The critical group of a graph

Peter Sin, U. of Florida

Gainesville International Number Theory Conference, March 20th, 2016 in honor of Krishna Alladi's 60th birthday

Critical groups of graphs

Overview
Laplacian matrix of a graph
Chip-firing game
Smith normal form

Some families of graphs with known critical groups
Paley graphs
Critical group of Paley graphs

Critical groups of graphs

Overview

Laplacian matrix of a graph

Chip-firing game
Smith normal form
Some families of graphs with known critical groups
Paley graphs
Critical group of Paley graphs

This talk is about the critical group, a finite abelian group associated with a finite graph.

This talk is about the critical group, a finite abelian group associated with a finite graph.

The critical group is defined using the Laplacian matrix of the graph.

This talk is about the critical group, a finite abelian group associated with a finite graph.

The critical group is defined using the Laplacian matrix of the graph.

The critical group arises in various contexts;

This talk is about the critical group, a finite abelian group associated with a finite graph.

The critical group is defined using the Laplacian matrix of the graph.

The critical group arises in various contexts;

- in statistical physics: Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);

This talk is about the critical group, a finite abelian group associated with a finite graph.

The critical group is defined using the Laplacian matrix of the graph.

The critical group arises in various contexts;

- in statistical physics: Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);

This talk is about the critical group, a finite abelian group associated with a finite graph.

The critical group is defined using the Laplacian matrix of the graph.

The critical group arises in various contexts;

- in statistical physics: Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Néron models (Lorenzini)

This talk is about the critical group, a finite abelian group associated with a finite graph.

The critical group is defined using the Laplacian matrix of the graph.

The critical group arises in various contexts;

- in statistical physics: Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Néron models (Lorenzini)
- Riemann-Roch for graphs: graph jacobian (Baker-Norine).

This talk is about the critical group, a finite abelian group associated with a finite graph.

The critical group is defined using the Laplacian matrix of the graph.

The critical group arises in various contexts;

- in statistical physics: Abelian Sandpile model (Bak-Tang-Wiesenfeld, Dhar);
- its combinatorial variant: the Chip-firing game (Björner-Lovasz-Shor, Gabrielov, Biggs);
- in arithmetic geometry: Néron models (Lorenzini)
- Riemann-Roch for graphs: graph jacobian (Baker-Norine).

We'll discuss the general problem of computing the critical group for families of graphs, and the specific case of the Paley graphs.

Critical groups of graphs

Overview

Laplacian matrix of a graph
Chip-firing game
Smith normal form

Some families of graphs with known critical groups
Paley graphs
Critical group of Paley graphs

Laplacian matrix and critical group

Let $\Gamma=(V, E)$ be a simple, connected graph.

Laplacian matrix and critical group

Let $\Gamma=(V, E)$ be a simple, connected graph.
$A:=$ adjacency matrix, $D:=$ degree matrix, $L=D-A$ is the Laplacian matrix.

Laplacian matrix and critical group

Let $\Gamma=(V, E)$ be a simple, connected graph.
$A:=$ adjacency matrix, $D:=$ degree matrix, $L=D-A$ is the Laplacian matrix.

Think of L as a linear map $L: \mathbf{Z}^{V} \rightarrow \mathbf{Z}^{V}$.

Laplacian matrix and critical group

Let $\Gamma=(V, E)$ be a simple, connected graph.
$A:=$ adjacency matrix, $D:=$ degree matrix, $L=D-A$ is the Laplacian matrix.

Think of L as a linear map $L: \mathbf{Z}^{V} \rightarrow \mathbf{Z}^{V}$.
$\operatorname{rank}(L)=|V|-1$.

Laplacian matrix and critical group

Let $\Gamma=(V, E)$ be a simple, connected graph.
$A:=$ adjacency matrix, $D:=$ degree matrix, $L=D-A$ is the Laplacian matrix.

Think of L as a linear map $L: \mathbf{Z}^{V} \rightarrow \mathbf{Z}^{V}$.
$\operatorname{rank}(L)=|V|-1$.
$\mathbf{Z}^{\vee} / \operatorname{Im}(L) \cong \mathbf{Z} \oplus K(\Gamma)$

Laplacian matrix and critical group

Let $\Gamma=(V, E)$ be a simple, connected graph.
$A:=$ adjacency matrix, $D:=$ degree matrix, $L=D-A$ is the Laplacian matrix.

Think of L as a linear map $L: \mathbf{Z}^{V} \rightarrow \mathbf{Z}^{V}$.
$\operatorname{rank}(L)=|V|-1$.
$\mathbf{Z}^{\vee} / \operatorname{Im}(L) \cong \mathbf{Z} \oplus K(\Gamma)$
The finite group $K(\Gamma)$ is called the critical group of Γ.

Kirchhoff's Matrix-Tree Theorem

Kirchhoff's Matrix Tree Theorem
For any connected graph Γ, the number of spanning trees is equal to $\operatorname{det}(\tilde{L})$, where \tilde{L} is obtained from L be deleting the row and column corresponding to any chosen vertex.

