The critical group of a graph

Peter Sin, U. of Florida

Gainesville International Number Theory Conference,
March 20th, 2016
in honor of Krishna Alladi’s 60th birthday



Critical groups of graphs

Overview

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups
Paley graphs

Critical group of Paley graphs



Critical groups of graphs

Overview



This talk is about the critical group, a finite abelian group
associated with a finite graph.



This talk is about the critical group, a finite abelian group
associated with a finite graph.

The critical group is defined using the Laplacian matrix of the
graph.



This talk is about the critical group, a finite abelian group
associated with a finite graph.

The critical group is defined using the Laplacian matrix of the
graph.

The critical group arises in various contexts;



This talk is about the critical group, a finite abelian group
associated with a finite graph.

The critical group is defined using the Laplacian matrix of the
graph.

The critical group arises in various contexts;

» in statistical physics: Abelian Sandpile model
(Bak-Tang-Wiesenfeld, Dhar);



This talk is about the critical group, a finite abelian group
associated with a finite graph.

The critical group is defined using the Laplacian matrix of the
graph.

The critical group arises in various contexts;

» in statistical physics: Abelian Sandpile model
(Bak-Tang-Wiesenfeld, Dhar);

» its combinatorial variant: the Chip-firing game
(Bjérner-Lovasz-Shor, Gabrielov, Biggs);



This talk is about the critical group, a finite abelian group
associated with a finite graph.

The critical group is defined using the Laplacian matrix of the
graph.

The critical group arises in various contexts;

» in statistical physics: Abelian Sandpile model
(Bak-Tang-Wiesenfeld, Dhar);

» its combinatorial variant: the Chip-firing game
(Bjérner-Lovasz-Shor, Gabrielov, Biggs);

» in arithmetic geometry: Néron models (Lorenzini)



This talk is about the critical group, a finite abelian group
associated with a finite graph.

The critical group is defined using the Laplacian matrix of the
graph.

The critical group arises in various contexts;

» in statistical physics: Abelian Sandpile model
(Bak-Tang-Wiesenfeld, Dhar);

» its combinatorial variant: the Chip-firing game
(Bjérner-Lovasz-Shor, Gabrielov, Biggs);

» in arithmetic geometry: Néron models (Lorenzini)
» Riemann-Roch for graphs: graph jacobian (Baker-Norine).



This talk is about the critical group, a finite abelian group
associated with a finite graph.

The critical group is defined using the Laplacian matrix of the
graph.

The critical group arises in various contexts;

» in statistical physics: Abelian Sandpile model
(Bak-Tang-Wiesenfeld, Dhar);

» its combinatorial variant: the Chip-firing game
(Bjérner-Lovasz-Shor, Gabrielov, Biggs);

» in arithmetic geometry: Néron models (Lorenzini)
» Riemann-Roch for graphs: graph jacobian (Baker-Norine).

We’ll discuss the general problem of computing the critical
group for families of graphs, and the specific case of the Paley
graphs.
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Laplacian matrix and critical group

Let ' = (V, E) be a simple, connected graph.

A := adjacency matrix, D := degree matrix, L= D — Ais the
Laplacian matrix.

Think of Las a linearmap L : 2"V — ZV.
rank(L) = |V| — 1.
2V /Im(L) = Z & K(T)

The finite group K(I') is called the critical group of T.
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Kirchhoff’'s Matrix-Tree Theorem

Kirchhoff’'s Matrix Tree Theorem

For any connected graph ', the number of spanning trees is
equal to det(L), where L is obtained from L be deleting the row
and column corrresponding to any chosen vertex.

Also, det(L) = [K(T)| = b [T}5 -
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Rules

A configuration is an assignment of a nonnegative integer
s(v) to each round vertex v and — ), s(v) to the square
vertex.

A round vertex v can be fired if it has at least deg(v) chips.
The square vertex is fired only when no others can be fired.
A configuration is stable if no round vertex can be fired.

A configuration is recurrent if there is a sequence of firings
that lead to the same configuration.

