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This talk is about the critical group, a finite abelian group
associated with a finite graph.

The critical group is defined using the Laplacian matrix of the
graph.

The critical group arises in various contexts;

I in statistical physics: Abelian Sandpile model
(Bak-Tang-Wiesenfeld, Dhar);

I its combinatorial variant: the Chip-firing game
(Björner-Lovasz-Shor, Gabrielov, Biggs);

I in arithmetic geometry: Néron models (Lorenzini)
I Riemann-Roch for graphs: graph jacobian (Baker-Norine).

We’ll discuss the general problem of computing the critical
group for families of graphs, and the specific case of the Paley
graphs.
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Laplacian matrix and critical group

Let Γ = (V ,E) be a simple, connected graph.

A := adjacency matrix, D := degree matrix, L = D − A is the
Laplacian matrix.

Think of L as a linear map L : ZV → ZV .

rank(L) = |V | − 1.

ZV/ Im(L) ∼= Z⊕ K (Γ)

The finite group K (Γ) is called the critical group of Γ.
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Kirchhoff’s Matrix-Tree Theorem

Kirchhoff’s Matrix Tree Theorem
For any connected graph Γ, the number of spanning trees is
equal to det(L̃), where L̃ is obtained from L be deleting the row
and column corrresponding to any chosen vertex.

Also, det(L̃) = |K (Γ)| = 1
|V |
∏|V |

j=2 λj .
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A configuration is an assignment of a nonnegative integer
s(v) to each round vertex v and −

∑
v s(v) to the square

vertex.

A round vertex v can be fired if it has at least deg(v) chips.
The square vertex is fired only when no others can be fired.
A configuration is stable if no round vertex can be fired.
A configuration is recurrent if there is a sequence of firings
that lead to the same configuration.
A configuration is critical if it is both recurrent and stable.
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Relation with Laplacian

Start with a configuration s and fire vertices in a sequence
where each vertex v is fired x(v) times, ending up with
configuration s′.

s′(v) = s(v)− x(v) deg(v) +
∑

(v ,w)∈E x(w)

s′ = s − Lx

Theorem (Biggs)
Let s be a configuration in the chip-firing game on a connected
graph G. Then there is a unique critical configuration which can
be reached from s.

Theorem (Biggs)
The set of critical configurations has a natural group operation
making it isomorphic to the critical group K (Γ).
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Smith normal form

Two integer matrices X and Y are equivalent iff there exist
unimodular integer matrices P and Q such that PXQ = Y

Each equivalence class contains a Smith normal form[
H 0
0 0

]
, H = diag(s1, s2, . . . sr ), s1|s2| · · · |sr .

Similarly for PIDs.
The SNF of the Laplacian gives the structure of the critical
group.
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I Trees, K (Γ) = {0}.

I Complete graphs, K (Kn) ∼= (Z/nZ)n−2.
I Wheel graphs Wn, K (Γ) ∼= (Z/`n)2, if n is odd (Biggs).

Here `n is a Lucas number.
I Complete multipartite graphs (Jacobson, Niedermaier,

Reiner 2003).
I Conference graphs on a square-free number of vertices

(Lorenzini 2008).
I Incidence graph of Lines in finite Projective space

(Brouwer-Ducey-S 2012).
I Erdös-Renyi Random graphs (Wood, 2014)
I Square Rook’s graph and complement (Berget 1991,

Ducey-Gerhard-Watson 2015)
I Paley graphs (Chandler-S-Xiang 2015)
I Peisert graphs (S. 2015)
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Paley graphs P(q)

Vertex set is Fq, q = pt ≡ 1 (mod 4)

S = set of nonzero squares in Fq

Two vertices x and y are joined by an edge iff x − y ∈ S.
P(q) is a Cayley graph on (Fq,+) with connecting set S
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Paley graphs are strongly regular graphs

P(q) is a strongly regular graph, self-complementary, with
parameters (v = q, k = (q−1)

2 , λ = (q−5)
4 , µ = q−1

4 ). Its
eigenvalues are k = q−1

2 , r =
−1+

√
q

2 and s =
−1−√q

2 , with
multiplicities 1, q−1

2 and q−1
2 , respectively.
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Automorphisms

Aut(P(q)) ≥ Fq o S.

|K (P(q))| =
1
q

(
q +
√

q
2

)k (q −√q
2

)k

= q
q−3

2 µk ,

where µ = q−1
4 .

K (P(q)) = K (P(q))p ⊕ K (P(q))p′

Use Fq-action to help compute p′-part.
Use S-action to help compute p-part.
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p′-part: Discrete Fourier Transform

Let X be the complex character table of (Fq,+)

X is a matrix over Z[ζ], ζ a complex primitive p-th root of
unity.
1
q XX

t
= I.

(MacWilliams-Mann)

1
q

XLX
t

= diag(k − ψ(S))ψ, (1)

This equation can be viewed as matrix similarity, hence
equivalence, over suitable local rings of integers.
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Theorem
K (P(q))p′ ∼= (Z/µZ)2µ, where µ = q−1

4 .



The p-part: F×q -action

R = Zp[ξq−1], pR maximal ideal of R, R/pR ∼= Fq.

T : F×q → R×, β 7→ ξq−1, Teichmüller character.
T generates the cyclic group Hom(F×q ,R×).
Let RFq be the free R-module with basis indexed by the
elements of Fq; write the basis element corresponding to
x ∈ Fq as [x ].
F×q acts on RFq , permuting the basis by field multiplication,

RFq decomposes as the direct sum R[0]⊕ RF×q of a trivial
module with the regular module for F×q .

