The critical group of a graph

Peter Sin, U. of Florida

Gainesville International Number Theory Conference, March 20th, 2016 in honor of Krishna Alladi's 60th birthday

Critical groups of graphs

Overview

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

Critical groups of graphs

Overview

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

The critical group is defined using the *Laplacian matrix* of the graph.

The critical group is defined using the *Laplacian matrix* of the graph.

The critical group is defined using the *Laplacian matrix* of the graph.

The critical group arises in various contexts;

 in statistical physics: Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);

The critical group is defined using the *Laplacian matrix* of the graph.

- in statistical physics: Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);

The critical group is defined using the *Laplacian matrix* of the graph.

- in statistical physics: Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- ▶ in arithmetic geometry: Néron models (Lorenzini)

The critical group is defined using the *Laplacian matrix* of the graph.

- in statistical physics: Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- ▶ its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Néron models (Lorenzini)
- ► Riemann-Roch for graphs: graph jacobian (Baker-Norine).

The critical group is defined using the *Laplacian matrix* of the graph.

The critical group arises in various contexts;

- in statistical physics: Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Néron models (Lorenzini)
- ► Riemann-Roch for graphs: graph jacobian (Baker-Norine).

We'll discuss the general problem of computing the critical group for families of graphs, and the specific case of the Paley graphs.

Critical groups of graphs

Overview

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

Let $\Gamma = (V, E)$ be a simple, connected graph.

Let $\Gamma = (V, E)$ be a simple, connected graph.

A := adjacency matrix, D := degree matrix, L = D - A is the Laplacian matrix.

Let $\Gamma = (V, E)$ be a simple, connected graph.

A := adjacency matrix, D := degree matrix, L = D - A is the Laplacian matrix.

Think of L as a linear map $L: \mathbf{Z}^V \to \mathbf{Z}^V$.

Let $\Gamma = (V, E)$ be a simple, connected graph.

A := adjacency matrix, D := degree matrix, L = D - A is the Laplacian matrix.

Think of *L* as a linear map $L: \mathbf{Z}^V \to \mathbf{Z}^V$.

$$\operatorname{rank}(L) = |V| - 1.$$

Let $\Gamma = (V, E)$ be a simple, connected graph.

A := adjacency matrix, D := degree matrix, L = D - A is the Laplacian matrix.

Think of L as a linear map $L: \mathbf{Z}^V \to \mathbf{Z}^V$.

$$\operatorname{rank}(L) = |V| - 1.$$

$$\mathbf{Z}^V / \operatorname{Im}(L) \cong \mathbf{Z} \oplus \mathcal{K}(\Gamma)$$

Let $\Gamma = (V, E)$ be a simple, connected graph.

A := adjacency matrix, D := degree matrix, L = D - A is the Laplacian matrix.

Think of L as a linear map $L: \mathbf{Z}^V \to \mathbf{Z}^V$.

$$\operatorname{rank}(L) = |V| - 1.$$

$$\mathbf{Z}^V / \operatorname{Im}(L) \cong \mathbf{Z} \oplus \mathcal{K}(\Gamma)$$

The finite group $K(\Gamma)$ is called the *critical group* of Γ .

Kirchhoff's Matrix-Tree Theorem

Kirchhoff's Matrix Tree Theorem

For any connected graph Γ , the number of spanning trees is equal to $\det(\tilde{L})$, where \tilde{L} is obtained from L be deleting the row and column corrresponding to any chosen vertex.

Kirchhoff's Matrix-Tree Theorem

Kirchhoff's Matrix Tree Theorem

For any connected graph Γ , the number of spanning trees is equal to $\det(\tilde{L})$, where \tilde{L} is obtained from L be deleting the row and column corrresponding to any chosen vertex.

Also,
$$\det(\tilde{L}) = |K(\Gamma)| = \frac{1}{|V|} \prod_{j=2}^{|V|} \lambda_j$$
.

Critical groups of graphs

Overview

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

A *configuration* is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.

A *configuration* is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.

A round vertex v can be fired if it has at least deg(v) chips.

A *configuration* is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.

A round vertex v can be fired if it has at least deg(v) chips.

A *configuration* is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.

A round vertex v can be fired if it has at least deg(v) chips.

A *configuration* is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.

A round vertex v can be fired if it has at least deg(v) chips. The square vertex is fired only when no others can be fired.

