Homework Assignment \# 3, Due January 27, 2016

1) Solve the initial-value problem

$$
2 x \cos y+3 x^{2} y+\left(x^{3}-x^{2} \sin y-y\right) y^{\prime}=0, y(0)=2 .
$$

2) In the following equation, determine the constant $A$ such that the resulting equation is exact and solve the resultant exact equation.

$$
\left(x^{2}+3 x y\right)+\left(A x^{2}+4 y\right) y^{\prime}=0
$$

3) Given the one-parameter family of curves determined by

$$
x^{3}-3 x y^{2}+x+1=C \text {, }
$$

compute the orthogonal family of curves.
4) Solve $\left(2 x^{2}+y\right)+\left(x^{2} y-x\right) y^{\prime}=0$ with the initial condition $y(1)=2$.
5) For each of the following differential equations, state the regions of the $x y$-plane in which the hypotheses of the fundamental existence and uniqueness theorem for first order ODE's are satisfied. In other words, determine the set of initial conditions $\left(x_{0}, y_{0}\right)$ for which the existence and uniqueness theorem assures that there is a unique solution to the corresponding initial value problem.
a) $\cos y y^{\prime}=x-e^{-x} y\left(x_{0}\right)=y_{0}$
b) $x^{2} y^{\prime}=\left(1-y^{2}\right)^{1 / 2} y\left(x_{0}\right)=y_{0}$

Also from the text:
Section 2.4: Odd problems 1-37

