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Grassmann and skew lines graphs

q = pt , p prime, V ∼= Fn
q,

Γ′ = Γ′(n,q) Grassman graph, vertices are lines of PG(V ),
i.e. 2-diml subspaces of V . Two vertices lie on an edge iff
the subspaces are distinct and have nonzero intersection.
Γ the complementary graph, is the skew lines graph.
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Strongly Regular Graphs

Definition
A strongly regular graph with parameters (v , k , λ, µ) is a
k -regular graph such that

any two adjacent vertices have λ neighbors in common;
and
any two nonadjacent vertices have µ neighbors in
common.

The adjacency matrix of a SRG has three eigenvalues k , r ,
s.

Γ′ is a SRG v = [ n
2 ]q, k = q(q + 1)

[ n−2
1

]
q,

λ =
[ n−1

1

]
q + q2 − 2, µ = (q + 1)2, r = [ n

1 ]q and

s = −(q + 1)
[ n−1

1

]
q.

Γ is also a SRG. So we have two families of SRGs
paramtrized by n, p and t .
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Smith Normal form

A(G), an adjacency matrix of a graph G.

L(G) = D(G)− A(G), Laplacian matrix.
The Smith normal forms of A(G) and L(G) are invariants of
G.
S(G), the abelian group whose cyclic decomposition is
given by the SNF of A(G) , (Smith group).
K (G), the finite part of the abelian group whose cyclic
decomposition is given by the SNF of L(G) (critical group,
sandpile group, jacobian).
|K (G)|= number of spanning trees (Kirchhoff’s Matrix-tree
Theorem).
Survey article on SNFs in combinatorics by R. Stanley
(JCTA 2016).
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A configuration on the graph G is an assignment of a
nonnegative integer s(v) to each round vertex v and
−
∑

v s(v) to the square vertex.

A round vertex v can be fired if it has at least deg(v) chips.
The square vertex is fired only when no others can be fired.
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Relation with Laplacian

Start with a configuration s and fire vertices in a sequence
where each vertex v is fired x(v) times, ending up with
configuration s′.

s′(v) = s(v)− x(v) deg(v) +
∑

(v ,w)∈E x(w)

s′ = s − L(G)x .
A configuration is stable if no round vertex can be fired,
recurrent if there is a sequence of firings leading back to
the same configuration, critical if recurrent and stable.

Theorem
(Dhar, Björner-Lovász, Biggs, Gabrielov,...) Consider the
chip-firing game on a connected graph G.

Any starting configuration leads to a unique critical
configuration.
The set of critical configurations has a natural group
operation making it isomorphic to the critical group K (G).
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GL(n,q)-Permutation modules

We (Ducey-S) compute the SNF for A = A(Γ(n,q)),
L = L(Γ(n,q)), A′ = A(Γ′(n,q)), L′ = L(Γ′(n,q)) .

Lr , the set of r -diml. subspaces of V .
A and L define ZGL(n,q)-module homomorphisms

A,L : ZL2 → ZL2

SNF can be computed one prime at a time (elementary
divisors).
Fix prime ` M = ZL2

` , M = FL2
` , α ∈ {A,L}.

I

M = M0 ⊇ M1 ⊇ · · · ⊇ Mr = Ker(α) ⊇ 0.

M = M0 ⊇ M1 ⊇ · · · ⊇ M r = Ker(α) ⊇ 0.
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ei = ei(α) := multiplicity of `i as an elementary divisor of α.
(e0 = rank(α)).

dim Ma = 1 +
∑

i≥a ei .

All quotients Ma/Ma+1 are F` GL(n,q)-modules, so the
number of nonzero ei is at most the composition length of
M as a F` GL(n,q)-module.
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`-modular representations of GL(n,q)

` 6= p

Theory due to G. D. James.
M is a q-analogue of the F`-permutation module of subsets
of size 2 in a set of size n.
M has 3 isomorphism types of composition factors.
The composition length is ≤ 6 and does not grow with n or
t or p, but depends on certain divisibility conditions.
Based on James results, it is easy to work out the
submodule structure of M in all cases.
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Example: ` | q + 1, n even

Assume ` | q + 1, n even.