A *configuration* is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.

A round vertex v can be fired if it has at least deg(v) chips. The square vertex is fired only when no others can be fired. A configuration is *stable* if no round vertex can be fired.

A *configuration* is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.

A round vertex v can be fired if it has at least deg(v) chips. The square vertex is fired only when no others can be fired.

A configuration is *stable* if no round vertex can be fired.

A configuration is *recurrent* if there is a sequence of firings that lead to the same configuration.

A configuration is an assignment of a nonnegative integer s(v) to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.

A round vertex v can be fired if it has at least deg(v) chips. The square vertex is fired only when no others can be fired.

A configuration is *stable* if no round vertex can be fired.

A configuration is *recurrent* if there is a sequence of firings that lead to the same configuration.

A configuration is *critical* if it is both recurrent and stable.

Start with a configuration s and fire vertices in a sequence where each vertex v is fired x(v) times, ending up with configuration s'.

Start with a configuration s and fire vertices in a sequence where each vertex v is fired x(v) times, ending up with configuration s'.

$$s'(v) = s(v) - x(v)\deg(v) + \sum_{(v,w)\in E} x(w)$$

Start with a configuration s and fire vertices in a sequence where each vertex v is fired x(v) times, ending up with configuration s'.

$$s'(v) = s(v) - x(v) \deg(v) + \sum_{(v,w) \in E} x(w)$$

$$s' = s - Lx$$

Start with a configuration s and fire vertices in a sequence where each vertex v is fired x(v) times, ending up with configuration s'.

$$s'(v) = s(v) - x(v) \deg(v) + \sum_{(v,w) \in E} x(w)$$

$$s' = s - Lx$$

Theorem (Biggs)

Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

Start with a configuration s and fire vertices in a sequence where each vertex v is fired x(v) times, ending up with configuration s'.

$$s'(v) = s(v) - x(v) \deg(v) + \sum_{(v,w) \in E} x(w)$$

$$s' = s - Lx$$

Theorem (Biggs)

Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

Theorem (Biggs)

The set of critical configurations has a natural group operation making it isomorphic to the critical group $K(\Gamma)$.

Critical groups of graphs

Overview

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

Two integer matrices X and Y are equivalent iff there exist unimodular integer matrices P and Q such that PXQ = Y

Two integer matrices X and Y are equivalent iff there exist unimodular integer matrices P and Q such that PXQ = Y Each equivalence class contains a *Smith normal form*

$$\begin{bmatrix} H \mid 0 \\ 0 \mid 0 \end{bmatrix}$$
, $H = \operatorname{diag}(s_1, s_2, \dots s_r)$, $s_1 \mid s_2 \mid \dots \mid s_r$.

Two integer matrices X and Y are equivalent iff there exist unimodular integer matrices P and Q such that PXQ = Y Each equivalence class contains a *Smith normal form*

$$\begin{bmatrix} H \mid 0 \\ 0 \mid 0 \end{bmatrix}$$
, $H = \operatorname{diag}(s_1, s_2, \dots s_r)$, $s_1 \mid s_2 \mid \dots \mid s_r$.

Similarly for PIDs.

Two integer matrices X and Y are equivalent iff there exist unimodular integer matrices P and Q such that PXQ = Y Each equivalence class contains a *Smith normal form*

$$\begin{bmatrix} H \mid 0 \\ 0 \mid 0 \end{bmatrix}, \quad H = \operatorname{diag}(s_1, s_2, \dots s_r), \quad s_1 \mid s_2 \mid \dots \mid s_r.$$

Similarly for PIDs.

The SNF of the Laplacian gives the structure of the critical group.

Critical groups of graphs

Overview

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

▶ Trees, $K(\Gamma) = \{0\}$.

- Trees, K(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.

- Trees, K(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.

- ▶ Trees, $K(\Gamma) = \{0\}$.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).

- ▶ Trees, $K(\Gamma) = \{0\}$.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).

- Trees, K(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Incidence graph of Lines in finite Projective space (Brouwer-Ducey-S 2012).

