1. Let $f(x)$ be a continuously differentiable function, and consider $f(x^2)$. How many of the following statements are true?

- $f(x^2) > 0$ for all x.
- If $f'(x) > 0$ for all x, then $(f(x^2))' > 0$ for all x.
- If $f'(x) > 0$ for all x and $f''(x) > 0$ for all x, then $(f(x^2))'' > 0$ for all x.
- There is a function $f(x)$ such that $f(x^2)$ has no horizontal tangent lines.

a) 0
b) 1
c) 2
d) 3
e) 4

2. If $f(x) = \sin(x)$, find $f^{(103)}(\pi/2)$.

 a) 0
b) 1
c) -1
d) 1/2
e) None of the above.

3. How many horizontal tangent lines does the function $f(x) = \tan(x)$ have in the interval $[-\pi, \pi]$?

 a) 0
b) 1
c) 2
d) 3
e) 4
4. Find $f'(1)$ if $f(x) = \frac{\sqrt{x} + \sqrt{x}}{\sqrt{x}}$

 a) 1
 b) -1/4
 c) 1/3
 d) 2
 e) None of the above.

5. Suppose that $Q(x) = \frac{f(x)}{g(x)}$, and that $f(0) = 2$, $f'(0) = -3$, $g(0) = 1$ and $g'(0) = 4$. Find $Q'(0)$.

 a) 8
 b) 1
 c) 0
 d) -3/4
 e) -11

6. If $f(x) = 2x^3$ and $g(x)$ is the inverse of $f(x)$, find $g'(2)$.

 a) -1/6
 b) -6
 c) 1/6
 d) 6
 e) The function is not differentiable at $x = 2$.
7. Consider the ellipse given by the equation \(\frac{(x - 2)^2}{25} + \frac{(y - 3)^2}{81} = 1 \). Find the equation of the tangent line to the ellipse at the point where \(x = 2 \) and \(y > 0 \).

8. Evaluate \(\frac{d}{dx}(e^\pi + e^{x^2}) \).

9. If the position of a particle is given by \(s(t) = 9t^2 + 10t - 2 \), what is the particle’s velocity at time \(t = 3 \)?
10. Find $\frac{dy}{dx}$ if $3 + \cos(xy) = x^2 \ln(y)$

11. Find the equation of the tangent line to the curve $y = 4 + \frac{x}{2x+1}$ at $x = 0$

12. Use logarithmic differentiation to find $\frac{dy}{dx}$ if $y = x^{5x}(2 + 3x^2)^4$.
13. Suppose there is a gas contained in a shrinking container. Boyle’s Law says that
\[P = \frac{C}{V}, \]
where \(C \) is a constant, \(P \) is the pressure in the container, and \(V \) is the
volume of the container. If \(V(t) = e^{-t} \), what is the rate of change of the pressure with
respect to time?

14. What is an example of a function that is continuous but not differentiable?