A configuration is critical if it is both recurrent and stable.
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Relation with Laplacian

Start with a configuration s and fire vertices in a sequence
where each vertex v is fired x(v) times, ending up with
configuration s'.

s'(v) = s(v) — x(v)deg(v) + >y wyee X(W)

s=s-1Lx

Theorem (Biggs)
Let s be a configuration in the chip-firing game on a connected

graph G. Then there is a unique critical configuration which can
be reached from s.

Theorem (Biggs)

The set of critical configurations has a natural group operation
making it isomorphic to the critical group K(T').
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Smith normal form

Two integer matrices X and Y are equivalent iff there exist
unimodular integer matrices P and Q such that PXQ = Y

Each equivalence class contains a Smith normal form

[} ,  H=diag(sy,S2,...5r), Si|S2|-|Sr.

Similarly for PIDs.

The SNF of the Laplacian gives the structure of the critical
group.
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Trees, K(I') = {0}.

Complete graphs, K(Kp) = (Z/nZ)"2,

Wheel graphs W,, K(I') = (Z/¢,)?, if nis odd (Biggs).
Here ¢, is a Lucas number.

Complete multipartite graphs (Jacobson, Niedermaier,
Reiner 2003).

Conference graphs on a square-free number of vertices
(Lorenzini 2008).

Incidence graph of Lines in finite Projective space
(Brouwer-Ducey-S 2012).

Erdés-Renyi Random graphs (Wood, 2014)

Square Rook’s graph and complement (Berget 1991,
Ducey-Gerhard-Watson 2015)

Paley graphs (Chandler-S-Xiang 2015)
Peisert graphs (S. 2015)
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Paley graphs P(q)

Vertex setis Fq, g = p' =1 (mod 4)

S = set of nonzero squares in Fq

Two vertices x and y are joined by an edge iff x — y € S.
P(q) is a Cayley graph on (Fq, +) with connecting set S



Paley graphs are strongly regular graphs

P(q) is a strongly regular graph, self-complementary, with
parameters (v = g,k = (91 A = (@28, — 91y s

eigenvalues are k = %', r = _”*f and s = ~5Y9, with
multiplicities 1, 95 and respectlvely
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Automorphisms

Aut(P(q)) > Fg x S.

Ko@) = L (TE) (18) g

where ;1 = ‘74;1.

K(P(q)) = K(P(9))p & K(P(q))p

Use FF4-action to help compute p’-part.
Use S-action to help compute p-part.



p’-part: Discrete Fourier Transform

Let X be the complex character table of (Fq, +)



p’-part: Discrete Fourier Transform

Let X be the complex character table of (Fq, +)

X is a matrix over Z[(], ¢ a complex primitive p-th root of
unity.



p’-part: Discrete Fourier Transform

Let X be the complex character table of (Fq, +)

X is a matrix over Z[(], ¢ a complex primitive p-th root of
unity.

1y ! —

XX =1



p’-part: Discrete Fourier Transform

Let X be the complex character table of (Fq, +)

X is a matrix over Z[(], ¢ a complex primitive p-th root of
unity.

XX =1,

(MacWilliams-Mann)

:’XLXt = diag(k — ¥(S))y,



p’-part: Discrete Fourier Transform

Let X be the complex character table of (Fq, +)

X is a matrix over Z[(], ¢ a complex primitive p-th root of
unity.

XX =1,

(MacWilliams-Mann)

:’XLXt — diag(k — ¥(5))s, (1)

This equation can be viewed as matrix similarity, hence
equivalence, over suitable local rings of integers.



Theorem 1
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The p-part: F;-action

R =2Z,[¢{4-1], PR maximal ideal of R, R/pR = 4.

T:Fg — R, B {1, Teichmdller character.

T generates the cyclic group Hom(FF 5, R*).

Let R¥ be the free R-module with basis indexed by the
elements of Fq; write the basis element corresponding to
x € Fq as [x].

Iﬁ‘g acts on R¥s, permuting the basis by field multiplication,
R¥a decomposes as the direct sum R[0] @ R of a trivial
module with the regular module for Fy .

