Smith normal forms of matrices associated with the Grassmann graphs of lines in PG(n-1, q)

Peter Sin, U. of Florida

Conference on Finite Groups and Vertex Operator Algebras, in honor of Robert Griess Jr.'s 71st birthday Tapei, August 23rd, 2016

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Graphs from lines

Smith normal forms

Chip-firing game

Cross-characteristics

Defining characteristic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Critical groups of graphs

Graphs from lines

Smith normal forms

Chip-firing game

Cross-characteristics

Defining characteristic

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Grassmann and skew lines graphs

$$q = p^t$$
, *p* prime, $V \cong \mathbb{F}_q^n$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $q = p^t$, *p* prime, $V \cong \mathbb{F}_q^n$, $\Gamma' = \Gamma'(n,q)$ Grassman graph, vertices are lines of PG(*V*), i.e. 2-diml subspaces of *V*. Two vertices lie on an edge iff the subspaces are distinct and have nonzero intersection. $q = p^t$, *p* prime, $V \cong \mathbb{F}_q^n$, $\Gamma' = \Gamma'(n, q)$ Grassman graph, vertices are lines of PG(*V*), i.e. 2-diml subspaces of *V*. Two vertices lie on an edge iff the subspaces are distinct and have nonzero intersection. Γ the complementary graph, is the skew lines graph.

Strongly Regular Graphs

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a k-regular graph such that

any two adjacent vertices have λ neighbors in common; and

any two nonadjacent vertices have $\boldsymbol{\mu}$ neighbors in common.

The adjacency matrix of a SRG has three eigenvalues k, r, s.

(日) (日) (日) (日) (日) (日) (日)

Strongly Regular Graphs

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a *k*-regular graph such that

any two adjacent vertices have λ neighbors in common; and

any two nonadjacent vertices have $\boldsymbol{\mu}$ neighbors in common.

The adjacency matrix of a SRG has three eigenvalues k, r, s.

(日) (日) (日) (日) (日) (日) (日)

$$\begin{aligned} &\Gamma' \text{ is a SRG } v = \begin{bmatrix} n \\ 2 \end{bmatrix}_q, \, k = q(q+1) \begin{bmatrix} n-2 \\ 1 \end{bmatrix}_q, \\ &\lambda = \begin{bmatrix} n-1 \\ 1 \end{bmatrix}_q + q^2 - 2, \, \mu = (q+1)^2, \, r = \begin{bmatrix} n \\ 1 \end{bmatrix}_q \text{ and } \\ &s = -(q+1) \begin{bmatrix} n-1 \\ 1 \end{bmatrix}_q. \end{aligned}$$

Strongly Regular Graphs

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a *k*-regular graph such that

any two adjacent vertices have λ neighbors in common; and

any two nonadjacent vertices have $\boldsymbol{\mu}$ neighbors in common.

The adjacency matrix of a SRG has three eigenvalues k, r, s.

$$\begin{aligned} &\Gamma' \text{ is a SRG } v = \begin{bmatrix} n \\ 2 \end{bmatrix}_q, \, k = q(q+1) \begin{bmatrix} n-2 \\ 1 \end{bmatrix}_q, \\ &\lambda = \begin{bmatrix} n-1 \\ 1 \end{bmatrix}_q + q^2 - 2, \, \mu = (q+1)^2, \, r = \begin{bmatrix} n \\ 1 \end{bmatrix}_q \text{ and } \\ &s = -(q+1) \begin{bmatrix} n-1 \\ 1 \end{bmatrix}_q. \end{aligned}$$

 Γ is also a SRG. So we have two families of SRGs paramtrized by *n*, *p* and *t*.

Critical groups of graphs

Graphs from lines

Smith normal forms

Chip-firing game

Cross-characteristics

Defining characteristic

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $A(\mathcal{G})$, an adjacency matrix of a graph \mathcal{G} .

 $A(\mathfrak{G})$, an adjacency matrix of a graph \mathfrak{G} . $L(\mathfrak{G}) = D(\mathfrak{G}) - A(\mathfrak{G})$, Laplacian matrix.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $A(\mathfrak{G})$, an adjacency matrix of a graph \mathfrak{G} . $L(\mathfrak{G}) = D(\mathfrak{G}) - A(\mathfrak{G})$, Laplacian matrix. The Smith normal forms of $A(\mathfrak{G})$ and $L(\mathfrak{G})$ are invariants of \mathfrak{G} .

 $A(\mathcal{G})$, an adjacency matrix of a graph \mathcal{G} .

 $L(\mathfrak{G}) = D(\mathfrak{G}) - A(\mathfrak{G})$, Laplacian matrix.

The Smith normal forms of $A(\mathfrak{G})$ and $L(\mathfrak{G})$ are invariants of \mathfrak{G} .

(ロ) (同) (三) (三) (三) (○) (○)

 $S(\mathfrak{G})$, the abelian group whose cyclic decomposition is given by the SNF of $A(\mathfrak{G})$, (Smith group).

 $A(\mathcal{G})$, an adjacency matrix of a graph \mathcal{G} .

 $L(\mathfrak{G}) = D(\mathfrak{G}) - A(\mathfrak{G})$, Laplacian matrix.

The Smith normal forms of $A(\mathfrak{G})$ and $L(\mathfrak{G})$ are invariants of \mathfrak{G} .