Kirchhoff's Matrix-Tree Theorem

Kirchhoff's Matrix Tree Theorem
For any connected graph Γ, the number of spanning trees is equal to $\operatorname{det}(\tilde{L})$, where \tilde{L} is obtained from L be deleting the row and column corresponding to any chosen vertex.
Also, $\operatorname{det}(\tilde{L})=|K(\Gamma)|=\frac{1}{|V|} \prod_{j=2}^{|V|} \lambda_{j}$.

Critical groups of graphs

Overview
Laplacian matrix of a graph

Chip-firing game

Smith normal form

Some families of graphs with known critical groups
Paley graphs
Critical group of Paley graphs

Rules

A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.

Rules

A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.

Rules

A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.

Rules

A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.

Rules

A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
The square vertex is fired only when no others can be fired.

Rules

A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
The square vertex is fired only when no others can be fired.
A configuration is stable if no round vertex can be fired.

Rules

A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
The square vertex is fired only when no others can be fired.
A configuration is stable if no round vertex can be fired.
A configuration is recurrent if there is a sequence of firings that lead to the same configuration.

Rules

A configuration is an assignment of a nonnegative integer $s(v)$ to each round vertex v and $-\sum_{v} s(v)$ to the square vertex.
A round vertex v can be fired if it has at least $\operatorname{deg}(v)$ chips.
The square vertex is fired only when no others can be fired.
A configuration is stable if no round vertex can be fired.
A configuration is recurrent if there is a sequence of firings that lead to the same configuration.
A configuration is critical if it is both recurrent and stable.

Sample game 1

Sample game 2

Relation with Laplacian

Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.

Relation with Laplacian

Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.

$$
s^{\prime}(v)=s(v)-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w)
$$

Relation with Laplacian

Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.

$$
\begin{aligned}
& s^{\prime}(v)=s(v)-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w) \\
& s^{\prime}=s-L x
\end{aligned}
$$

Relation with Laplacian

Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.

$$
\begin{aligned}
& s^{\prime}(v)=s(v)-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w) \\
& s^{\prime}=s-L x
\end{aligned}
$$

Theorem (Biggs)

Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

Relation with Laplacian

Start with a configuration s and fire vertices in a sequence where each vertex v is fired $x(v)$ times, ending up with configuration s^{\prime}.

$$
\begin{aligned}
& s^{\prime}(v)=s(v)-x(v) \operatorname{deg}(v)+\sum_{(v, w) \in E} x(w) \\
& s^{\prime}=s-L x
\end{aligned}
$$

Theorem (Biggs)

Let s be a configuration in the chip-firing game on a connected graph G. Then there is a unique critical configuration which can be reached from s.

Theorem (Biggs)

The set of critical configurations has a natural group operation making it isomorphic to the critical group $K(\Gamma)$.

Critical groups of graphs

Overview
Laplacian matrix of a graph
Chip-firing game

Smith normal form

Some families of graphs with known critical groups
Paley graphs
Critical group of Paley graphs

Smith normal form

Two integer matrices X and Y are equivalent iff there exist unimodular integer matrices P and Q such that $P X Q=Y$

Smith normal form

Two integer matrices X and Y are equivalent iff there exist unimodular integer matrices P and Q such that $P X Q=Y$
Each equivalence class contains a Smith normal form

$$
\left[\begin{array}{c:c}
H & 0 \\
\hdashline 0 & 0
\end{array}\right], \quad H=\operatorname{diag}\left(s_{1}, s_{2}, \ldots s_{r}\right), \quad s_{1}\left|s_{2}\right| \cdots \mid s_{r} .
$$

Smith normal form

Two integer matrices X and Y are equivalent iff there exist unimodular integer matrices P and Q such that $P X Q=Y$
Each equivalence class contains a Smith normal form

$$
\left[\begin{array}{c:c}
H & 0 \\
\hdashline 0 & 0
\end{array}\right], \quad H=\operatorname{diag}\left(s_{1}, s_{2}, \ldots s_{r}\right), \quad s_{1}\left|s_{2}\right| \cdots \mid s_{r} .
$$

Similarly for PIDs.

Smith normal form

Two integer matrices X and Y are equivalent iff there exist unimodular integer matrices P and Q such that $P X Q=Y$
Each equivalence class contains a Smith normal form

$$
\left[\begin{array}{c:c}
H & 0 \\
\hdashline 0 & 0
\end{array}\right], \quad H=\operatorname{diag}\left(s_{1}, s_{2}, \ldots s_{r}\right), \quad s_{1}\left|s_{2}\right| \cdots \mid s_{r} .
$$

Similarly for PIDs.
The SNF of the Laplacian gives the structure of the critical group.

