1) \cap \text{Span}(S_2)$.

Example of equality. Obviously, if $S_1 = S_2$, then $\text{Span}(S_1 \cap S_2) = \text{Span}(S_1) = \text{Span}(S_2) = \text{Span}(S_1) \cap \text{Span}(S_2)$. (As a concrete example, we could take $V = \mathbb{R}$, $S_1 = S_2 = \emptyset$.)

Unequal example. Let $V = \mathbb{R}$, $S_1 = \{1\}$ and $S_2 = \{2\}$, Then $S_1 \cap S_2 = \emptyset$, so $\operatorname{Span}(S_1 \cap S_2) = \operatorname{Span}(\emptyset) = \{0\}$, while $\operatorname{Span}(S_1) = \mathbb{R} = \operatorname{Span}(S_2) = \operatorname{Span}(S_1) \cap \operatorname{Span}(S_2)$.