 $S(\mathfrak{G})$, the abelian group whose cyclic decomposition is given by the SNF of $A(\mathfrak{G})$, (Smith group).

 $K(\mathfrak{G})$, the finite part of the abelian group whose cyclic decomposition is given by the SNF of $L(\mathfrak{G})$ (critical group, sandpile group, jacobian).

(ロ) (同) (三) (三) (三) (○) (○)

 $A(\mathcal{G})$, an adjacency matrix of a graph \mathcal{G} .

 $L(\mathfrak{G}) = D(\mathfrak{G}) - A(\mathfrak{G})$, Laplacian matrix.

The Smith normal forms of $A(\mathfrak{G})$ and $L(\mathfrak{G})$ are invariants of \mathfrak{G} .

 $S(\mathfrak{G})$, the abelian group whose cyclic decomposition is given by the SNF of $A(\mathfrak{G})$, (Smith group).

 $K(\mathfrak{G})$, the finite part of the abelian group whose cyclic decomposition is given by the SNF of $L(\mathfrak{G})$ (critical group, sandpile group, jacobian).

|K(G)| = number of spanning trees (Kirchhoff's Matrix-tree Theorem).

 $A(\mathcal{G})$, an adjacency matrix of a graph \mathcal{G} .

 $L(\mathfrak{G}) = D(\mathfrak{G}) - A(\mathfrak{G})$, Laplacian matrix.

The Smith normal forms of $A(\mathfrak{G})$ and $L(\mathfrak{G})$ are invariants of \mathfrak{G} .

 $S(\mathfrak{G})$, the abelian group whose cyclic decomposition is given by the SNF of $A(\mathfrak{G})$, (Smith group).

 $K(\mathfrak{G})$, the finite part of the abelian group whose cyclic decomposition is given by the SNF of $L(\mathfrak{G})$ (critical group, sandpile group, jacobian).

|K(G)| = number of spanning trees (Kirchhoff's Matrix-tree Theorem).

Survey article on SNFs in combinatorics by R. Stanley (JCTA 2016).

Critical groups of graphs

Graphs from lines

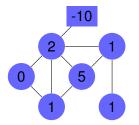
Smith normal forms

Chip-firing game

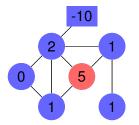
Cross-characteristics

Defining characteristic

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

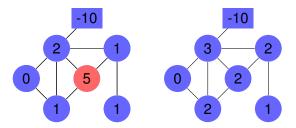


▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @



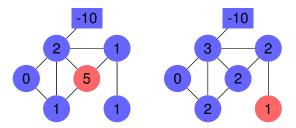
A round vertex v can be fired if it has at least deg(v) chips.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで



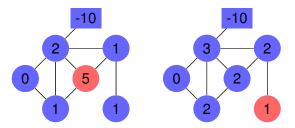
A round vertex v can be fired if it has at least deg(v) chips.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

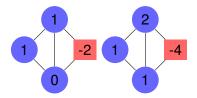


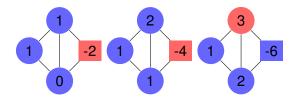
A round vertex v can be fired if it has at least deg(v) chips.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

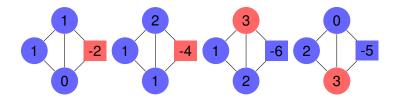


A round vertex v can be fired if it has at least deg(v) chips. The square vertex is fired only when no others can be fired.

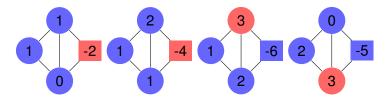


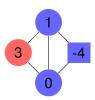


▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@



▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @



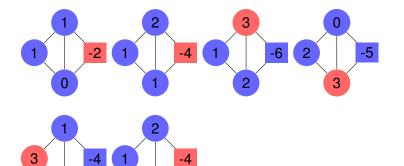


▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

-4

1

0



ヘロト 人間 とくほとくほとう æ

Start with a configuration *s* and fire vertices in a sequence where each vertex *v* is fired x(v) times, ending up with configuration *s'*.

Start with a configuration *s* and fire vertices in a sequence where each vertex *v* is fired x(v) times, ending up with configuration *s'*.

(ロ) (同) (三) (三) (三) (○) (○)

 $s'(v) = s(v) - x(v)\deg(v) + \sum_{(v,w)\in E} x(w)$

Start with a configuration *s* and fire vertices in a sequence where each vertex *v* is fired x(v) times, ending up with configuration *s'*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

$$s'(v) = s(v) - x(v) \deg(v) + \sum_{(v,w) \in E} x(w)$$

 $s' = s - L(\mathfrak{G})x.$

Start with a configuration *s* and fire vertices in a sequence where each vertex *v* is fired x(v) times, ending up with configuration *s'*.

$$s'(v) = s(v) - x(v) \deg(v) + \sum_{(v,w) \in E} x(w)$$

 $s' = s - L(g)x.$

A configuration is *stable* if no round vertex can be fired, *recurrent* if there is a sequence of firings leading back to the same configuration, *critical* if recurrent and stable.

Theorem

(Dhar, Björner-Lovász, Biggs, Gabrielov,...) Consider the chip-firing game on a connected graph *G*.

Any starting configuration leads to a unique critical configuration.

The set of critical configurations has a natural group operation making it isomorphic to the critical group $K(\mathfrak{G})$.