- Trees, K(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Incidence graph of Lines in finite Projective space (Brouwer-Ducey-S 2012).
- ► Erdös-Renyi Random graphs (Wood, 2014)

- Trees, K(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Incidence graph of Lines in finite Projective space (Brouwer-Ducey-S 2012).
- ► Erdös-Renyi Random graphs (Wood, 2014)
- Square Rook's graph and complement (Berget 1991, Ducey-Gerhard-Watson 2015)

- Trees, K(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Incidence graph of Lines in finite Projective space (Brouwer-Ducey-S 2012).
- ► Erdös-Renyi Random graphs (Wood, 2014)
- Square Rook's graph and complement (Berget 1991, Ducey-Gerhard-Watson 2015)
- Paley graphs (Chandler-S-Xiang 2015)

- Trees, K(Γ) = {0}.
- ▶ Complete graphs, $K(K_n) \cong (\mathbf{Z}/n\mathbf{Z})^{n-2}$.
- ▶ Wheel graphs W_n , $K(\Gamma) \cong (\mathbf{Z}/\ell_n)^2$, if n is odd (Biggs). Here ℓ_n is a *Lucas* number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Incidence graph of Lines in finite Projective space (Brouwer-Ducey-S 2012).
- Erdös-Renyi Random graphs (Wood, 2014)
- Square Rook's graph and complement (Berget 1991, Ducey-Gerhard-Watson 2015)
- Paley graphs (Chandler-S-Xiang 2015)
- Peisert graphs (S. 2015)

Critical groups of graphs

Overview

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

Vertex set is \mathbb{F}_q , $q = p^t \equiv 1 \pmod{4}$

Vertex set is \mathbb{F}_q , $q = p^t \equiv 1 \pmod{4}$ $S = \text{set of nonzero squares in } \mathbb{F}_q$

Vertex set is \mathbb{F}_q , $q=p^t\equiv 1\pmod 4$ S= set of nonzero squares in \mathbb{F}_q Two vertices x and y are joined by an edge iff $x-y\in S$.

Vertex set is \mathbb{F}_q , $q=p^t\equiv 1\pmod 4$ S= set of nonzero squares in \mathbb{F}_q Two vertices x and y are joined by an edge iff $x-y\in S$. P(q) is a Cayley graph on $(\mathbb{F}_q,+)$ with connecting set S

Paley graphs are strongly regular graphs

P(q) is a *strongly regular graph*, self-complementary, with parameters $(v=q,k=\frac{(q-1)}{2},\lambda=\frac{(q-5)}{4},\mu=\frac{q-1}{4})$. Its eigenvalues are $k=\frac{q-1}{2},\,r=\frac{-1+\sqrt{q}}{2}$ and $s=\frac{-1-\sqrt{q}}{2}$, with multiplicities 1, $\frac{q-1}{2}$ and $\frac{q-1}{2}$, respectively.

Critical groups of graphs

Overview

Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

Automorphisms

$$\operatorname{Aut}(\operatorname{P}(q)) \geq \mathbb{F}_q \rtimes S.$$

Automorphisms

$$\operatorname{Aut}(\operatorname{P}(q)) \geq \mathbb{F}_q \times S.$$

$$|\mathcal{K}(P(q))| = \frac{1}{q} \left(\frac{q+\sqrt{q}}{2}\right)^k \left(\frac{q-\sqrt{q}}{2}\right)^k = q^{\frac{q-3}{2}}\mu^k,$$

where
$$\mu = \frac{q-1}{4}$$
.

Automorphisms

$$\operatorname{Aut}(\operatorname{P}(q)) \geq \mathbb{F}_q \rtimes S.$$

$$|\mathcal{K}(\mathrm{P}(q))| = rac{1}{q} \left(rac{q+\sqrt{q}}{2}
ight)^k \left(rac{q-\sqrt{q}}{2}
ight)^k = q^{rac{q-3}{2}}\mu^k,$$

where
$$\mu = \frac{q-1}{4}$$
.

$$K(P(q)) = K(P(q))_{\rho} \oplus K(P(q))_{\rho'}$$

Automorphisms

$$\operatorname{Aut}(\operatorname{P}(q)) \geq \mathbb{F}_q \times S.$$

$$|\mathcal{K}(\mathrm{P}(q))| = rac{1}{q} \left(rac{q+\sqrt{q}}{2}
ight)^k \left(rac{q-\sqrt{q}}{2}
ight)^k = q^{rac{q-3}{2}}\mu^k,$$

where
$$\mu = \frac{q-1}{4}$$
.

$$K(P(q)) = K(P(q))_p \oplus K(P(q))_{p'}$$

Use \mathbb{F}_q -action to help compute p'-part.

