1. Evaluate \(\int_0^1 x^5 e^{x^3} \, dx \)

A. 1 B. e C. \(\frac{1}{3} \) D. \(\frac{2}{3}e \) E. \(\frac{2}{3}e - \frac{1}{3} \)

2. Graph the curves on the same plane. At how many distinct points do the curves intersect?

\(r_1 = 2\cos \theta \) \(r_2 = 2\cos(2\theta) \)

A. 0 B. 1 C. 2 D. 3 E. 4

3. Evaluate \(\int_0^1 \frac{x}{x^2 + 2x + 1} \, dx = \)

A. \(\ln(2) + 1 \) B. \(\ln(2) \) C. \(\ln(2) + \frac{1}{2} \) D. \(\ln(2) - 1 \) E. \(\ln(2) - \frac{1}{2} \)

4. Let \(C(t) = (2t - t^2, 3t - t^3) \). Which of the following is true?

A. \(C(t) \) is increasing and concave up at \(t = 3 \)
B. \(C(t) \) is decreasing and concave up at \(t = 3 \)
C. \(C(t) \) is increasing and concave down at \(t = 3 \)
D. \(C(t) \) is decreasing and concave down at \(t = 3 \)
5. Let \(C(t) = (2t - t^2, 3t - t^3) \)
which of the following is true?

A. \(C(t) \) has 1 horizontal tangent line and no vertical tangent lines
B. \(C(t) \) has 1 horizontal tangent line and 1 vertical tangent line.
C. \(C(t) \) has 2 horizontal tangent lines and no vertical tangent lines
D. \(C(t) \) has 2 horizontal tangent lines and 1 vertical tangent line.

6. Find the volume \(V \) of the described solid \(S. \)
The base of \(S \) is triangular, with vertices \((0,0), (0,6), \) and \((6,0)\)
Cross-Sections are \(\perp \) to the y-axis and are semi-circles.

A. \(3\pi \) B. \(45\pi \) C. \(9\pi \) D. \(\frac{9\pi}{2} \)

7. Find \(T_2 \), the Taylor polynomial of degree 2, centered at 2 for \(f(x) = \frac{1}{x} \)

7. Find \(T_2 \), the Taylor Polynomial of degree 2, centered at 3, for \(f(x) = \frac{1}{x^2} \). Use \(T_2 \) to approximate \(\frac{1}{(3.1)^2} \).

a. \(\frac{1}{(3.1)^2} \approx \frac{1}{9} - \frac{2}{270} + \frac{1}{1350} \)

b. \(\frac{1}{(3.1)^2} \approx \frac{1}{9} + \frac{2}{270} - \frac{1}{1350} \)

c. \(\frac{1}{(3.1)^2} \approx \frac{1}{9} - \frac{2}{270} - \frac{1}{2700} \)

d. \(\frac{1}{(3.1)^2} \approx \frac{1}{9} - \frac{2}{270} - \frac{1}{3500} \)

e. \(\frac{1}{(3.1)^2} \approx \frac{1}{9} - \frac{2}{270} + \frac{1}{2700} \)
8. Determine the values of k for which the integral
\[\int_{1}^{\infty} \frac{x^{k/2}}{3x^k + 10x} \, dx \] will converge.

A. $\left[\frac{4}{2}, \infty \right)$

B. $\left(\frac{3}{2}, \infty \right)$

C. $\left(\frac{4}{2}, \frac{3}{2} \right)$

D. $(5, \infty)$

E. $(\frac{9}{2}, \infty)$
1. C. \(\frac{1}{3} \)

2. B. 1

3. E. \(\ln(2) - \frac{1}{2} \)

4. C. Increasing and Concave down

5. A. \(C(t) \) has 1 HTL and NO VTL

6. C. \(9\pi \)

7. E. \(\frac{1}{(3,1)^2} \approx \frac{1}{9} - \frac{1}{270} + \frac{1}{32700} \)

8. E. \((\frac{9}{2}, \infty) \)