GL(n, q)-Permutation modules

We (Ducey-S) compute the SNF for $A = A(\Gamma(n, q))$, $L = L(\Gamma(n, q)), A' = A(\Gamma'(n, q)), L' = L(\Gamma'(n, q))$.

GL(n, q)-Permutation modules

We (Ducey-S) compute the SNF for $A = A(\Gamma(n, q))$, $L = L(\Gamma(n, q)), A' = A(\Gamma'(n, q)), L' = L(\Gamma'(n, q)).$

(ロ) (同) (三) (三) (三) (○) (○)

 \mathcal{L}_r , the set of *r*-diml. subspaces of *V*.

GL(n, q)-Permutation modules

We (Ducey-S) compute the SNF for $A = A(\Gamma(n, q))$, $L = L(\Gamma(n, q)), A' = A(\Gamma'(n, q)), L' = L(\Gamma'(n, q))$.

 \mathcal{L}_r , the set of *r*-diml. subspaces of *V*.

A and L define $\mathbb{Z} \operatorname{GL}(n, q)$ -module homomorphisms

 $A, L: \mathbb{Z}^{\mathcal{L}_2} \to \mathbb{Z}^{\mathcal{L}_2}$

(ロ) (同) (三) (三) (三) (○) (○)

GL(n, q)-Permutation modules

We (Ducey-S) compute the SNF for $A = A(\Gamma(n, q))$, $L = L(\Gamma(n, q)), A' = A(\Gamma'(n, q)), L' = L(\Gamma'(n, q)).$ \mathcal{L}_r , the set of *r*-diml. subspaces of *V*.

A and L define $\mathbb{Z} \operatorname{GL}(n, q)$ -module homomorphisms

 $A, L : \mathbb{Z}^{\mathcal{L}_2} \to \mathbb{Z}^{\mathcal{L}_2}$

SNF can be computed one prime at a time (elementary divisors).

GL(n, q)-Permutation modules

We (Ducey-S) compute the SNF for $A = A(\Gamma(n, q))$, $L = L(\Gamma(n, q)), A' = A(\Gamma'(n, q)), L' = L(\Gamma'(n, q))$.

 \mathcal{L}_r , the set of *r*-diml. subspaces of *V*.

A and L define $\mathbb{Z} \operatorname{GL}(n, q)$ -module homomorphisms

 $A, L: \mathbb{Z}^{\mathcal{L}_2} \to \mathbb{Z}^{\mathcal{L}_2}$

SNF can be computed one prime at a time (elementary divisors).

Fix prime ℓ $M = \mathbb{Z}_{\ell}^{\mathcal{L}_2}$, $\overline{M} = \mathbb{F}_{\ell}^{\mathcal{L}_2}$, $\alpha \in \{A, L\}$.

GL(n, q)-Permutation modules

We (Ducey-S) compute the SNF for $A = A(\Gamma(n, q))$, $L = L(\Gamma(n, q)), A' = A(\Gamma'(n, q)), L' = L(\Gamma'(n, q)).$

 \mathcal{L}_r , the set of *r*-diml. subspaces of *V*.

A and L define $\mathbb{Z} \operatorname{GL}(n, q)$ -module homomorphisms

 $A, L: \mathbb{Z}^{\mathcal{L}_2} \to \mathbb{Z}^{\mathcal{L}_2}$

SNF can be computed one prime at a time (elementary divisors).

Fix prime
$$\ell$$
 $M = \mathbb{Z}_{\ell}^{\mathcal{L}_2}$, $\overline{M} = \mathbb{F}_{\ell}^{\mathcal{L}_2}$, $\alpha \in \{A, L\}$.

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_r = \operatorname{Ker}(\alpha) \supseteq 0.$$

$$\overline{M} = \overline{M}_0 \supseteq \overline{M}_1 \supseteq \cdots \supseteq \overline{M}_r = \overline{\operatorname{Ker}(\alpha)} \supseteq 0.$$

$$e_i = e_i(\alpha) :=$$
 multiplicity of ℓ^i as an elementary divisor of α .
 $(e_0 = \operatorname{rank}(\overline{\alpha})).$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

$$e_i = e_i(\alpha) :=$$
 multiplicity of ℓ^i as an elementary divisor of α .
 $(e_0 = \operatorname{rank}(\overline{\alpha})).$
dim $\overline{M}_a = 1 + \sum_{i \ge a} e_i.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

 $e_i = e_i(\alpha) :=$ multiplicity of ℓ^i as an elementary divisor of α . ($e_0 = \operatorname{rank}(\overline{\alpha})$).

dim $\overline{M}_a = 1 + \sum_{i \ge a} e_i$.

All quotients $\overline{M}_a/\overline{M}_{a+1}$ are $\mathbb{F}_{\ell} \operatorname{GL}(n, q)$ -modules, so the number of nonzero e_i is at most the composition length of \overline{M} as a $\mathbb{F}_{\ell} \operatorname{GL}(n, q)$ -module.

(日) (日) (日) (日) (日) (日) (日)

Critical groups of graphs

Graphs from lines

Smith normal forms

Chip-firing game

Cross-characteristics

Defining characteristic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$\ell \neq p$

 $\ell \neq p$ Theory due to G. D. James.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$\ell \neq p$

Theory due to G. D. James.

M is a *q*-analogue of the \mathbb{F}_{ℓ} -permutation module of subsets of size 2 in a set of size *n*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$\ell \neq p$

Theory due to G. D. James.