Critical groups of graphs

Overview
Laplacian matrix of a graph

Chip-firing game
Smith normal form
Some families of graphs with known critical groups

Paley graphs

Critical group of Paley graphs

- Trees, $K(\Gamma)=\{0\}$.
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Incidence graph of Lines in finite Projective space (Brouwer-Ducey-S 2012).
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Incidence graph of Lines in finite Projective space (Brouwer-Ducey-S 2012).
- Erdös-Renyi Random graphs (Wood, 2014)
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Incidence graph of Lines in finite Projective space (Brouwer-Ducey-S 2012).
- Erdös-Renyi Random graphs (Wood, 2014)
- Square Rook's graph and complement (Berget 1991, Ducey-Gerhard-Watson 2015)
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Incidence graph of Lines in finite Projective space (Brouwer-Ducey-S 2012).
- Erdös-Renyi Random graphs (Wood, 2014)
- Square Rook's graph and complement (Berget 1991, Ducey-Gerhard-Watson 2015)
- Paley graphs (Chandler-S-Xiang 2015)
- Trees, $K(\Gamma)=\{0\}$.
- Complete graphs, $K\left(K_{n}\right) \cong(\mathbf{Z} / n \mathbf{Z})^{n-2}$.
- Wheel graphs $W_{n}, K(\Gamma) \cong\left(\mathbf{Z} / \ell_{n}\right)^{2}$, if n is odd (Biggs). Here ℓ_{n} is a Lucas number.
- Complete multipartite graphs (Jacobson, Niedermaier, Reiner 2003).
- Conference graphs on a square-free number of vertices (Lorenzini 2008).
- Incidence graph of Lines in finite Projective space (Brouwer-Ducey-S 2012).
- Erdös-Renyi Random graphs (Wood, 2014)
- Square Rook's graph and complement (Berget 1991, Ducey-Gerhard-Watson 2015)
- Paley graphs (Chandler-S-Xiang 2015)
- Peisert graphs (S. 2015)

Critical groups of graphs

Overview
Laplacian matrix of a graph
Chip-firing game
Smith normal form

Some families of graphs with known critical groups

Paley graphs
Critical group of Paley graphs

Paley graphs $\mathrm{P}(q)$

Vertex set is $\mathbb{F}_{q}, q=p^{t} \equiv 1(\bmod 4)$

Paley graphs $\mathrm{P}(q)$

Vertex set is $\mathbb{F}_{q}, q=p^{t} \equiv 1(\bmod 4)$
$S=$ set of nonzero squares in \mathbb{F}_{q}

Paley graphs $\mathrm{P}(q)$

Vertex set is $\mathbb{F}_{q}, q=p^{t} \equiv 1(\bmod 4)$
$S=$ set of nonzero squares in \mathbb{F}_{q}
Two vertices x and y are joined by an edge iff $x-y \in S$.

Paley graphs $\mathrm{P}(q)$

Vertex set is $\mathbb{F}_{q}, q=p^{t} \equiv 1(\bmod 4)$
$S=$ set of nonzero squares in \mathbb{F}_{q}
Two vertices x and y are joined by an edge iff $x-y \in S$.
$\mathrm{P}(q)$ is a Cayley graph on $\left(\mathbb{F}_{q},+\right)$ with connecting set S

Paley graphs are strongly regular graphs

$\mathrm{P}(q)$ is a strongly regular graph, self-complementary, with parameters $\left(v=q, k=\frac{(q-1)}{2}, \lambda=\frac{(q-5)}{4}, \mu=\frac{q-1}{4}\right)$. Its eigenvalues are $k=\frac{q-1}{2}, r=\frac{-1+\sqrt{q}}{2}$ and $s=\frac{-1-\sqrt{q}}{2}$, with multiplicities $1, \frac{q-1}{2}$ and $\frac{q-1}{2}$, respectively.

Critical groups of graphs

Overview
Laplacian matrix of a graph

Chip-firing game
Smith normal form
Some families of graphs with known critical groups
Paley graphs
Critical group of Paley graphs

Automorphisms

$\operatorname{Aut}(\mathrm{P}(q)) \geq \mathbb{F}_{q} \rtimes S$.

Automorphisms

$\operatorname{Aut}(\mathrm{P}(q)) \geq \mathbb{F}_{q} \rtimes S$.

$$
|K(P(q))|=\frac{1}{q}\left(\frac{q+\sqrt{q}}{2}\right)^{k}\left(\frac{q-\sqrt{q}}{2}\right)^{k}=q^{\frac{q-3}{2}} \mu^{k}
$$

where $\mu=\frac{q-1}{4}$.