Automorphisms

$$\operatorname{Aut}(\operatorname{P}(q)) \geq \mathbb{F}_q \times S.$$

$$|\mathcal{K}(\mathrm{P}(q))| = rac{1}{q} \left(rac{q+\sqrt{q}}{2}
ight)^k \left(rac{q-\sqrt{q}}{2}
ight)^k = q^{rac{q-3}{2}}\mu^k,$$

where $\mu = \frac{q-1}{4}$.

$$K(P(q)) = K(P(q))_p \oplus K(P(q))_{p'}$$

Use \mathbb{F}_q -action to help compute p'-part.

Use S-action to help compute p-part.

Let X be the complex character table of $(\mathbb{F}_q, +)$

Let X be the complex character table of $(\mathbb{F}_q,+)$ X is a matrix over $\mathbf{Z}[\zeta]$, ζ a complex primitive p-th root of unity.

Let X be the complex character table of $(\mathbb{F}_q, +)$

X is a matrix over $\mathbf{Z}[\zeta]$, ζ a complex primitive p-th root of unity.

$$\frac{1}{q}X\overline{X}^t=I.$$

Let X be the complex character table of $(\mathbb{F}_q, +)$

X is a matrix over $\mathbf{Z}[\zeta]$, ζ a complex primitive p-th root of unity.

$$\frac{1}{q}X\overline{X}^t = I.$$
 (MacWilliams-Mann)

$$\frac{1}{q}XL\overline{X}^t = \operatorname{diag}(k - \psi(S))_{\psi}, \tag{1}$$

Let X be the complex character table of $(\mathbb{F}_q, +)$

X is a matrix over $\mathbf{Z}[\zeta]$, ζ a complex primitive p-th root of unity.

$$\frac{1}{q}X\overline{X}^t = I.$$
 (MacWilliams-Mann)

$$\frac{1}{q}XL\overline{X}^t = \operatorname{diag}(k - \psi(S))_{\psi}, \tag{1}$$

This equation can be viewed as matrix similarity, hence equivalence, over suitable local rings of integers.

Theorem

$$\mathsf{K}(\mathtt{P}(q))_{p'}\cong (\mathbf{Z}/\mu\mathbf{Z})^{2\mu}$$
 , where $\mu=rac{q-1}{4}$.

 $R = \mathbf{Z}_p[\xi_{q-1}], pR$ maximal ideal of $R, R/pR \cong \mathbb{F}_q$.

 $R = \mathbf{Z}_p[\xi_{q-1}], pR$ maximal ideal of $R, R/pR \cong \mathbb{F}_q$. $T : \mathbb{F}_q^{\times} \to R^{\times}, \ \beta \mapsto \xi_{q-1}, \ \text{Teichmüller character.}$

 $R = \mathbf{Z}_p[\xi_{q-1}], pR$ maximal ideal of $R, R/pR \cong \mathbb{F}_q$.

 $T: \mathbb{F}_q^{\times} \to R^{\times}, \, \beta \mapsto \xi_{q-1},$ Teichmüller character.

T generates the cyclic group $\operatorname{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.

 $R = \mathbf{Z}_p[\xi_{q-1}], pR$ maximal ideal of $R, R/pR \cong \mathbb{F}_q$.

 $T: \mathbb{F}_q^{\times} \to R^{\times}, \, \beta \mapsto \xi_{q-1},$ Teichmüller character.

T generates the cyclic group $\operatorname{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.

Let $R^{\mathbb{F}_q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_q ; write the basis element corresponding to $x \in \mathbb{F}_q$ as [x].

 $R = \mathbf{Z}_p[\xi_{q-1}], pR$ maximal ideal of $R, R/pR \cong \mathbb{F}_q$.

 $T: \mathbb{F}_q^{\times} \to R^{\times}, \, \beta \mapsto \xi_{q-1},$ Teichmüller character.

T generates the cyclic group $\operatorname{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.

Let $R^{\mathbb{F}_q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_q ; write the basis element corresponding to $x \in \mathbb{F}_q$ as [x].