M is a *q*-analogue of the \mathbb{F}_{ℓ} -permutation module of subsets of size 2 in a set of size *n*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

M has 3 isomorphism types of composition factors.

 $\ell \neq p$

Theory due to G. D. James.

M is a *q*-analogue of the \mathbb{F}_{ℓ} -permutation module of subsets of size 2 in a set of size *n*.

M has 3 isomorphism types of composition factors.

The composition length is \leq 6 and does not grow with *n* or *t* or *p*, but depends on certain divisibility conditions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\ell \neq p$

Theory due to G. D. James.

M is a *q*-analogue of the \mathbb{F}_{ℓ} -permutation module of subsets of size 2 in a set of size *n*.

M has 3 isomorphism types of composition factors.

The composition length is \leq 6 and does not grow with *n* or *t* or *p*, but depends on certain divisibility conditions.

(ロ) (同) (三) (三) (三) (○) (○)

Based on James results, it is easy to work out the submodule structure of \overline{M} in all cases.

		$\ell \nmid \begin{bmatrix} n-2\\1 \end{bmatrix}_q$	$\ell \mid \begin{bmatrix} n-2\\1 \end{bmatrix}_q$
$\ell \nmid q+1$	$\ell \not\mid \begin{bmatrix} n-1 \\ 1 \end{bmatrix}_q$	$M = \mathbb{F}_{\ell} \oplus D_1 \oplus D_2$	$M = \mathbb{F}_{\ell} \oplus egin{matrix} D_1 \ D_2 \ D_1 \ D_1 \end{bmatrix}$
	$\ell \mid \left[{n-1 \atop 1} \right]_q$	$M=D_1\oplus egin{smallmatrix}\mathbb{F}_\ell\D_2\\mathbb{F}_\ell\end{pmatrix}$	N/A
$\ell \mid q+1$	$\ell \nmid \lfloor \frac{n-1}{2} \rfloor$	$M = \mathbb{F}_{\ell} \oplus D_1 \oplus D_2$	N/A
	$\ell \mid \lfloor \frac{n-1}{2} \rfloor$	$egin{aligned} M &= D_1 \oplus egin{smallmatrix} \mathbb{F}_\ell \ \mathbb{F}_\ell \ \mathbb{F}_\ell \end{aligned}$	N/A

Table: $\ell \nmid \binom{n}{1}_q$

	$\ell \nmid \begin{bmatrix} n-2\\1 \end{bmatrix}_q$	$\ell \mid \left[{n-2 \atop 1} ight]_q$	
$ \begin{array}{c} \ell \nmid q+1 \\ \ell \nmid \begin{bmatrix} n-1 \\ 1 \end{bmatrix}_{q} \end{array} $	$M = \frac{\mathbb{F}_{\ell}}{\mathbb{F}_{\ell}} \oplus D_2$ \mathbb{F}_{ℓ}	N/A	
$ \begin{array}{c} \ell q+1 \\ \ell \lfloor \frac{n-1}{2} \rfloor \end{array} $	N/A	$M = \mathbb{F}_{\ell} \oplus \begin{array}{c} D_1 \\ D_2 \\ D_1 \\ D_1 \end{array} \mathbb{F}_{\ell}$	$M = \mathbb{F}_{\ell} \begin{bmatrix} n \\ 2 \end{bmatrix}_{q} \\ D_{1} \\ D_{2} \\ D_{1} \\ D_{1} \end{bmatrix}$
$\ell q+1$ $\ell \lfloor \frac{n-1}{2} \rfloor$	N/A	$ \begin{array}{c} D_1 \\ \mathbb{F}_{\ell} \\ M = \mathbb{F}_{\ell} \oplus \begin{array}{c} D_2 \\ \mathbb{F}_{\ell} \\ D_1 \end{array} \end{array} $	

Table: $\ell \mid \binom{n}{1}_q$

Assume $\ell \mid q + 1$, *n* even.

Assume $\ell \mid q + 1$, *n* even. Then $k = q(q + 1)^2 h$, r = (q + 1)(qh - 1), s = -(q + 1), where $h := \frac{q^{n-2}-1}{q^2-1}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Assume $\ell \mid q+1, n$ even. Then $k = q(q+1)^2 h$, r = (q+1)(qh-1), s = -(q+1), where $h := \frac{q^{n-2}-1}{q^2-1}$. r has multiplicity $f = \begin{bmatrix} n \\ 1 \end{bmatrix}_q - 1$, s has multiplicity $g = \begin{bmatrix} n \\ 2 \end{bmatrix}_q - \begin{bmatrix} n \\ 1 \end{bmatrix}_q$.

Assume $\ell \mid q + 1$, *n* even. Then $k = q(q + 1)^2 h$, r = (q + 1)(qh - 1), s = -(q + 1), where $h := \frac{q^{n-2}-1}{q^2-1}$. *r* has multiplicity $f = [{n \atop 1}]_q - 1$, *s* has multiplicity $g = [{n \atop 2}]_q - [{n \atop 1}]_q$. Let $a = v_{\ell}(q + 1)$, $b = v_{\ell}(qh - 1)$ and $c = v_{\ell}(h)$.