Automorphisms

$\operatorname{Aut}(\mathrm{P}(q)) \geq \mathbb{F}_{q} \rtimes S$.

$$
|K(\mathrm{P}(q))|=\frac{1}{q}\left(\frac{q+\sqrt{q}}{2}\right)^{k}\left(\frac{q-\sqrt{q}}{2}\right)^{k}=q^{\frac{q-3}{2}} \mu^{k},
$$

where $\mu=\frac{q-1}{4}$.

$$
K(\mathrm{P}(q))=K(\mathrm{P}(q))_{p} \oplus K(\mathrm{P}(q))_{p^{\prime}}
$$

Automorphisms

$$
\begin{aligned}
& \operatorname{Aut}(\mathrm{P}(q)) \geq \mathbb{F}_{q} \rtimes S \\
& \qquad|K(\mathrm{P}(q))|=\frac{1}{q}\left(\frac{q+\sqrt{q}}{2}\right)^{k}\left(\frac{q-\sqrt{q}}{2}\right)^{k}=q^{\frac{q-3}{2}} \mu^{k}
\end{aligned}
$$

where $\mu=\frac{q-1}{4}$.
$K(\mathrm{P}(q))=K(\mathrm{P}(q))_{p} \oplus K(\mathrm{P}(q))_{p^{\prime}}$
Use \mathbb{F}_{q}-action to help compute p^{\prime}-part.

Automorphisms

$$
\operatorname{Aut}(\mathrm{P}(q)) \geq \mathbb{F}_{q} \rtimes S
$$

$$
|K(\mathrm{P}(q))|=\frac{1}{q}\left(\frac{q+\sqrt{q}}{2}\right)^{k}\left(\frac{q-\sqrt{q}}{2}\right)^{k}=q^{\frac{q-3}{2}} \mu^{k},
$$

where $\mu=\frac{q-1}{4}$.
$K(\mathrm{P}(q))=K(\mathrm{P}(q))_{p} \oplus K(\mathrm{P}(q))_{p^{\prime}}$
Use \mathbb{F}_{q}-action to help compute p^{\prime}-part.
Use S-action to help compute p-part.

p^{\prime}-part: Discrete Fourier Transform

Let X be the complex character table of $\left(\mathbb{F}_{q},+\right)$

p^{\prime}-part: Discrete Fourier Transform

Let X be the complex character table of $\left(\mathbb{F}_{q},+\right)$
X is a matrix over $\mathbf{Z}[\zeta], \zeta$ a complex primitive p-th root of unity.

p^{\prime}-part: Discrete Fourier Transform

Let X be the complex character table of $\left(\mathbb{F}_{q},+\right)$
X is a matrix over $\mathbf{Z}[\zeta], \zeta$ a complex primitive p-th root of unity.
$\frac{1}{q} X \bar{X}^{t}=l$.

p^{\prime}-part: Discrete Fourier Transform

Let X be the complex character table of $\left(\mathbb{F}_{q},+\right)$
X is a matrix over $\mathbf{Z}[\zeta], \zeta$ a complex primitive p-th root of unity.
$\frac{1}{q} X \bar{X}^{t}=I$.
(MacWilliams-Mann)

$$
\begin{equation*}
\frac{1}{q} X L \bar{X}^{t}=\operatorname{diag}(k-\psi(S))_{\psi} \tag{1}
\end{equation*}
$$

p^{\prime}-part: Discrete Fourier Transform

Let X be the complex character table of $\left(\mathbb{F}_{q},+\right)$
X is a matrix over $\mathbf{Z}[\zeta], \zeta$ a complex primitive p-th root of unity.
$\frac{1}{q} X \bar{X}^{t}=l$.
(MacWilliams-Mann)

$$
\begin{equation*}
\frac{1}{q} X L \bar{X}^{t}=\operatorname{diag}(k-\psi(S))_{\psi} \tag{1}
\end{equation*}
$$

This equation can be viewed as matrix similarity, hence equivalence, over suitable local rings of integers.

Theorem
$K(\mathrm{P}(q))_{p^{\prime}} \cong(\mathbf{Z} / \mu \mathbf{Z})^{2 \mu}$, where $\mu=\frac{q-1}{4}$.

The p-part: \mathbb{F}_{q}^{\times}-action

$$
R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R \text { maximal ideal of } R, R / p R \cong \mathbb{F}_{q}
$$

The p-part: \mathbb{F}_{q}^{\times}-action

$R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$. $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, \beta \mapsto \xi_{q-1}$, Teichmüller character.

The p-part: \mathbb{F}_{q}^{\times}-action

$R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$. $T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, \beta \mapsto \xi_{q-1}$, Teichmüller character. T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.

The p-part: \mathbb{F}_{q}^{\times}-action

$R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
$T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, \beta \mapsto \xi_{q-1}$, Teichmüller character.
T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
Let $R^{\mathbb{F} q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_{q}; write the basis element corresponding to $x \in \mathbb{F}_{q}$ as $[x]$.

