The following problems were pulled from exams and could potentially be on Discussion Quiz 6:

12. If \(\int_a^b \frac{1}{2}(-1 + 2 \sin \theta)^2 \, d\theta \) presents the area of the shaded region \(R \) below, find \(a \) and \(b \).

\[
r = -1 + 2 \sin \theta
\]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(r)</th>
<th>(x)</th>
<th>(y)</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>(\pi)</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>C</td>
</tr>
</tbody>
</table>

- a. \(a = \frac{11\pi}{6} \) and \(b = 2\pi \)
- b. \(a = \frac{2\pi}{3} \) and \(b = \pi \)
- c. \(a = \frac{5\pi}{3} \) and \(b = 2\pi \)
- d. \(a = \frac{3\pi}{2} \) and \(b = 2\pi \)
- e. \(a = \frac{5\pi}{6} \) and \(b = \pi \)

This into alone would rule out all choices except for C.

Point C is \((1,0)\) on rectangular coordinate plane.

\(y = 0 \) means \(\cos \theta = 1 \)
\(y = r \sin \theta = 0 \)
which happens \(a + \theta = 0, \pi, 2\pi \).
For the next 3 problems, worth 2 points each, match the given polar equations to the graphs.
(Graphs may not be drawn to scale.)

12. $r = \cos(3\theta)$ matches with graph E
13. $r = \sin(2\theta)$ matches with graph C
14. $r^2 = \cos(2\theta)$ matches with graph B
15. \(\int_{a}^{b} \frac{1}{2} (5 \cos(2\theta) - 2.5)^2 \, d\theta \) indicates the area of the shaded region. Find \(a \) and \(b \).

<table>
<thead>
<tr>
<th>label</th>
<th>polar</th>
<th>x-y coordinate (x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(2.5,0)</td>
<td>(2.5,0)</td>
</tr>
<tr>
<td>B</td>
<td>(-7.5, \frac{\pi}{2})</td>
<td>(0, -7.5)</td>
</tr>
<tr>
<td>C</td>
<td>(2.5, \pi)</td>
<td>(-2.5, 0)</td>
</tr>
<tr>
<td>D</td>
<td>(-7.5, \frac{3\pi}{2})</td>
<td>(0, 7.5)</td>
</tr>
</tbody>
</table>

A. \(a = \frac{\pi}{6}, b = \frac{5\pi}{6} \)
B. \(a = \pi, b = 2\pi \)
C. \(a = \frac{7\pi}{6}, b = \frac{3\pi}{2} \)
D. \(a = \frac{\pi}{2}, b = \frac{5\pi}{6} \)
E. \(a = \frac{\pi}{6}, b = \frac{\pi}{2} \)

Step 1: Label Peaks and Valleys
Step 2: Convert to rectangular form and label points on graph
Step 3: Figure out which points correspond to shaded region

Additional Step: Find Origin Points (Set \(r = 5 \cos(2\theta) - 2.5 \) equal to 0 and solve for \(\theta \))

Also for Step 2 I like to draw arrows indicating how the graph descends travels from A to B, B to C, so on and so forth.

So \(a = \frac{11\pi}{6} \) and \(b = \frac{3\pi}{2} \)

From FALL 2016

13. Draw the curves on the same plane. At how many distinct point(s) do the curves intersect?

\(r_1 = 2 \cos \theta, \quad r_2 = 2 \cos(2\theta) \)

A. 0
B. 1
C. 2
D. 3
E. 4

- \(r_1 = 2 \cos \theta \) circle of radius 1 centered at \((1,0)\)
- \(r_2 = 2 \cos(2\theta) \) lemniscate petals on x-axis, size of petals will be \(\sqrt{2} \)

\(r_1 \) and \(r_2 \) only intersect at the origin (at one pt)
9. Set up an integral that represents the area of the shaded region.

Formula for Area
\[
\frac{1}{2} \int \theta \ r^2 \ d\theta
\]

\(r_1 \) is the top curve so we would want \(r_1^2 - r_2^2 \)

A. \(\frac{1}{2} \int_0^{\pi/2} (r_1^2 - r_2^2) \ d\theta \)
B. \(\frac{1}{2} \int_0^{\pi/2} r_1^2 \ d\theta - \frac{1}{2} \int_0^{\pi/2} r_2^2 \ d\theta \)
C. \(\frac{1}{2} \int_0^{\pi/2} r_1^2 \ d\theta - \frac{1}{2} \int_0^{\pi/2} r_2^2 \ d\theta \)
D. \(\frac{1}{2} \int_0^{\pi/2} r_1^2 \ d\theta - \frac{1}{2} \int_0^{\pi/2} r_2^2 \ d\theta \)
E. \(\frac{1}{2} \int_0^{\pi/2} r_1^2 \ d\theta - \frac{1}{2} \int_0^{\pi/2} r_2^2 \ d\theta \)