Then k = q(q + 1)2h, r = (q + 1)(qh − 1), s = −(q + 1),
where h := qn−2−1

q2−1 .

r has multiplicity f = [ n
1 ]q − 1, s has multiplicity

g = [ n
2 ]q − [ n

1 ]q.
Let a = v`(q + 1), b = v`(qh − 1) and c = v`(h).
` | h if and only if ` | n−2

2

gcd(h,qh − 1) = 1, so either c = 0 or b = 0.
b = 0 if and only if ` - [ n

2 ]q.
We’ll look at the case c = 0 and b = 0. Then
v`(r) = v`(s) = a and v`(|S(Γ)|) = af + ag + 2a
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Let a = v`(q + 1), b = v`(qh − 1) and c = v`(h).
` | h if and only if ` | n−2

2

gcd(h,qh − 1) = 1, so either c = 0 or b = 0.
b = 0 if and only if ` - [ n

2 ]q.
We’ll look at the case c = 0 and b = 0. Then
v`(r) = v`(s) = a and v`(|S(Γ)|) = af + ag + 2a
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Example: ` | q + 1, n even, v`(r) = v`(s) = a

M = Z`1⊕ Y .

On Y = Ker(J) we have

A′(A′ − (r + s)I) = −rsI.

This shows that (A′ − (r + s)I)(Y ) ⊆ M2a ∩ Y , so as
` | (r + s), A′(Y ) ⊆ M2a ∩ Y .
A′(Y ) is nonzero, so it has D1 as a composition factor.
dim M2a ∩ Y ≥ f − 1 and so dim M2a ≥ f .
Further analysis of A′ and structure of M shows
dim Ma ≥= g + 2.



Example: ` | q + 1, n even, v`(r) = v`(s) = a

M = Z`1⊕ Y .
On Y = Ker(J) we have

A′(A′ − (r + s)I) = −rsI.

This shows that (A′ − (r + s)I)(Y ) ⊆ M2a ∩ Y , so as
` | (r + s), A′(Y ) ⊆ M2a ∩ Y .
A′(Y ) is nonzero, so it has D1 as a composition factor.
dim M2a ∩ Y ≥ f − 1 and so dim M2a ≥ f .
Further analysis of A′ and structure of M shows
dim Ma ≥= g + 2.



Example: ` | q + 1, n even, v`(r) = v`(s) = a

M = Z`1⊕ Y .
On Y = Ker(J) we have

A′(A′ − (r + s)I) = −rsI.

This shows that (A′ − (r + s)I)(Y ) ⊆ M2a ∩ Y , so as
` | (r + s), A′(Y ) ⊆ M2a ∩ Y .

A′(Y ) is nonzero, so it has D1 as a composition factor.
dim M2a ∩ Y ≥ f − 1 and so dim M2a ≥ f .
Further analysis of A′ and structure of M shows
dim Ma ≥= g + 2.



Example: ` | q + 1, n even, v`(r) = v`(s) = a

M = Z`1⊕ Y .
On Y = Ker(J) we have

A′(A′ − (r + s)I) = −rsI.

This shows that (A′ − (r + s)I)(Y ) ⊆ M2a ∩ Y , so as
` | (r + s), A′(Y ) ⊆ M2a ∩ Y .
A′(Y ) is nonzero, so it has D1 as a composition factor.

dim M2a ∩ Y ≥ f − 1 and so dim M2a ≥ f .
Further analysis of A′ and structure of M shows
dim Ma ≥= g + 2.



Example: ` | q + 1, n even, v`(r) = v`(s) = a

M = Z`1⊕ Y .
On Y = Ker(J) we have

A′(A′ − (r + s)I) = −rsI.