 \mathbb{F}_q^{\times} acts on $R^{\mathbb{F}_q}$, permuting the basis by field multiplication,

 $R = \mathbf{Z}_p[\xi_{q-1}], pR$ maximal ideal of $R, R/pR \cong \mathbb{F}_q$.

 $T: \mathbb{F}_q^{\times} \to R^{\times}$, $\beta \mapsto \xi_{q-1}$, Teichmüller character.

T generates the cyclic group $\operatorname{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.

Let $R^{\mathbb{F}_q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_q ; write the basis element corresponding to $x \in \mathbb{F}_q$ as [x].

 $\mathbb{F}_q^{ imes}$ acts on $R^{\mathbb{F}_q}$, permuting the basis by field multiplication,

 $R^{\mathbb{F}_q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}_q^{\times}}$ of a trivial module with the regular module for \mathbb{F}_q^{\times} .

 $R = \mathbf{Z}_p[\xi_{q-1}], pR$ maximal ideal of $R, R/pR \cong \mathbb{F}_q$.

 $T: \mathbb{F}_q^{\times} o R^{\times}$, $eta \mapsto \xi_{q-1}$, Teichmüller character.

T generates the cyclic group $\operatorname{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.

Let $R^{\mathbb{F}_q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_q ; write the basis element corresponding to $x \in \mathbb{F}_q$ as [x].

 $\mathbb{F}_q^{ imes}$ acts on $R^{\mathbb{F}_q}$, permuting the basis by field multiplication,

 $R^{\mathbb{F}_q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}_q^{\times}}$ of a trivial module with the regular module for \mathbb{F}_q^{\times} .

$$R^{\mathbb{F}_q^{\times}} = \bigoplus_{i=0}^{q-2} E_i$$
, E_i affording T^i .

 $R = \mathbf{Z}_p[\xi_{q-1}], pR$ maximal ideal of $R, R/pR \cong \mathbb{F}_q$.

 $T: \mathbb{F}_q^{\times} \to R^{\times}$, $\beta \mapsto \xi_{q-1}$, Teichmüller character.

T generates the cyclic group $\operatorname{Hom}(\mathbb{F}_q^{\times}, R^{\times})$.

Let $R^{\mathbb{F}_q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_q ; write the basis element corresponding to $x \in \mathbb{F}_q$ as [x].

 $\mathbb{F}_q^{ imes}$ acts on $R^{\mathbb{F}_q}$, permuting the basis by field multiplication,

 $R^{\mathbb{F}_q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}_q^{\times}}$ of a trivial module with the regular module for \mathbb{F}_q^{\times} .

 $R^{\mathbb{F}_q^{\times}} = \bigoplus_{i=0}^{q-2} E_i$, E_i affording T^i .

A basis element for E_i is

$$e_i = \sum_{x \in \mathbb{F}_q^\times} T^i(x^{-1})[x].$$

Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.

Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.

S-isotypic components on $R^{\mathbb{F}_q^{\times}}$ are each free R-modules of rank 2.

Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.

S-isotypic components on $R^{\mathbb{F}_q^{\times}}$ are each free R-modules of rank 2.

 $\{e_i, e_{i+k}\}$ is basis of $M_i = E_i + E_{i+k}$

Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.

S-isotypic components on $R^{\mathbb{F}_q^{\times}}$ are each free R-modules of rank 2.

 $\{e_i, e_{i+k}\}$ is basis of $M_i = E_i + E_{i+k}$

The S-fixed subspace M_0 has basis $\{1, [0], e_k\}$.

Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.

S-isotypic components on $R^{\mathbb{F}_q^{\times}}$ are each free R-modules of rank 2.

 $\{e_i, e_{i+k}\}$ is basis of $M_i = E_i + E_{i+k}$

The *S*-fixed subspace M_0 has basis $\{1, [0], e_k\}$.

L is *S*-equivariant endomorphisms of $R^{\mathbb{F}_q}$,

$$L([x]) = k[x] - \sum_{s \in S} [x+s], \ x \in \mathbb{F}_q.$$

Consider action S on $R^{\mathbb{F}_q^{\times}}$. $T^i = T^{i+k}$ on S.

S-isotypic components on $R^{\mathbb{F}_q^{\times}}$ are each free *R*-modules of rank 2.

 $\{e_i, e_{i+k}\}$ is basis of $M_i = E_i + E_{i+k}$

The *S*-fixed subspace M_0 has basis $\{1, [0], e_k\}$.