The p-part: \mathbb{F}_{q}^{\times}-action

$R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
$T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, \beta \mapsto \xi_{q-1}$, Teichmüller character.
T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
Let $R^{\mathbb{F} q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_{q}; write the basis element corresponding to $x \in \mathbb{F}_{q}$ as $[x]$.
\mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F}_{q}}$, permuting the basis by field multiplication,

The p-part: \mathbb{F}_{q}^{\times}-action

$R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
$T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, \beta \mapsto \xi_{q-1}$, Teichmüller character.
T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
Let $R^{\mathbb{F} q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_{q}; write the basis element corresponding to $x \in \mathbb{F}_{q}$ as $[x]$.
\mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F}_{q}}$, permuting the basis by field multiplication, $R^{\mathbb{F} q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}^{\times}}$of a trivial module with the regular module for \mathbb{F}_{q}^{\times}.

The p-part: \mathbb{F}_{q}^{\times}-action

$R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
$T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, \beta \mapsto \xi_{q-1}$, Teichmüller character.
T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
Let $R^{\mathbb{F} q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_{q}; write the basis element corresponding to $x \in \mathbb{F}_{q}$ as $[x]$.
\mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F}_{q}}$, permuting the basis by field multiplication, $R^{\mathbb{F} q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}^{\times}}$of a trivial module with the regular module for \mathbb{F}_{q}^{\times}.
$R^{\mathbb{F} \times}=\oplus_{i=0}^{q-2} E_{i}, E_{i}$ affording T^{i}.

The p-part: \mathbb{F}_{q}^{\times}-action

$R=\mathbf{Z}_{p}\left[\xi_{q-1}\right], p R$ maximal ideal of $R, R / p R \cong \mathbb{F}_{q}$.
$T: \mathbb{F}_{q}^{\times} \rightarrow R^{\times}, \beta \mapsto \xi_{q-1}$, Teichmüller character.
T generates the cyclic group $\operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$.
Let $R^{\mathbb{F} q}$ be the free R-module with basis indexed by the elements of \mathbb{F}_{q}; write the basis element corresponding to $x \in \mathbb{F}_{q}$ as $[x]$.
\mathbb{F}_{q}^{\times}acts on $R^{\mathbb{F}_{q}}$, permuting the basis by field multiplication, $R^{\mathbb{F} q}$ decomposes as the direct sum $R[0] \oplus R^{\mathbb{F}^{\times}}$of a trivial module with the regular module for \mathbb{F}_{q}^{\times}.
$R^{\mathbb{F}_{q}^{\times}}=\oplus_{i=0}^{q-2} E_{i}, E_{i}$ affording T^{i}.
A basis element for E_{i} is

$$
e_{i}=\sum_{x \in \mathbb{F}_{q}^{\times}} T^{i}\left(x^{-1}\right)[x]
$$

S-action

Consider action S on $R^{\mathbb{F} 㐅} . T^{i}=T^{i+k}$ on S.

S-action

Consider action S on $R^{\mathbb{P}_{q}^{\times}} . T^{i}=T^{i+k}$ on S.
S-isotypic components on $R^{\mathbb{F}_{a}^{\times}}$are each free R-modules of rank 2.

S-action

Consider action S on $R^{\mathbb{P}_{q}^{\times}} . T^{i}=T^{i+k}$ on S.
S-isotypic components on $R^{\mathbb{F}_{a}^{\times}}$are each free R-modules of rank 2.
$\left\{e_{i}, e_{i+k}\right\}$ is basis of $M_{i}=E_{i}+E_{i+k}$

S-action

Consider action S on $R^{\mathbb{E} 㐅} . T^{i}=T^{i+k}$ on S.
S-isotypic components on $R^{\mathbb{F} \times}$ are each free R-modules of rank 2.
$\left\{\boldsymbol{e}_{i}, \boldsymbol{e}_{i+k}\right\}$ is basis of $M_{i}=E_{i}+E_{i+k}$
The S-fixed subspace M_{0} has basis $\left\{\mathbf{1},[0], e_{k}\right\}$.

S-action

Consider action S on $R^{\mathbb{P}_{q}^{\times}} . T^{i}=T^{i+k}$ on S.
S-isotypic components on $R^{\mathbb{F}_{a}^{\times}}$are each free R-modules of rank 2.
$\left\{e_{i}, e_{i+k}\right\}$ is basis of $M_{i}=E_{i}+E_{i+k}$
The S-fixed subspace M_{0} has basis $\left\{\mathbf{1},[0], e_{k}\right\}$.
L is S-equivariant endomorphisms of $R^{\mathbb{F} q}$,

$$
L([x])=k[x]-\sum_{s \in S}[x+s], x \in \mathbb{F}_{q}
$$

S-action

Consider action S on $R^{\mathbb{F}} \times T^{\times}=T^{i+k}$ on S.
S-isotypic components on $R^{\mathbb{F}_{a}^{\times}}$are each free R-modules of rank 2.
$\left\{e_{i}, e_{i+k}\right\}$ is basis of $M_{i}=E_{i}+E_{i+k}$
The S-fixed subspace M_{0} has basis $\left\{\mathbf{1},[0], e_{k}\right\}$.
L is S-equivariant endomorphisms of $R^{\mathbb{F} q}$,

$$
L([x])=k[x]-\sum_{s \in S}[x+s], x \in \mathbb{F}_{q}
$$

L maps each M_{i} to itself.

