1.4.12. Show that a subset W of a vector space V is a subspace if and only if $\operatorname{Span}(W)=W$.

Suppose first that $\operatorname{Span}(W)=W$. Then by Theorem $1.5 \operatorname{Span}(W)$ is a subspace, so W is a subspace.

Conversely, suppose that W is a subspace. Then, by definition of subspace, W is non-empty, and W is closed under addition and scalar multiplication. It follows that every linear combination of vectors of W lies in W. Thus, $\operatorname{Span}(W) \subseteq W$. On the other hand, for any $w \in W$, we have $w=1 . w$, so $w \in \operatorname{Span}(W)$. This shows that $W \subseteq \operatorname{Span}(W)$. We have proved that $W=\operatorname{Span}(W)$.
1.4.15. Let S_{1} and S_{2} be subsets of a vector space V. Prove that $\operatorname{Span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{Span}\left(S_{1}\right) \cap \operatorname{Span}\left(S_{2}\right)$. Give an example in which $\operatorname{Span}\left(S_{1} \cap S_{2}\right)$ and $\operatorname{Span}\left(S_{1}\right) \cap \operatorname{Span}\left(S_{2}\right)$ are equal and one in which they are unequal.

Let $v \in \operatorname{Span}\left(S_{1} \cap S_{2}\right)$. Then, by definition of span, v can be expressed as a linear combination $v=a_{1} v_{1}+\cdots+a_{m} v_{m}$, where m is a nonnegative integer, v_{1}, \ldots, v_{m} are elements of $S_{1} \cap S_{2}$, and a_{1}, \ldots, a_{m} are scalars. The elements v_{i} lie in S_{1}, so $v \in \operatorname{Span}\left(S_{1}\right)$, and they also lie in S_{2}, so $v \in \operatorname{Span}\left(S_{2}\right)$ as well. Thus, $v \in \operatorname{Span}\left(S_{1}\right) \cap \operatorname{Span}\left(S_{2}\right)$. Since v was an arbitrary element of $\operatorname{Span}\left(S_{1} \cap S_{2}\right)$, we have proved that $\operatorname{Span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{Span}\left(S_{1}\right) \cap \operatorname{Span}\left(S_{2}\right)$.

Example of equality. Obviously, if $S_{1}=S_{2}$, then $\operatorname{Span}\left(S_{1} \cap S_{2}\right)=$ $\operatorname{Span}\left(S_{1}\right)=\operatorname{Span}\left(S_{2}\right)=\operatorname{Span}\left(S_{1}\right) \cap \operatorname{Span}\left(S_{2}\right)$. (As a concrete example, we could take $\left.V=\mathbb{R}, S_{1}=S_{2}=\emptyset.\right)$

Unequal example. Let $V=\mathbb{R}, S_{1}=\{1\}$ and $S_{2}=\{2\}$, Then $S_{1} \cap S_{2}=\emptyset$, so $\operatorname{Span}\left(S_{1} \cap S_{2}\right)=\operatorname{Span}(\emptyset)=\{0\}$, while $\operatorname{Span}\left(S_{1}\right)=\mathbb{R}=\operatorname{Span}\left(S_{2}\right)=$ $\operatorname{Span}\left(S_{1}\right) \cap \operatorname{Span}\left(S_{2}\right)$.

