1) Show that the functions

\[y(x) = \begin{cases}
0, & \text{for } x \leq c \\
\frac{(x-c)^2}{4}, & \text{for } x > c,
\end{cases} \]

for any fixed real number \(c \), are solutions of the differential equation \(y' = y^{1/2} \) on the entire real axis. (Do not forget to show that the function is differentiable everywhere, particularly at \(x = c \).) Do the same for the function \(y(x) \equiv 0 \). Of these functions, which are solutions of the initial value problem \(y' = y^{1/2} \), \(y(0) = 0 \) on the real axis?

2) Solve \(4xy + (x^2 + 1)y' = 0 \) with \(y(1) = 2 \). What is the interval of definition of the solution?

3) Solve the differential equation \(\frac{dQ}{dt} = k(a - Q)(b - Q) \) with constants \(k, a, b > 0 \), which arises in the description of chemical reactions. What will be the asymptotic value of \(Q \) as \(t \to \infty \)? (In other words, which value does \(Q(t) \) approach as \(t \to \infty \)?)

4) Compute the function \(y(x) \) whose graph has a slope at any point \((x, y(x)) \) of the curve equal to \(y^3(x) \) and which passes through the point \((0, 1) \).

5) The Bernoulli equation is the differential equation \(y' + a(x)y = b(x)y^n \), with \(n \neq 0,1 \). Show that the transformation \(w = y^{1-n} \) reduces the Bernoulli equation to the following linear ODE: \(w' + (1-n)a(x)w = (1-n)b(x) \), which you can solve. By inverting the transformation \(w = y^{1-n} \), you can therefore solve the original Bernoulli equation. Carry out this procedure for the following ODE: \(y' - \frac{1}{2}y = -\frac{1}{2y} \). (In other words, solve this equation.)

Also from the text:

Section 1.1: Problems 19 (ignore graphing), 25
Section 2.2: Odd problems 1–29