Assume $\ell \mid q+1, n$ even. Then $k = q(q+1)^2h$, r = (q+1)(qh-1), s = -(q+1), where $h := \frac{q^{n-2}-1}{q^2-1}$. *r* has multiplicity $f = \begin{bmatrix} n \\ 1 \end{bmatrix}_q - 1$, *s* has multiplicity $g = \begin{bmatrix} n \\ 2 \end{bmatrix}_q - \begin{bmatrix} n \\ 1 \end{bmatrix}_q$. Let $a = v_\ell(q+1)$, $b = v_\ell(qh-1)$ and $c = v_\ell(h)$. $\ell \mid h$ if and only if $\ell \mid \frac{n-2}{2}$

Assume $\ell \mid q+1, n$ even. Then $k = q(q+1)^2 h$, r = (q+1)(qh-1), s = -(q+1), where $h := \frac{q^{n-2}-1}{q^2-1}$. r has multiplicity $f = \begin{bmatrix} n \\ 1 \end{bmatrix}_q - 1$, s has multiplicity $g = \begin{bmatrix} n \\ 2 \end{bmatrix}_q - \begin{bmatrix} n \\ 1 \end{bmatrix}_q$. Let $a = v_\ell(q+1)$, $b = v_\ell(qh-1)$ and $c = v_\ell(h)$. $\ell \mid h$ if and only if $\ell \mid \frac{n-2}{2}$ gcd(h, qh-1) = 1, so either c = 0 or b = 0.

(日) (日) (日) (日) (日) (日) (日)

Assume $\ell \mid q+1, n$ even. Then $k = q(q+1)^2 h$, r = (q+1)(qh-1), s = -(q+1), where $h := \frac{q^{n-2}-1}{q^2-1}$. r has multiplicity $f = \begin{bmatrix} n \\ 1 \end{bmatrix}_a - 1$, s has multiplicity $g = [{n \atop 2}]_{a} - [{n \atop 1}]_{a}$ Let $a = v_{\ell}(q+1)$, $b = v_{\ell}(qh-1)$ and $c = v_{\ell}(h)$. $\ell \mid h$ if and only if $\ell \mid \frac{n-2}{2}$ gcd(h, qh - 1) = 1, so either c = 0 or b = 0. b = 0 if and only if $\ell \nmid \begin{bmatrix} n \\ 2 \end{bmatrix}_{q}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assume $\ell \mid q+1, n$ even. Then $k = q(q+1)^2 h$, r = (q+1)(qh-1), s = -(q+1), where $h := \frac{q^{n-2}-1}{q^2-1}$. r has multiplicity $f = \begin{bmatrix} n \\ 1 \end{bmatrix}_a - 1$, s has multiplicity $g = [{n \atop 2}]_{a} - [{n \atop 1}]_{a}$ Let $a = v_{\ell}(q+1)$, $b = v_{\ell}(qh-1)$ and $c = v_{\ell}(h)$. $\ell \mid h$ if and only if $\ell \mid \frac{n-2}{2}$ gcd(h, qh-1) = 1, so either c = 0 or b = 0. b = 0 if and only if $\ell \nmid \begin{bmatrix} n \\ 2 \end{bmatrix}_{q}$. We'll look at the case c = 0 and b = 0. Then $v_{\ell}(r) = v_{\ell}(s) = a$ and $v_{\ell}(|S(\Gamma)|) = af + ag + 2a$

 $M = \mathbb{Z}_{\ell} \mathbf{1} \oplus Y.$

 $M = \mathbb{Z}_{\ell} \mathbf{1} \oplus Y.$ On $Y = \operatorname{Ker}(J)$ we have

$$A'(A'-(r+s)I)=-rsI.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $M = \mathbb{Z}_{\ell} \mathbf{1} \oplus Y.$ On $Y = \operatorname{Ker}(J)$ we have

$$A'(A'-(r+s)I)=-rsI.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This shows that $(A' - (r + s)I)(Y) \subseteq M_{2a} \cap Y$, so as $\ell \mid (r + s), \overline{A'}(\overline{Y}) \subseteq \overline{M_{2a} \cap Y}$.

 $M = \mathbb{Z}_{\ell} \mathbf{1} \oplus Y.$ On Y = Ker(J) we have

$$A'(A'-(r+s)I)=-rsI.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This shows that $(A' - (r + s)I)(Y) \subseteq M_{2a} \cap Y$, so as $\ell \mid (r + s), \overline{A'}(\overline{Y}) \subseteq \overline{M_{2a} \cap Y}$.

 $\overline{A'}(\overline{Y})$ is nonzero, so it has D_1 as a composition factor.

 $M = \mathbb{Z}_{\ell} \mathbf{1} \oplus Y.$ On Y = Ker(J) we have

$$A'(A'-(r+s)I)=-rsI.$$

This shows that $(A' - (r + s)I)(Y) \subseteq M_{2a} \cap Y$, so as $\ell \mid (r + s), \overline{A'}(\overline{Y}) \subseteq \overline{M_{2a} \cap Y}$.

 $\overline{A'(Y)}$ is nonzero, so it has D_1 as a composition factor. dim $\overline{M_{2a} \cap Y} \ge f - 1$ and so dim $\overline{M}_{2a} \ge f$.