$$
L\left(e_{i}\right)=\sum_{x \in \mathbb{F}_{q}^{\times}} T^{i}\left(x^{-1}\right) L([x])
$$

Jacobi Sums

The Jacobi sum of two nontrivial characters T^{a} and T^{b} is

$$
J\left(T^{a}, T^{b}\right)=\sum_{x \in \mathbb{F}_{q}} T^{a}(x) T^{b}(1-x)
$$

Jacobi Sums

The Jacobi sum of two nontrivial characters T^{a} and T^{b} is

$$
J\left(T^{a}, T^{b}\right)=\sum_{x \in \mathbb{F}_{q}} T^{a}(x) T^{b}(1-x)
$$

Lemma
Suppose $0 \leq i \leq q-2$ and $i \neq 0, k$. Then

$$
L\left(e_{i}\right)=\frac{1}{2}\left(q e_{i}-J\left(T^{-i}, T^{k}\right) e_{i+k}\right)
$$

Jacobi Sums

The Jacobi sum of two nontrivial characters T^{a} and T^{b} is

$$
J\left(T^{a}, T^{b}\right)=\sum_{x \in \mathbb{F}_{q}} T^{a}(x) T^{b}(1-x)
$$

Lemma
Suppose $0 \leq i \leq q-2$ and $i \neq 0, k$. Then

$$
L\left(e_{i}\right)=\frac{1}{2}\left(q e_{i}-J\left(T^{-i}, T^{k}\right) e_{i+k}\right)
$$

Lemma
(i) $L(\mathbf{1})=0$.
(ii) $L\left(e_{k}\right)=\frac{1}{2}\left(1-q\left([0]-e_{k}\right)\right)$.
(iii) $L([0])=\frac{1}{2}\left(q[0]-e_{k}-\mathbf{1}\right)$.

Corollary

The Laplacian matrix L is equivalent over R to the diagonal matrix with diagonal entries $J\left(T^{-i}, T^{k}\right)$, for $i=1, \ldots, q-2$ and $i \neq k$, two 1 s and one zero.

Gauss and Jacobi sums

Gauss sums: If $1 \neq \chi \in \operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$,

$$
g(\chi)=\sum_{y \in \mathbb{F}_{q}^{\times}} \chi(y) \zeta^{\operatorname{tr}(y)}
$$

where ζ is a primitive p-th root of unity in some extension of R.

Gauss and Jacobi sums

Gauss sums: If $1 \neq \chi \in \operatorname{Hom}\left(\mathbb{F}_{q}^{\times}, R^{\times}\right)$,

$$
g(\chi)=\sum_{y \in \mathbb{F}_{q}^{\times}} \chi(y) \zeta^{\operatorname{tr}(y)}
$$

where ζ is a primitive p-th root of unity in some extension of R.
Lemma
If χ and ψ are nontrivial multiplicative characters of \mathbb{F}_{q}^{\times}such that $\chi \psi$ is also nontrivial, then

$$
J(\chi, \psi)=\frac{g(\chi) g(\psi)}{g(\chi \psi)}
$$

Stickelberger's Congruence

Theorem
For $0<a<q-1$, write a p-adically as

$$
a=a_{0}+a_{1} p+\cdots+a_{t-1} p^{t-1}
$$

Then the number of times that p divides $g\left(T^{-a}\right)$ is $a_{0}+a_{1}+\cdots+a_{t-1}$.

Stickelberger's Congruence

Theorem
For $0<a<q-1$, write a p-adically as

$$
a=a_{0}+a_{1} p+\cdots+a_{t-1} p^{t-1}
$$

Then the number of times that p divides $g\left(T^{-a}\right)$ is $a_{0}+a_{1}+\cdots+a_{t-1}$.

Corollary

Let $a, b \in \mathbf{Z} /(q-1) \mathbf{Z}$, with $a, b, a+b \not \equiv 0(\bmod q-1)$. Then number of times that p divides $J\left(T^{-a}, T^{-b}\right)$ is equal to the number of carries in the addition $a+b(\bmod q-1)$ when a and b are written in p-digit form.

The Counting Problem

$$
k=\frac{1}{2}(q-1)
$$

The Counting Problem

$k=\frac{1}{2}(q-1)$
What is the number of $i, 1 \leq i \leq q-2, i \neq k$ such that adding i to $\frac{q-1}{2}$ modulo $q-1$ involves exactly λ carries?

The Counting Problem

$k=\frac{1}{2}(q-1)$
What is the number of $i, 1 \leq i \leq q-2, i \neq k$ such that adding i to $\frac{q-1}{2}$ modulo $q-1$ involves exactly λ carries?
This problem can be solved by applying the transfer matrix method. (See Stanley's book.)