L is *S*-equivariant endomorphisms of $R^{\mathbb{F}_q}$,

$$L([x]) = k[x] - \sum_{s \in S} [x+s], \ x \in \mathbb{F}_q.$$

L maps each M_i to itself.

$$L(e_i) = \sum_{x \in \mathbb{F}_a^\times} T^i(x^{-1}) L([x]).$$

Jacobi Sums

The *Jacobi sum* of two nontrivial characters T^a and T^b is

$$J(T^a, T^b) = \sum_{x \in \mathbb{F}_a} T^a(x) T^b(1-x).$$

Jacobi Sums

The Jacobi sum of two nontrivial characters T^a and T^b is

$$J(T^a, T^b) = \sum_{x \in \mathbb{F}_q} T^a(x) T^b(1-x).$$

Lemma

Suppose $0 \le i \le q-2$ and $i \ne 0$, k. Then

$$L(e_i) = \frac{1}{2}(qe_i - J(T^{-i}, T^k)e_{i+k})$$

Jacobi Sums

The Jacobi sum of two nontrivial characters T^a and T^b is

$$J(T^a, T^b) = \sum_{x \in \mathbb{F}_q} T^a(x) T^b(1-x).$$

Lemma

Suppose $0 \le i \le q-2$ and $i \ne 0$, k. Then

$$L(e_i) = \frac{1}{2}(qe_i - J(T^{-i}, T^k)e_{i+k})$$

Lemma

- (i) L(1) = 0.
- (ii) $L(e_k) = \frac{1}{2}(\mathbf{1} q([0] e_k)).$
- (iii) $L([0]) = \frac{1}{2}(q[0] e_k 1).$

Corollary

The Laplacian matrix L is equivalent over R to the diagonal matrix with diagonal entries $J(T^{-i}, T^k)$, for i = 1, ..., q - 2 and $i \neq k$, two 1s and one zero.

Gauss and Jacobi sums

Gauss sums: If $1 \neq \chi \in \text{Hom}(\mathbb{F}_q^{\times}, \mathbb{R}^{\times})$,

$$g(\chi) = \sum_{\mathbf{y} \in \mathbb{F}_q^{\times}} \chi(\mathbf{y}) \zeta^{\operatorname{tr}(\mathbf{y})},$$

where ζ is a primitive p-th root of unity in some extension of R.

Gauss and Jacobi sums

Gauss sums: If $1 \neq \chi \in \text{Hom}(\mathbb{F}_q^{\times}, R^{\times})$,

$$g(\chi) = \sum_{\mathbf{y} \in \mathbb{F}_q^{\times}} \chi(\mathbf{y}) \zeta^{\operatorname{tr}(\mathbf{y})},$$

where ζ is a primitive p-th root of unity in some extension of R.

Lemma

If χ and ψ are nontrivial multiplicative characters of \mathbb{F}_q^{\times} such that $\chi\psi$ is also nontrivial, then

$$J(\chi,\psi)=rac{g(\chi)g(\psi)}{g(\chi\psi)}.$$

Stickelberger's Congruence

Theorem

For 0 < a < q - 1, write a p-adically as

$$a = a_0 + a_1 p + \cdots + a_{t-1} p^{t-1}$$
.

Then the number of times that p divides $g(T^{-a})$ is $a_0 + a_1 + \cdots + a_{t-1}$.

Stickelberger's Congruence

Theorem

For 0 < a < q - 1, write a p-adically as

$$a = a_0 + a_1 p + \cdots + a_{t-1} p^{t-1}$$
.

Then the number of times that p divides $g(T^{-a})$ is $a_0 + a_1 + \cdots + a_{t-1}$.

Corollary

Let $a, b \in \mathbf{Z}/(q-1)\mathbf{Z}$, with $a, b, a+b \not\equiv 0 \pmod{q-1}$. Then number of times that p divides $J(T^{-a}, T^{-b})$ is equal to the number of carries in the addition $a+b \pmod{q-1}$ when a and b are written in p-digit form.

$$k=\frac{1}{2}(q-1)$$

$$k=\tfrac{1}{2}(q-1)$$

What is the number of i, $1 \le i \le q-2$, $i \ne k$ such that adding i to $\frac{q-1}{2}$ modulo q-1 involves exactly λ carries?

$$k=\tfrac{1}{2}(q-1)$$

What is the number of i, $1 \le i \le q-2$, $i \ne k$ such that adding i to $\frac{q-1}{2}$ modulo q-1 involves exactly λ carries?