A D F A 同 F A E F A E F A Q A

 $M = \mathbb{Z}_{\ell} \mathbf{1} \oplus Y.$ On $Y = \operatorname{Ker}(J)$ we have

$$A'(A'-(r+s)I)=-rsI.$$

This shows that $(A' - (r + s)I)(Y) \subseteq M_{2a} \cap Y$, so as $\ell \mid (r + s), \overline{A'}(\overline{Y}) \subseteq \overline{M_{2a} \cap Y}$. $\overline{A'}(\overline{Y})$ is nonzero, so it has D_1 as a composition factor. dim $\overline{M_{2a} \cap Y} \ge f - 1$ and so dim $\overline{M}_{2a} \ge f$. Further analysis of A' and structure of \overline{M} shows dim $\overline{M_a} \ge q + 2$.

We have dim $\overline{M}_{2a} \ge f$, dim $\overline{M}_a \ge = g + 2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We have dim $\overline{M}_{2a} \ge f$, dim $\overline{M}_a \ge = g + 2$.

$$a(f+g) + 2a = v_{\ell}(|S(\Gamma)|) = \sum_{i \ge 0} ie_i$$

$$\geq \sum_{a \le i < 2a} ie_i + \sum_{i \ge 2a} ie_i$$

$$\geq a \sum_{a \le i < 2a} e_i + 2a \sum_{i \ge 2a} e_i$$

$$\geq a(\dim \overline{M}_a - \dim \overline{M}_{2a}) + 2a \dim \overline{M}_{2a}$$

$$\geq a(g+2) + af.$$

Therefore, equality holds throughout, and it follows that $e_0 = f - 1$, $e_a = g - f + 2$, $e_{2a} = f$ (and $e_i = 0$ otherwise).

Critical groups of graphs

Graphs from lines

Smith normal forms

Chip-firing game

Cross-characteristics

Defining characteristic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

But from the eigenvalues, L' has no p-elementary divisors.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

But from the eigenvalues, L' has no *p*-elementary divisors. For A', we can see that only *k* is divisible by *p*, so $S(\Gamma')$ is cyclic of order p^t .

(日) (日) (日) (日) (日) (日) (日)

But from the eigenvalues, L' has no *p*-elementary divisors. For A', we can see that only *k* is divisible by *p*, so $S(\Gamma')$ is cyclic of order p^t .

(日) (日) (日) (日) (日) (日) (日)

The skew lines matrices A and L are much harder but much of the difficulty was handled in earlier work for the case n = 4 (Brouwer-Ducey-S.) Here the number of composition factors of \overline{M} grows like n^t , where $q = p^t$.

But from the eigenvalues, L' has no *p*-elementary divisors. For A', we can see that only *k* is divisible by *p*, so $S(\Gamma')$ is cyclic of order p^t .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The skew lines matrices A and L are much harder but much of the difficulty was handled in earlier work for the case n = 4 (Brouwer-Ducey-S.)
- Note $A \equiv -L \mod (p^{4t})$, so just consider A.

Table: The elementary divisors of the incidence matrix of lines vs. lines in PG(3,9), where two lines are incident when skew.

Elem. Div.	1	3	3 ²	3 ⁴	3 ⁵	3 ⁶	3 ⁸
Multiplicity	361	256	6025	202	256	361	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

For n = 4 we have

$$A(A+q(q-1)I) = q^3I + q^3(q-1)J,$$

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>

For n = 4 we have

$$A(A+q(q-1)I) = q^3I + q^3(q-1)J,$$

For general *n*, we have

$$A(A+q(\left[\begin{smallmatrix} n-2\\1 \end{smallmatrix}\right]_{q}-2)I) = q^{3}\left[\begin{smallmatrix} n-3\\1 \end{smallmatrix}\right]_{q}I + q^{3}\frac{\left[\begin{smallmatrix} n-3\\1 \end{smallmatrix}\right]_{q}\left(\left[\begin{smallmatrix} n-1\\1 \end{smallmatrix}\right]_{q}-(q+2)\right)}{q+1}J,$$

$$p \nmid [{n \atop 2}]_q$$
 so
 $\mathbb{Z}_p^{\mathcal{L}_2} = \mathbb{Z}_p \mathbf{1} \oplus Y, \quad Y = \operatorname{Ker}(J)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$p \nmid [{n \atop 2}]_q$$
 so
 $\mathbb{Z}_p^{\mathcal{L}_2} = \mathbb{Z}_p \mathbf{1} \oplus Y, \quad Y = \operatorname{Ker}(J)$
 $A(\mathbf{1}) = k\mathbf{1} = q^4 [{n-2 \atop 2}]_q \mathbf{1}, \text{ so } e_{4t} \ge 1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $p \nmid [{n \atop 2}]_q$ so $\mathbb{Z}_p^{\mathcal{L}_2} = \mathbb{Z}_p \mathbf{1} \oplus Y, \quad Y = \operatorname{Ker}(J)$ $A(\mathbf{1}) = k\mathbf{1} = q^4 [{n-2 \atop 2}]_q \mathbf{1}, \text{ so } e_{4t} \ge 1.$ We have $A|_Y[A|_Y - qz_1I] = q^3 z_2 I,$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where z_1, z_2 are units in \mathbb{Z}_p .

 $p \nmid [\frac{n}{2}]_q$ so $\mathbb{Z}_p^{\mathcal{L}_2} = \mathbb{Z}_p \mathbf{1} \oplus Y, \quad Y = \operatorname{Ker}(J)$ $A(\mathbf{1}) = k\mathbf{1} = q^4 [\frac{n-2}{2}]_q \mathbf{1}, \text{ so } e_{4t} \ge 1.$ We have $A|_Y[A|_Y - qz_1I] = q^3 z_2 I,$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where z_1, z_2 are units in \mathbb{Z}_p .