The Counting Problem

$k=\frac{1}{2}(q-1)$
What is the number of $i, 1 \leq i \leq q-2, i \neq k$ such that adding i to $\frac{q-1}{2}$ modulo $q-1$ involves exactly λ carries?
This problem can be solved by applying the transfer matrix method. (See Stanley's book.)
Reformulate as a count of closed walks on a certain directed graph.

The Counting Problem

$k=\frac{1}{2}(q-1)$
What is the number of $i, 1 \leq i \leq q-2, i \neq k$ such that adding i to $\frac{q-1}{2}$ modulo $q-1$ involves exactly λ carries?
This problem can be solved by applying the transfer matrix method. (See Stanley's book.)
Reformulate as a count of closed walks on a certain directed graph.
Transfer matrix method yields the generating function for our counting problem from the adjacency matrix of the digraph.

Theorem (CSX, 2015)

Let $q=p^{t}$ be a prime power congruent to 1 modulo 4. Then the number of p-adic elementary divisors of $L(\mathrm{P}(q))$ which are equal to $p^{\lambda}, 0 \leq \lambda<t$, is

$$
f(t, \lambda)=\sum_{i=0}^{\min \{\lambda, t-\lambda\}} \frac{t}{t-i}\binom{t-i}{i}\binom{t-2 i}{\lambda-i}(-p)^{i}\left(\frac{p+1}{2}\right)^{t-2 i} .
$$

The number of p-adic elementary divisors of $L(\mathrm{P}(q))$ which are equal to p^{t} is $\left(\frac{p+1}{2}\right)^{t}-2$.

Example: $K\left(\mathrm{P}\left(5^{3}\right)\right)$

$$
f(3,0)=3^{3}=27, f(3,1)=\binom{3}{1} \cdot 3^{3}-\frac{3}{2}\binom{2}{1}\binom{1}{0} \cdot 5 \cdot 3=36 .
$$

Example: $K\left(\mathrm{P}\left(5^{3}\right)\right)$

$$
\begin{aligned}
& f(3,0)=3^{3}=27, f(3,1)=\binom{3}{1} \cdot 3^{3}-\frac{3}{2}\binom{2}{1}\binom{1}{0} \cdot 5 \cdot 3=36 . \\
& K\left(\mathrm{P}\left(5^{3}\right)\right) \cong(\mathbf{Z} / 31 \mathbf{Z})^{62} \oplus(\mathbf{Z} / 5 \mathbf{Z})^{36} \oplus(\mathbf{Z} / 25 \mathbf{Z})^{36} \oplus(\mathbf{Z} / 125 \mathbf{Z})^{25} .
\end{aligned}
$$

Example: $K\left(\mathrm{P}\left(5^{4}\right)\right)$

$$
\begin{aligned}
& f(4,0)=3^{4}=81, f(4,1)=\binom{4}{1} \cdot 3^{4}-\frac{4}{3}\binom{3}{1}\binom{2}{0} \cdot 5 \cdot 3^{2}=144, \\
& f(4,2)=\binom{4}{2} \cdot 3^{4}-\frac{4}{3}\binom{3}{1}\binom{2}{1} \cdot 5 \cdot 3^{2}+\frac{4}{2}\binom{2}{2}\binom{0}{0} \cdot 5^{2}=176 .
\end{aligned}
$$

Example: $K\left(\mathrm{P}\left(5^{4}\right)\right)$

$$
\begin{aligned}
& f(4,0)=3^{4}=81, f(4,1)=\binom{4}{1} \cdot 3^{4}-\frac{4}{3}\binom{3}{1}\binom{2}{0} \cdot 5 \cdot 3^{2}=144, \\
& f(4,2)=\left(\begin{array}{l}
\binom{4}{2} \cdot 3^{4}-\frac{4}{3}\binom{3}{1}\binom{(2)}{1} \cdot 5 \cdot 3^{2}+\frac{4}{2}\binom{2}{2}\binom{0}{0} \cdot 5^{2}=176 .
\end{array}\right.
\end{aligned}
$$

$$
K\left(\mathrm{P}\left(5^{4}\right)\right) \cong(\mathbf{Z} / 156 \mathbf{Z})^{312} \oplus(\mathbf{Z} / 5 \mathbf{Z})^{144} \oplus(\mathbf{Z} / 25 \mathbf{Z})^{176}
$$

$$
\oplus(\mathbf{Z} / 125 \mathbf{Z})^{144} \oplus(\mathbf{Z} / 625 \mathbf{Z})^{79}
$$

Peisert graphs $\mathrm{P}^{*}(q)$

Similar construction to Paley. $q=p^{2 t}, p \equiv 3(\bmod 4)$.

Peisert graphs $\mathrm{P}^{*}(q)$

Similar construction to Paley. $q=p^{2 t}, p \equiv 3(\bmod 4)$. $\mathbb{F}_{q}{ }^{\times}=\langle\beta\rangle, C=\left\langle\beta^{4}\right\rangle$.