R's = o1 2E;, E; affording T'.

A basis element for E; is

ei= > T(x M.

X
xeFg
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S-action

Consider action Son Rfe. T/ = Ti+k on S.

S-isotypic components on R4 are each free R-modules of
rank 2.

{ej, ei1«} is basis of M; = E; + Ej
The S-fixed subspace M, has basis {1, [0], ex}.
L is S-equivariant endomorphisms of R4,

L([X]) = K[x] = ) _[x + 8], x € Fg.
seS
L maps each M; to itself.

= > T(x L.

xeFg
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Jacobi Sums

The Jacobi sum of two nontrivial characters 72 and T? is

J(T2TP) =) Te(x)TP(1 - x).

XE]Fq

Lemma
Suppose0 <i<qg-—2andi+#0,k. Then

1 .
L(e) = é(qe,- —J(T7, e k)

Lemma
(i) L(1)=0.

L(ex) = 3(1 — q([0] — ex))-
(iii) L([0]) = 2(q[0] — ex —1).

I\)\—k Nl



Corollary

The Laplacian matrix L is equivalent over R to the diagonal
matrix with diagonal entries J(T~', TX), fori=1,...,q — 2 and
i # k, two 1s and one zero.
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Gauss and Jacobi sums

Gauss sums: If 1 # x € Hom(Fg, R*),

a00) = > x(y)¢"W,

X
yeF;

where ( is a primitive p-th root of unity in some extension of R.
Lemma

If x and ) are nontrivial multiplicative characters of Fg such
that x is also nontrivial, then
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Stickelberger’s Congruence

Theorem
For0 < a< g — 1, write a p-adically as

a=ap+ap+---+a_1pl.

Then the number of times that p divides g(T~2) is
a +ar+-+a.

Corollary

Leta,beZ/(q—1)Z, witha, b,a+ b#0 (modq—1). Then
number of times that p divides J(T~2, T~?) is equal to the
number of carries in the addition a+ b (mod q — 1) when a and
b are written in p-digit form.
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The Counting Problem

k=3%(q—1)

What is the number of i, 1 < i< g— 2, i # k such that
adding i to 02;1 modulo g — 1 involves exactly \ carries?
This problem can be solved by applying the transfer matrix
method. (See Stanley’s book.)

Reformulate as a count of closed walks on a certain
directed graph.

Transfer matrix method yields the generating function for
our counting problem from the adjacency matrix of the
digraph.



Theorem (CSX, 2015)

Let q = p! be a prime power congruent to 1 modulo 4. Then the
number of p-adic elementary divisors of L(P(q)) which are
equaltop*, 0 <\ <t,is

min{\,t—\}

f(t,\) = Z; tft/ (t7 i> (&_2ii>(—p)" <p_£1>t2i,

The number of p-adic elementary divisors of L(P(q)) which are
equal to p' is (p+1) —2.
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Example:K(P(5%))

f(3,0)=3%=27,1(3,1) = (3)-3° - 3(H)(;) -5 -3 =36.

K(P(5%)) = (2/312)%29(Z2/52)% 0 (Z2/252)%° ¢ (Z/1252)%.
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Example:K(P(5%))

K(P(5%)) = (2/1562)%'2 ¢ (2/5Z)'** @ (Z/25Z)'"®
@ (2/1252)'* @ (2/625Z)"°.
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Similar construction to Paley. g = p?!, p =3 (mod 4).

Fo* = (8), C = (5%).

S'= CuUpBC. Note —1 € C.

P*(q) is a strongly regular graph , with same parameters
as P(q).

Let A* be the adjacency matrix, L* = kIl — A* the Laplacian.
By similar techniques we can compute the SNF of A*, L*.
When g = p?, A and A* have same SNF, so do L and L*.

In fact more is true.

Theorem
Assume q = p?

(a) There is a number field K such that A and A* are similar as
matrices over Ok. (Uses local-global principle for similarity
of matrices (Guralnick).)

(b) Forall c € Z, the matrices A+ cl and A* + ¢l have the
same SNF.



Thank you for your attention!
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