This equation implies:

$$p \nmid [\frac{n}{2}]_q$$
 so
 $\mathbb{Z}_p^{\mathcal{L}_2} = \mathbb{Z}_p \mathbf{1} \oplus Y, \quad Y = \operatorname{Ker}(J)$
 $A(\mathbf{1}) = k\mathbf{1} = q^4 [\frac{n-2}{2}]_q \mathbf{1}, \text{ so } e_{4t} \ge 1.$
We have

$$A|_{Y}[A|_{Y}-qz_{1}I]=q^{3}z_{2}I,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

where z_1, z_2 are units in \mathbb{Z}_p .

- This equation implies:
 - 1. $A|_Y$ has no elementary divisors p^i for i > 3t.

$$p \nmid [{n \atop 2}]_q$$
 so
 $\mathbb{Z}_p^{\mathcal{L}_2} = \mathbb{Z}_p \mathbf{1} \oplus Y, \quad Y = \operatorname{Ker}(J)$
 $A(\mathbf{1}) = k\mathbf{1} = q^4 [{n-2 \atop 2}]_q \mathbf{1}, \text{ so } e_{4t} \ge 1.$
We have

$$A|_{Y}[A|_{Y}-qz_{1}I]=q^{3}z_{2}I,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

where z_1, z_2 are units in \mathbb{Z}_p .

- This equation implies:
 - 1. $A|_Y$ has no elementary divisors p^i for i > 3t. 2. $e_i = e_{3t-i}$ $0 \le i < t$.

$$p \nmid [{n \atop 2}]_q$$
 so
 $\mathbb{Z}_p^{\mathcal{L}_2} = \mathbb{Z}_p \mathbf{1} \oplus Y, \quad Y = \operatorname{Ker}(J)$
 $A(\mathbf{1}) = k\mathbf{1} = q^4 [{n-2 \atop 2}]_q \mathbf{1}, \text{ so } e_{4t} \ge 1.$
We have

$$A|_{Y}[A|_{Y}-qz_{1}I]=q^{3}z_{2}I,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where z_1, z_2 are units in \mathbb{Z}_p .

- This equation implies:
 - 1. $A|_Y$ has no elementary divisors p^i for i > 3t.

2.
$$e_i = e_{3t-i} \ 0 \le i < t$$
.

3. $e_i = 0$ unless $0 \le i \le t$ or $2t \le i \le 3t$.

$$p \nmid [{n \atop 2}]_q$$
 so
 $\mathbb{Z}_p^{\mathcal{L}_2} = \mathbb{Z}_p \mathbf{1} \oplus Y, \quad Y = \operatorname{Ker}(J$
 $A(\mathbf{1}) = k\mathbf{1} = q^4 [{n-2 \atop 2}]_q \mathbf{1}, \text{ so } e_{4t} \ge 1.$
We have

$$A|_{Y}[A|_{Y}-qz_{1}I]=q^{3}z_{2}I,$$

where z_1, z_2 are units in \mathbb{Z}_p .

- This equation implies:
 - 1. $A|_Y$ has no elementary divisors p^i for i > 3t.

2.
$$e_i = e_{3t-i} \ 0 \le i < t$$
.

- 3. $e_i = 0$ unless $0 \le i \le t$ or $2t \le i \le 3t$.
- 4. Once we have $e_i \ 0 \le i < t$ we have them all.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$-A_{r,s} \equiv A_{r,1}A_{1,s} \pmod{p^t}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$-A_{r,s} \equiv A_{r,1}A_{1,s} \pmod{p^t}$$

Hence $e_i(A_{r,s}) = e_i(A_{r,1}A_{1,s})$ for $i < t$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$-A_{r,s} \equiv A_{r,1}A_{1,s} \pmod{p^t}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hence $e_i(A_{r,s}) = e_i(A_{r,1}A_{1,s})$ for i < t.

The *p*-elementary divisors for $A_{r,1}$ (and $A_{1,r}$) were computed by Chandler-Sin-Xiang (2006).

$$-A_{r,s} \equiv A_{r,1}A_{1,s} \pmod{p^t}$$

Hence $e_i(A_{r,s}) = e_i(A_{r,1}A_{1,s})$ for i < t.

The *p*-elementary divisors for $A_{r,1}$ (and $A_{1,r}$) were computed by Chandler-Sin-Xiang (2006).

Nontrivial to relate *p*-elementary divisors of $A_{r,1}$ and $A_{1,s}$ to those of $A_{r,1}A_{1,s}$.

(日) (日) (日) (日) (日) (日) (日)

• $\mathcal{H} :=$ the set of tuples { $\vec{s} = (s_0, \dots, s_{t-1})$ such that, for $0 \le i \le t-1$,

▶ $\mathcal{H} :=$ the set of tuples { $\vec{s} = (s_0, \dots, s_{t-1})$ such that, for 0 ≤ $i \le t - 1$, 1 ≤ $s_i \le n - 1$,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ $\mathcal{H} :=$ the set of tuples { $\vec{s} = (s_0, ..., s_{t-1})$ such that, for $0 \le i \le t - 1$, $1 \le s_i \le n - 1$, $0 \le ps_{i+1} - s_i \le (p - 1)n$,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ $\mathcal{H} :=$ the set of tuples { $\vec{s} = (s_0, ..., s_{t-1})$ such that, for $0 \le i \le t - 1$, $1 \le s_i \le n - 1$, $0 \le ps_{i+1} - s_i \le (p - 1)n$,

The poset \mathcal{H} describes the submodule structure of $\mathbb{F}_{q}^{\mathcal{L}_{1}}$ under the action of $\mathrm{GL}(n, q)$. (Bardoe-S (2000)).