Peisert graphs $\mathrm{P}^{*}(q)$

Similar construction to Paley. $q=p^{2 t}, p \equiv 3(\bmod 4)$. $\mathbb{F}_{q}{ }^{\times}=\langle\beta\rangle, \boldsymbol{C}=\left\langle\beta^{4}\right\rangle$.
$S^{\prime}=C \cup \beta C$. Note $-1 \in C$.

Peisert graphs $\mathrm{P}^{*}(q)$

Similar construction to Paley. $q=p^{2 t}, p \equiv 3(\bmod 4)$. $\mathbb{F}_{q}{ }^{\times}=\langle\beta\rangle, \boldsymbol{C}=\left\langle\beta^{4}\right\rangle$.
$S^{\prime}=C \cup \beta C$. Note $-1 \in C$.
$\mathrm{P}^{*}(q)$ is a strongly regular graph, with same parameters as $\mathrm{P}(q)$.

Peisert graphs $\mathrm{P}^{*}(q)$

Similar construction to Paley. $q=p^{2 t}, p \equiv 3(\bmod 4)$. $\mathbb{F}_{q}{ }^{\times}=\langle\beta\rangle, C=\left\langle\beta^{4}\right\rangle$.
$S^{\prime}=C \cup \beta C$. Note $-1 \in C$.
$P^{*}(q)$ is a strongly regular graph, with same parameters as $\mathrm{P}(q)$.
Let A^{*} be the adjacency matrix, $L^{*}=k I-A^{*}$ the Laplacian.

Peisert graphs $\mathrm{P}^{*}(q)$

Similar construction to Paley. $q=p^{2 t}, p \equiv 3(\bmod 4)$. $\mathbb{F}_{q}{ }^{\times}=\langle\beta\rangle, \boldsymbol{C}=\left\langle\beta^{4}\right\rangle$.
$S^{\prime}=C \cup \beta C$. Note $-1 \in C$.
$\mathrm{P}^{*}(q)$ is a strongly regular graph, with same parameters as $\mathrm{P}(q)$.
Let A^{*} be the adjacency matrix, $L^{*}=k I-A^{*}$ the Laplacian. By similar techniques we can compute the SNF of A^{*}, L^{*}.

Peisert graphs $\mathrm{P}^{*}(q)$

Similar construction to Paley. $q=p^{2 t}, p \equiv 3(\bmod 4)$. $\mathbb{F}_{q}{ }^{\times}=\langle\beta\rangle, C=\left\langle\beta^{4}\right\rangle$.
$S^{\prime}=C \cup \beta C$. Note $-1 \in C$.
$P^{*}(q)$ is a strongly regular graph, with same parameters as $\mathrm{P}(q)$.
Let A^{*} be the adjacency matrix, $L^{*}=k I-A^{*}$ the Laplacian. By similar techniques we can compute the SNF of A^{*}, L^{*}. When $q=p^{2}, A$ and A^{*} have same SNF, so do L and L^{*}.

Peisert graphs $\mathrm{P}^{*}(q)$

Similar construction to Paley. $q=p^{2 t}, p \equiv 3(\bmod 4)$. $\mathbb{F}_{q}{ }^{\times}=\langle\beta\rangle, C=\left\langle\beta^{4}\right\rangle$.
$S^{\prime}=C \cup \beta C$. Note $-1 \in C$.
$P^{*}(q)$ is a strongly regular graph, with same parameters as $\mathrm{P}(q)$.
Let A^{*} be the adjacency matrix, $L^{*}=k I-A^{*}$ the Laplacian. By similar techniques we can compute the SNF of A^{*}, L^{*}. When $q=p^{2}, A$ and A^{*} have same SNF, so do L and L^{*}. In fact more is true.

Peisert graphs $\mathrm{P}^{*}(q)$

Similar construction to Paley. $q=p^{2 t}, p \equiv 3(\bmod 4)$.
$\mathbb{F}_{q}{ }^{\times}=\langle\beta\rangle, \boldsymbol{C}=\left\langle\beta^{4}\right\rangle$.
$S^{\prime}=C \cup \beta C$. Note $-1 \in C$.
$P^{*}(q)$ is a strongly regular graph, with same parameters as $\mathrm{P}(q)$.
Let A^{*} be the adjacency matrix, $L^{*}=k I-A^{*}$ the Laplacian.
By similar techniques we can compute the SNF of A^{*}, L^{*}. When $q=p^{2}, A$ and A^{*} have same SNF, so do L and L^{*}.
In fact more is true.
Theorem
Assume $q=p^{2}$
(a) There is a number field K such that A and A^{*} are similar as matrices over \mathcal{O}_{K}. (Uses local-global principle for similarity of matrices (Guralnick).)
(b) For all $c \in \mathbf{Z}$, the matrices $A+c l$ and $A^{*}+c l$ have the same SNF.

Thank you for your attention!