RF×q = ⊕q−2
i=0 Ei , Ei affording T i .

A basis element for Ei is

ei =
∑

x∈F×q

T i(x−1)[x ].
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S-action

Consider action S on RF×q . T i = T i+k on S.

S-isotypic components on RF×q are each free R-modules of
rank 2.
{ei ,ei+k} is basis of Mi = Ei + Ei+k

The S-fixed subspace M0 has basis {1, [0],ek}.
L is S-equivariant endomorphisms of RFq ,

L([x ]) = k [x ]−
∑
s∈S

[x + s], x ∈ Fq.

L maps each Mi to itself.

L(ei) =
∑

x∈F×q

T i(x−1)L([x ]).
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Jacobi Sums

The Jacobi sum of two nontrivial characters T a and T b is

J(T a,T b) =
∑
x∈Fq

T a(x)T b(1− x).

Lemma
Suppose 0 ≤ i ≤ q − 2 and i 6= 0, k. Then

L(ei) =
1
2

(qei − J(T−i ,T k )ei+k )

Lemma

(i) L(1) = 0.
(ii) L(ek ) = 1

2(1− q([0]− ek )).

(iii) L([0]) = 1
2(q[0]− ek − 1).
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Corollary
The Laplacian matrix L is equivalent over R to the diagonal
matrix with diagonal entries J(T−i ,T k ), for i = 1, . . . ,q − 2 and
i 6= k, two 1s and one zero.



Gauss and Jacobi sums

Gauss sums: If 1 6= χ ∈ Hom(F×q ,R×),

g(χ) =
∑

y∈F×q

χ(y)ζ tr(y),

where ζ is a primitive p-th root of unity in some extension of R.

Lemma
If χ and ψ are nontrivial multiplicative characters of F×q such
that χψ is also nontrivial, then

J(χ, ψ) =
g(χ)g(ψ)

g(χψ)
.
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Stickelberger’s Congruence

Theorem
For 0 < a < q − 1, write a p-adically as

a = a0 + a1p + · · ·+ at−1pt−1.

Then the number of times that p divides g(T−a) is
a0 + a1 + · · ·+ at−1.

Corollary
Let a, b ∈ Z/(q − 1)Z, with a, b, a + b 6≡ 0 (mod q − 1). Then
number of times that p divides J(T−a,T−b) is equal to the
number of carries in the addition a + b (mod q − 1) when a and
b are written in p-digit form.
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The Counting Problem

k = 1
2(q − 1)

What is the number of i , 1 ≤ i ≤ q − 2, i 6= k such that
adding i to q−1

2 modulo q − 1 involves exactly λ carries?
This problem can be solved by applying the transfer matrix
method. (See Stanley’s book.)
Reformulate as a count of closed walks on a certain
directed graph.
Transfer matrix method yields the generating function for
our counting problem from the adjacency matrix of the
digraph.
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Theorem (CSX, 2015)
Let q = pt be a prime power congruent to 1 modulo 4. Then the
number of p-adic elementary divisors of L(P(q)) which are
equal to pλ, 0 ≤ λ < t , is

f (t , λ) =

min{λ,t−λ}∑
i=0

t
t − i

(
t − i

i

)(
t − 2i
λ− i

)
(−p)i

(
p + 1

2

)t−2i

.

The number of p-adic elementary divisors of L(P(q)) which are

equal to pt is
(

p+1
2

)t
− 2.



Example:K (P(53))

f (3,0) = 33 = 27, f (3,1) =
(3

1

)
· 33 − 3

2

(2
1

)(1
0

)
· 5 · 3 = 36.

K (P(53)) ∼= (Z/31Z)62⊕(Z/5Z)36⊕(Z/25Z)36⊕(Z/125Z)25.
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Example:K (P(54))

f (4,0) = 34 = 81, f (4,1) =
(4

1

)
· 34 − 4

3

(3
1

)(2
0

)
· 5 · 32 = 144,

f (4,2) =
(4

2

)
· 34 − 4

3

(3
1

)(2
1

)
· 5 · 32 + 4

2

(2
2

)(0
0

)
· 52 = 176.

K (P(54)) ∼= (Z/156Z)312 ⊕ (Z/5Z)144 ⊕ (Z/25Z)176

⊕ (Z/125Z)144 ⊕ (Z/625Z)79.
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(2
2

)(0
0

)
· 52 = 176.

K (P(54)) ∼= (Z/156Z)312 ⊕ (Z/5Z)144 ⊕ (Z/25Z)176

⊕ (Z/125Z)144 ⊕ (Z/625Z)79.



Peisert graphs P∗(q)

Similar construction to Paley. q = p2t , p ≡ 3 (mod 4).

Fq
× = 〈β〉, C = 〈β4〉.

S′ = C ∪ βC. Note −1 ∈ C.
P∗(q) is a strongly regular graph , with same parameters
as P(q).
Let A∗ be the adjacency matrix, L∗ = kI −A∗ the Laplacian.
By similar techniques we can compute the SNF of A∗, L∗.
When q = p2, A and A∗ have same SNF, so do L and L∗.
In fact more is true.

Theorem
Assume q = p2

(a) There is a number field K such that A and A∗ are similar as
matrices over OK . (Uses local-global principle for similarity
of matrices (Guralnick).)

(b) For all c ∈ Z, the matrices A + cI and A∗ + cI have the
same SNF.
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Thank you for your attention!
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