This shows that (A′ − (r + s)I)(Y ) ⊆ M2a ∩ Y , so as
` | (r + s), A′(Y ) ⊆ M2a ∩ Y .
A′(Y ) is nonzero, so it has D1 as a composition factor.
dim M2a ∩ Y ≥ f − 1 and so dim M2a ≥ f .

Further analysis of A′ and structure of M shows
dim Ma ≥= g + 2.



Example: ` | q + 1, n even, v`(r) = v`(s) = a

M = Z`1⊕ Y .
On Y = Ker(J) we have

A′(A′ − (r + s)I) = −rsI.

This shows that (A′ − (r + s)I)(Y ) ⊆ M2a ∩ Y , so as
` | (r + s), A′(Y ) ⊆ M2a ∩ Y .
A′(Y ) is nonzero, so it has D1 as a composition factor.
dim M2a ∩ Y ≥ f − 1 and so dim M2a ≥ f .
Further analysis of A′ and structure of M shows
dim Ma ≥= g + 2.



We have dim M2a ≥ f , dim Ma ≥= g + 2.

I

a(f + g) + 2a = v`(|S(Γ)|) =
∑
i≥0

iei

≥
∑

a≤i<2a

iei +
∑
i≥2a

iei

≥ a
∑

a≤i<2a

ei + 2a
∑
i≥2a

ei

≥ a(dim Ma − dim M2a) + 2a dim M2a

≥ a(g + 2) + af .

Therefore, equality holds throughout, and it follows that
e0 = f − 1, ea = g − f + 2, e2a = f (and ei = 0 otherwise).
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Here the number of composition factors of M grows like nt ,
where q = pt .

But from the eigenvalues, L′ has no p-elementary divisors.
For A′, we can see that only k is divisible by p, so S(Γ′) is
cyclic of order pt .

I The skew lines matrices A and L are much harder but
much of the difficulty was handled in earlier work for the
case n = 4 (Brouwer-Ducey-S.)

I Note A ≡ −L mod (p4t ), so just consider A.
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Example

Table: The elementary divisors of the incidence matrix of lines vs.
lines in PG(3,9), where two lines are incident when skew.

Elem. Div. 1 3 32 34 35 36 38

Multiplicity 361 256 6025 202 256 361 1



For n = 4 we have

A(A + q(q − 1)I) = q3I + q3(q − 1)J,

For general n, we have

A(A + q(
[ n−2

1

]
q − 2)I)

= q3[ n−3
1

]
qI + q3

[ n−3
1

]
q

([ n−1
1

]
q − (q + 2)

)
q + 1

J,
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Reductions using SRG equation

p - [ n
2 ]q so

ZL2
p = Zp1⊕ Y , Y = Ker(J)

A(1) = k1 = q4[ n−2
2

]
q1, so e4t ≥ 1.

We have
A|Y [A|Y − qz1I] = q3z2I,

where z1, z2 are units in Zp.
I This equation implies:

1. A|Y has no elementary divisors pi for i > 3t .
2. ei = e3t−i 0 ≤ i < t .
3. ei = 0 unless 0 ≤ i ≤ t or 2t ≤ i ≤ 3t .
4. Once we have ei 0 ≤ i < t we have them all.
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Reduction to point-line incidence

Ar ,s := the skewness matrix of r -subspaces vs.
s-subspaces of V . So A = A2,2.

−Ar ,s ≡ Ar ,1A1,s (mod pt )

Hence ei(Ar ,s) = ei(Ar ,1A1,s) for i < t .
The p-elementary divisors for Ar ,1 (and A1,r ) were
computed by Chandler-Sin-Xiang (2006).
Nontrivial to relate p-elementary divisors of Ar ,1 and A1,s to
those of Ar ,1A1,s.



Reduction to point-line incidence

Ar ,s := the skewness matrix of r -subspaces vs.
s-subspaces of V . So A = A2,2.

−Ar ,s ≡ Ar ,1A1,s (mod pt )

Hence ei(Ar ,s) = ei(Ar ,1A1,s) for i < t .
The p-elementary divisors for Ar ,1 (and A1,r ) were
computed by Chandler-Sin-Xiang (2006).
Nontrivial to relate p-elementary divisors of Ar ,1 and A1,s to
those of Ar ,1A1,s.



