1. (5 pts) Find the line tangent to \(y = 6x^2 - 40x + 25 \) at the point \((0, 25)\).

 a. Find derivative of \(f(x) = 6x^2 - 40x + 25 \).

 \[f'(x) = (6x^2 - 40x + 25)' \]
 \[= (6x^2)' - (40x)' + (25)' \]
 \[= 12x - 40 \]

 b. Find slope: \(f'(0) \)

 \[f'(0) = 12(0) - 40 \]
 \[f'(0) = -40 \]

 \[f'(0) = \frac{12(0) - 40}{m} \]

 c. Use point-slope form with \(m = -40 \) and point \((0, 25)\).

 \[y - 25 = f'(0)(x - 0) \]
 \[y - 25 = -40(x - 0) \]

 \[y = -40x + 25 \]

2. (5 pts) Find the linearization of \(f(x) = 2\sqrt{x} \) near \(x = 9 \) and use it to approximate the value of \(2\sqrt{9.1} \).

 Either use \(f(x+h) \approx f(x) + f'(x)h \) OR \(f(x) \approx f(a)(x-a) + f(a) \)

 From formula we have \(f'(x) = \frac{1}{\sqrt{x}} \).

 \[f'(x) = \frac{1}{\sqrt{9}} \]

 \[f'(9) = \frac{1}{3} \]

 From formula we have \(2\sqrt{x} \approx (2\sqrt{a})'(x-a) + 2\sqrt{a} \)

 \[f(9) \approx (\frac{1}{\sqrt{9}})(x-9) + 2\sqrt{9} \]

 \[2\sqrt{9} \approx \frac{1}{3} (x-9) + 6 \]

 For approximating \(2\sqrt{9.1} \), we want to set \(9.1 = 9 + h \)

 Then plug \(h = 0.1 \) into squared formula

 \[2\sqrt{9} \approx 6 + \frac{h}{3} \]

 \[2\sqrt{9} \approx 6 + \frac{0.1}{3} \]

 \[2\sqrt{9} \approx 6 + \frac{0.3}{3} \]

 \[2\sqrt{9} \approx 6 + \frac{1}{30} \]

 \[2\sqrt{9} \approx \frac{181}{30} \]