This problem can be solved by applying the *transfer matrix method*. (See Stanley's book.)

$$k=\tfrac{1}{2}(q-1)$$

What is the number of i, $1 \le i \le q-2$, $i \ne k$ such that adding i to $\frac{q-1}{2}$ modulo q-1 involves exactly λ carries?

This problem can be solved by applying the *transfer matrix method*. (See Stanley's book.)

Reformulate as a count of closed walks on a certain directed graph.

$$k=\tfrac{1}{2}(q-1)$$

What is the number of i, $1 \le i \le q-2$, $i \ne k$ such that adding i to $\frac{q-1}{2}$ modulo q-1 involves exactly λ carries?

This problem can be solved by applying the *transfer matrix method*. (See Stanley's book.)

Reformulate as a count of closed walks on a certain directed graph.

Transfer matrix method yields the generating function for our counting problem from the adjacency matrix of the digraph.

Theorem (CSX, 2015)

Let $q = p^t$ be a prime power congruent to 1 modulo 4. Then the number of p-adic elementary divisors of L(P(q)) which are equal to p^{λ} , $0 \le \lambda < t$, is

$$f(t,\lambda) = \sum_{i=0}^{\min\{\lambda,t-\lambda\}} \frac{t}{t-i} {t-i \choose i} {t-2i \choose \lambda-i} (-p)^i \left(\frac{p+1}{2}\right)^{t-2i}.$$

The number of p-adic elementary divisors of L(P(q)) which are equal to p^t is $\left(\frac{p+1}{2}\right)^t - 2$.

Example: $K(P(5^3))$

$$f(3,0)=3^3=27,\, f(3,1)=\binom{3}{1}\cdot 3^3-\tfrac{3}{2}\binom{2}{1}\binom{1}{0}\cdot 5\cdot 3=36.$$

Example: $K(P(5^3))$

$$f(3,0) = 3^3 = 27, f(3,1) = \binom{3}{1} \cdot 3^3 - \frac{3}{2} \binom{2}{1} \binom{1}{0} \cdot 5 \cdot 3 = 36.$$

$$\mathcal{K}(P(5^3)) \cong (\textbf{Z}/31\textbf{Z})^{62} \oplus (\textbf{Z}/5\textbf{Z})^{36} \oplus (\textbf{Z}/25\textbf{Z})^{36} \oplus (\textbf{Z}/125\textbf{Z})^{25}.$$

Example: $K(P(5^4))$

$$f(4,0) = 3^4 = 81, f(4,1) = \binom{4}{1} \cdot 3^4 - \frac{4}{3} \binom{3}{1} \binom{2}{0} \cdot 5 \cdot 3^2 = 144,$$

$$f(4,2) = \binom{4}{2} \cdot 3^4 - \frac{4}{3} \binom{3}{1} \binom{2}{1} \cdot 5 \cdot 3^2 + \frac{4}{2} \binom{2}{2} \binom{0}{0} \cdot 5^2 = 176.$$

Example: $K(P(5^4))$

$$f(4,0) = 3^4 = 81, f(4,1) = \binom{4}{1} \cdot 3^4 - \frac{4}{3} \binom{3}{1} \binom{2}{0} \cdot 5 \cdot 3^2 = 144,$$

$$f(4,2) = \binom{4}{2} \cdot 3^4 - \frac{4}{3} \binom{3}{1} \binom{2}{1} \cdot 5 \cdot 3^2 + \frac{4}{2} \binom{2}{2} \binom{0}{0} \cdot 5^2 = 176.$$

$$\begin{split} \textit{K}(P(5^4)) &\cong (\textbf{Z}/156\textbf{Z})^{312} \oplus (\textbf{Z}/5\textbf{Z})^{144} \oplus (\textbf{Z}/25\textbf{Z})^{176} \\ & \oplus (\textbf{Z}/125\textbf{Z})^{144} \oplus (\textbf{Z}/625\textbf{Z})^{79}. \end{split}$$

Similar construction to Paley. $q = p^{2t}$, $p \equiv 3 \pmod{4}$.