Reduction to point-line incidence

Ar ,s := the skewness matrix of r -subspaces vs.
s-subspaces of V . So A = A2,2.

−Ar ,s ≡ Ar ,1A1,s (mod pt )

Hence ei(Ar ,s) = ei(Ar ,1A1,s) for i < t .

The p-elementary divisors for Ar ,1 (and A1,r ) were
computed by Chandler-Sin-Xiang (2006).
Nontrivial to relate p-elementary divisors of Ar ,1 and A1,s to
those of Ar ,1A1,s.



Reduction to point-line incidence

Ar ,s := the skewness matrix of r -subspaces vs.
s-subspaces of V . So A = A2,2.

−Ar ,s ≡ Ar ,1A1,s (mod pt )

Hence ei(Ar ,s) = ei(Ar ,1A1,s) for i < t .
The p-elementary divisors for Ar ,1 (and A1,r ) were
computed by Chandler-Sin-Xiang (2006).

Nontrivial to relate p-elementary divisors of Ar ,1 and A1,s to
those of Ar ,1A1,s.



Reduction to point-line incidence

Ar ,s := the skewness matrix of r -subspaces vs.
s-subspaces of V . So A = A2,2.

−Ar ,s ≡ Ar ,1A1,s (mod pt )

Hence ei(Ar ,s) = ei(Ar ,1A1,s) for i < t .
The p-elementary divisors for Ar ,1 (and A1,r ) were
computed by Chandler-Sin-Xiang (2006).
Nontrivial to relate p-elementary divisors of Ar ,1 and A1,s to
those of Ar ,1A1,s.



The poset H

I H := the set of tuples {~s = (s0, . . . , st−1) such that, for
0 ≤ i ≤ t − 1,

1 ≤ si ≤ n − 1,
0 ≤ psi+1 − si ≤ (p − 1)n,

The poset H describes the submodule structure of FL1
q

under the action of GL(n,q). (Bardoe-S (2000)).
I For ~s = (s0, . . . , st−1) ∈ H define d(~s) as follows.

Set λi = psi+1 − si (0 ≤ i ≤ t − 1 subscripts mod t).
d(~s) =

∏t−1
i=0 dλi , where dk := coefficient of xk in the

expansion of (1 + x + · · ·+ xp−1)n

d(~s) is the dimension of a GL(n,q) composition factor of
FL1

q .
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The poset H describes the submodule structure of FL1
q

under the action of GL(n,q). (Bardoe-S (2000)).
I For ~s = (s0, . . . , st−1) ∈ H define d(~s) as follows.

Set λi = psi+1 − si (0 ≤ i ≤ t − 1 subscripts mod t).
d(~s) =

∏t−1
i=0 dλi , where dk := coefficient of xk in the

expansion of (1 + x + · · ·+ xp−1)n

d(~s) is the dimension of a GL(n,q) composition factor of
FL1

q .



For nonnegative integers α, β, define the subsets of H

Hα(s) =
{

(s0, . . . , st−1) ∈ H
∣∣∣ t−1∑

i=0

max{0, s − si} = α
}

and

βH(r) = {(n − s0, . . . ,n − st−1) | (s0, . . . , st−1) ∈ Hβ(r)}

=
{

(s0, . . . , st−1) ∈ H
∣∣∣ t−1∑

i=0

max{0, si − (n − r)} = β}
}
.



General formula for ei(Ar ,1A1,s)

Theorem
Let Ei = ei(Ar ,1A1,s) denote the multiplicity of pi as a p-adic
elementary divisor of Ar ,1A1,s.

Et(r+s) = 1.
For i 6= t(r + s),

Ei =
∑
~s∈Γ(i)

d(~s),

where
Γ(i) =

⋃
α+β=i

0≤α≤t(s−1)
0≤β≤t(r−1)

βH(r) ∩Hα(s).



Thank you for your attention!
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