1. **Sequences / Series.**

 \[A = \left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \right\} \quad \text{general form} \quad a_n = \frac{1}{2^n} \]

 \[B = \left\{ \frac{1}{2}, \frac{1+1}{2}, \frac{1+1+1}{2}, \ldots \right\} \quad \text{general form} \quad a_n = \sum_{k=1}^{n} \frac{1}{2^k} \]

2. **Convergent / Divergent**

 \[\lim_{n \to \infty} a_n = \]

 Ex. 1.
 \[\lim_{n \to \infty} \frac{(bn-1)!}{(bn+1)!} = \lim_{n \to \infty} \frac{(bn-1)!}{(bn+1)(bn)!} = \frac{1}{b} \to 0 \to a_n = \frac{(bn-1)!}{(bn+1)!} \quad \text{Conv.} \]

 Ex. 2.
 \[\lim_{n \to \infty} \frac{(-2)^n}{7^n} = \lim_{n \to \infty} \frac{-2^n}{7^n} \to 0 \to a_n = \frac{(-2)^n}{7^n} \quad \text{Conv.} \]

 Ex. 3.
 \[\lim_{n \to \infty} \frac{n^3}{2n^2 + 2n + 1} \quad \text{DNE} \]
 \[\lim_{n \to \infty} \frac{n^4}{n^4 + 2n + 1} \quad \lim \text{ goes to } \frac{1}{2} \]

 \(\lim \text{ goes to } \frac{1}{2} \)

 \[\lim_{n \to \infty} \frac{n^3}{n^4} = 0 \to a_n = \frac{n^4}{n^4 + 2n + 1} \quad \text{Conv.} \]

Useful limits.

1. \[\lim_{n \to \infty} \left(1 + \frac{b}{n} \right)^n = e^{b} \]

2. \[\lim_{n \to \infty} \ln \left(\frac{2n+1}{n-2} \right) = \lim_{n \to \infty} \ln \left(\frac{2n+1}{n-2} \right) = \ln \left(\frac{2n+1}{n-2} \right) \]

 \[\text{limit goes to } \frac{2}{2} \]

Note: The above text includes mathematical expressions and limits. It appears to be a page from a textbook or lecture notes on sequences and series, including examples of finding limits and determining convergence or divergence. The content is presented in a clear, logical manner, using standard mathematical notation. The text is well-organized, with each section clearly marked and explained. The use of diagrams and special symbols such as \(\lim \) and \(\to \) indicates the focus on mathematical concepts and problem-solving techniques. The document is likely part of an educational resource for students learning about sequences, series, and limits in mathematics.