▶ $\mathcal{H} :=$ the set of tuples { $\vec{s} = (s_0, \dots, s_{t-1})$ such that, for $0 \le i \le t-1$, $1 \le s_i \le n-1$, $0 \le ps_{i+1} - s_i \le (p-1)n$,

The poset \mathcal{H} describes the submodule structure of $\mathbb{F}_q^{\mathcal{L}_1}$ under the action of $\mathrm{GL}(n, q)$. (Bardoe-S (2000)).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▶ For $\vec{s} = (s_0, ..., s_{t-1}) \in \mathcal{H}$ define $d(\vec{s})$ as follows.

► $\mathcal{H} :=$ the set of tuples { $\vec{s} = (s_0, \dots, s_{t-1})$ such that, for $0 \le i \le t-1$, $1 \le s_i \le n-1$, $0 \le ps_{i+1} - s_i \le (p-1)n$,

The poset \mathcal{H} describes the submodule structure of $\mathbb{F}_q^{\mathcal{L}_1}$ under the action of $\mathrm{GL}(n, q)$. (Bardoe-S (2000)).

► For
$$\vec{s} = (s_0, ..., s_{t-1}) \in \mathcal{H}$$
 define $d(\vec{s})$ as follows.
Set $\lambda_i = ps_{i+1} - s_i$ ($0 \le i \le t - 1$ subscripts mod t).

▶ $\mathcal{H} :=$ the set of tuples { $\vec{s} = (s_0, \dots, s_{t-1})$ such that, for $0 \le i \le t-1$, $1 \le s_i \le n-1$, $0 \le ps_{i+1} - s_i \le (p-1)n$,

The poset \mathcal{H} describes the submodule structure of $\mathbb{F}_q^{\mathcal{L}_1}$ under the action of GL(n, q). (Bardoe-S (2000)).

► For
$$\vec{s} = (s_0, ..., s_{t-1}) \in \mathcal{H}$$
 define $d(\vec{s})$ as follows.
Set $\lambda_i = ps_{i+1} - s_i$ ($0 \le i \le t - 1$ subscripts mod t).
 $d(\vec{s}) = \prod_{i=0}^{t-1} d_{\lambda_i}$, where $d_k :=$ coefficient of x^k in the expansion of $(1 + x + \dots + x^{p-1})^n$

▶ $\mathcal{H} :=$ the set of tuples { $\vec{s} = (s_0, \dots, s_{t-1})$ such that, for $0 \le i \le t-1$, $1 \le s_i \le n-1$, $0 \le ps_{i+1} - s_i \le (p-1)n$,

The poset \mathcal{H} describes the submodule structure of $\mathbb{F}_q^{\mathcal{L}_1}$ under the action of GL(n, q). (Bardoe-S (2000)).

► For
$$\vec{s} = (s_0, ..., s_{t-1}) \in \mathcal{H}$$
 define $d(\vec{s})$ as follows.
Set $\lambda_i = ps_{i+1} - s_i$ ($0 \le i \le t - 1$ subscripts mod t).
 $d(\vec{s}) = \prod_{i=0}^{t-1} d_{\lambda_i}$, where $d_k :=$ coefficient of x^k in the expansion of $(1 + x + \dots + x^{p-1})^n$
 $d(\vec{s})$ is the dimension of a GL (n, q) composition factor of $\mathbb{F}_q^{\mathcal{L}_1}$.

For nonnegative integers α, β , define the subsets of $\mathcal H$

$$\mathcal{H}_{\alpha}(\boldsymbol{s}) = \left\{ (\boldsymbol{s}_0, \dots, \boldsymbol{s}_{t-1}) \in \mathcal{H} \, \Big| \, \sum_{i=0}^{t-1} \max\{0, \boldsymbol{s} - \boldsymbol{s}_i\} = \alpha \right\}$$

and

$${}_{\beta}\mathfrak{H}(r) = \{(n - s_0, \dots, n - s_{t-1}) \mid (s_0, \dots, s_{t-1}) \in \mathfrak{H}_{\beta}(r)\}$$

= $\{(s_0, \dots, s_{t-1}) \in \mathfrak{H} \mid \sum_{i=0}^{t-1} \max\{0, s_i - (n-r)\} = \beta\}\}.$

General formula for $e_i(A_{r,1}A_{1,s})$

Theorem

Let $E_i = e_i(A_{r,1}A_{1,s})$ denote the multiplicity of p^i as a p-adic elementary divisor of $A_{r,1}A_{1,s}$.

$$E_{t(r+s)} = 1.$$

For $i \neq t(r+s)$,
 $E_i = \sum_{ec{s} \in \Gamma(i)} d(ec{s}),$

where

$$\Gamma(i) = \bigcup_{\substack{\alpha+\beta=i\\ 0 \le \alpha \le t(s-1)\\ 0 \le \beta \le t(r-1)}} {}_{\beta} \mathcal{H}(r) \cap \mathcal{H}_{\alpha}(s).$$

Thank you for your attention!