Homework Assignment \# 2, Due January 20, 2016

1) Show that the functions

$$
y(x)= \begin{cases}0, & \text { for } x \leq c \\ \frac{(x-c)^{2}}{4} & \text { for } x>c\end{cases}
$$

for any fixed real number c, are solutions of the differential equation $y^{\prime}=y^{1 / 2}$ on the entire real axis. (Do not forget to show that the function is differentiable everywhere, particularly at $x=c$.) Do the same for the function $y(x) \equiv 0$. Of these functions, which are solutions of the initial value problem $y^{\prime}=y^{1 / 2}$, $y(0)=0$ on the real axis?
2) Solve $4 x y+\left(x^{2}+1\right) y^{\prime}=0$ with $y(1)=2$. What is the interval of definition of the solution?
3) Solve the differential equation $d Q / d t=k(a-Q)(b-Q)$ with constants $k, a, b>0$, which arises in the description of chemical reactions. What will be the asymptotic value of Q as $t \rightarrow \infty$? (In other words, which value does $Q(t)$ approach as $t \rightarrow \infty$?)
4) Compute the function $y(x)$ whose graph has a slope at any point $(x, y(x))$ of the curve equal to $y^{3}(x)$ and which passes through the point $(0,1)$.
5) The Bernoulli equation is the differential equation $y^{\prime}+a(x) y=b(x) y^{n}$, with $n \neq 0,1$. Show that the transformation $w=y^{1-n}$ reduces the Bernoulli equation to the following linear ODE: $w^{\prime}+(1-n) a(x) w=(1-n) b(x)$, which you can solve. By inverting the transformation $w=y^{1-n}$, you can therefore solve the original Bernoulli equation. Carry out this procedure for the following ODE: $y^{\prime}-\frac{1}{x} y=-\frac{1}{2 y}$. (In other words, solve this equation.)

Also from the text:
Section 1.1: Problems 19 (ignore graphing), 25
Section 2.2: Odd problems 1-29