Similar construction to Paley. $q=p^{2t}, p\equiv 3\pmod 4$. $\mathbb{F}_q^\times=\langle\beta\rangle, \ C=\langle\beta^4\rangle.$

Similar construction to Paley. $q=p^{2t}$, $p\equiv 3\pmod 4$. $\mathbb{F}_q^\times=\langle\beta\rangle$, $C=\langle\beta^4\rangle$. $S'=C\cup\beta C$. Note $-1\in C$.

Similar construction to Paley. $q = p^{2t}$, $p \equiv 3 \pmod{4}$.

$$\mathbb{F}_q^{\times} = \langle \beta \rangle, C = \langle \beta^4 \rangle.$$

$$S' = C \cup \beta C$$
. Note $-1 \in C$.

 $\mathbf{P}^*(q)$ is a strongly regular graph , with same parameters as $\mathbf{P}(q)$.

Similar construction to Paley. $q = p^{2t}$, $p \equiv 3 \pmod{4}$.

$$\mathbb{F}_q^{\times} = \langle \beta \rangle, C = \langle \beta^4 \rangle.$$

$$S' = C \cup \beta C$$
. Note $-1 \in C$.

 $\mathbf{P}^*(q)$ is a strongly regular graph , with same parameters as $\mathbf{P}(q)$.

Let A^* be the adjacency matrix, $L^* = kI - A^*$ the Laplacian.

Similar construction to Paley. $q = p^{2t}$, $p \equiv 3 \pmod{4}$.

$$\mathbb{F}_q^{\times} = \langle \beta \rangle, C = \langle \beta^4 \rangle.$$

$$S' = C \cup \beta C$$
. Note $-1 \in C$.

 $\mathbf{P}^*(q)$ is a strongly regular graph , with same parameters as $\mathbf{P}(q)$.

Let A^* be the adjacency matrix, $L^* = kI - A^*$ the Laplacian. By similar techniques we can compute the SNF of A^* , L^* .

Similar construction to Paley. $q = p^{2t}$, $p \equiv 3 \pmod{4}$.

$$\mathbb{F}_q^{\times} = \langle \beta \rangle, C = \langle \beta^4 \rangle.$$

$$S' = C \cup \beta C$$
. Note $-1 \in C$.

 $\mathbf{P}^*(q)$ is a strongly regular graph , with same parameters as $\mathbf{P}(q)$.

Let A^* be the adjacency matrix, $L^* = kI - A^*$ the Laplacian. By similar techniques we can compute the SNF of A^* , L^* . When $q = p^2$, A and A^* have same SNF, so do L and L^* .

Similar construction to Paley. $q = p^{2t}$, $p \equiv 3 \pmod{4}$.

$$\mathbb{F}_q^{\times} = \langle \beta \rangle, C = \langle \beta^4 \rangle.$$

$$S' = C \cup \beta C$$
. Note $-1 \in C$.

 $\mathbf{P}^*(q)$ is a strongly regular graph , with same parameters as $\mathbf{P}(q)$.

Let A^* be the adjacency matrix, $L^* = kI - A^*$ the Laplacian. By similar techniques we can compute the SNF of A^* , L^* . When $q = p^2$, A and A^* have same SNF, so do L and L^* . In fact more is true.

Similar construction to Paley. $q = p^{2t}$, $p \equiv 3 \pmod{4}$.

$$\mathbb{F}_q^{\times} = \langle \beta \rangle, C = \langle \beta^4 \rangle.$$

$$S' = C \cup \beta C$$
. Note $-1 \in C$.

 $\mathbf{P}^*(q)$ is a strongly regular graph , with same parameters as $\mathbf{P}(q)$.

Let A^* be the adjacency matrix, $L^* = kI - A^*$ the Laplacian. By similar techniques we can compute the SNF of A^* , L^* . When $q = p^2$, A and A^* have same SNF, so do L and L^* . In fact more is true.

Theorem

Assume $q = p^2$

- (a) There is a number field K such that A and A^* are similar as matrices over \mathcal{O}_K . (Uses local-global principle for similarity of matrices (Guralnick).)
- (b) For all $c \in \mathbf{Z}$, the matrices A + cI and $A^* + cI$ have the same SNF.

Thank you for your attention!