To find upper limit for \(r_2 \)’s integral, find value \(\theta \) when \(r_2 \) hits the origin (i.e., when \(r_2 = 0 \))
\(r_2 = 2 \cos(3\theta) = 0 \Rightarrow \cos(3\theta) = 0 \Rightarrow \theta = \frac{\pi}{6}, \frac{5\pi}{6} \)

Note \(r_1 = 2 \) at \(\theta = 0 \) and \(r_2 = 2 \) at \(\theta = 0 \)
Measuring both \(r_1 \) and \(r_2 \) have the same starting pt
Tells us the lower integral limit should be 0 for both \(r_1 \) and \(r_2 \)

We want to find at what \(\theta \) for \(\theta \) causes \(r_1 = 1 + \cos(\theta) \) to hit \(A \)? For rectangular coordinates \(A \)
the \(x \) value is 0 meaning \(\chi = r \cos \theta = 0 \) which occurs when \(\theta = \frac{\pi}{2} \)

If we wanted to find the area of \(r_1 \) on the 1st quadrant we would then want \(\frac{1}{2} \int_0^{\pi/2} r_1^2 \ d\theta \)

From Fall 2018

9. Let \(A = \int_{\alpha}^{\pi/2} \frac{1}{2} (2 - 4 \sin \theta)^2 \ d\theta \)
be the area of the inner loop of \(r = 2 - 4 \sin \theta \).
What is the value of \(\alpha \)?

A. \(\alpha = \frac{\pi}{6} \) B. \(\alpha = \frac{5\pi}{6} \) C. \(\alpha = \frac{\pi}{3} \) D. \(\alpha = 0 \) E. \(\alpha = \frac{\pi}{4} \)

We need to find when \(r = 2 - 4 \sin \theta \) first hits the origin
Set \(r = 0 \) and solve for \(\theta \)
\(0 = 2 - 4 \sin \theta \)
\(4\sin \theta = 2 \) \(\sin \theta = \frac{1}{2} \) \(\theta = \frac{\pi}{6}, \frac{5\pi}{6} \)
8. Given two polar curves, \(r_1 = \cos \theta \), \(r_2 = \sin \theta \). Which shaded region below is represented by the integral below?

\[
\frac{1}{2} \int_0^{\pi/4} (\sin\theta)^2 \, d\theta + \frac{1}{2} \int_{\pi/4}^{\pi/2} (\cos\theta)^2 \, d\theta
\]

Adding 2 areas together means we're not trying to find the area of region C or E. It looks like \(\frac{1}{2} \int_{r_1}^{r_2} r^2 \, d\theta \).

\[
\frac{1}{2} \int_0^{\pi/4} (\sin\theta)^2 \, d\theta + \frac{1}{2} \int_{\pi/4}^{\pi/2} (\cos\theta)^2 \, d\theta = \frac{1}{2} \int_0^{\pi/2} (\cos\theta)^2 \, d\theta
\]

If \(\frac{1}{2} \int_a^b (r_1^2 - r_2^2) \, d\theta \) presents the area of the region inside the curve \(r_1^2 = 50 \cos(2\theta) \) and outside the curve \(r_2 = 5 \), in the first quadrant, find a and b.

A. \(a = \frac{\pi}{3}, b = \frac{\pi}{2} \)
B. \(a = \frac{\pi}{6}, b = \frac{\pi}{4} \)
C. \(a = 0, b = \frac{\pi}{3} \)
D. \(a = 0, b = \frac{\pi}{2} \)
E. \(a = 0, b = \frac{\pi}{6} \)

Point \(a = 0 \) when \(r_1 = r_2 \).

\[
25 = 50 \cos(2\theta)
\]

\[
\frac{1}{2} = \cos(2\theta)
\]

\[
\cos^{-1}\left(\frac{1}{2}\right) = 2\theta
\]

\[
\frac{\pi}{3} = 2\theta \Rightarrow \theta = \frac{\pi}{6}
\]

So, \(b = \frac{\pi}{6} \).
14. Which choice below represents the area of the region that lies inside the first curve and outside the second curve?

A. \(\frac{1}{2} \int_{\pi/6}^{\pi/2} r_1^2 d\theta - \frac{1}{2} \int_{0}^{\pi/6} r_2^2 d\theta \)

B. \(\frac{1}{2} \int_{\pi/6}^{\pi} r_1^2 d\theta - \frac{1}{2} \int_{\pi/6}^{\pi/2} r_2^2 d\theta \)

C. \(\frac{1}{2} \int_{\pi/6}^{\pi} r_1^2 d\theta - \frac{1}{2} \int_{\pi/6}^{\pi} r_1^2 d\theta \)

D. \(\frac{1}{2} \int_{\pi/6}^{\pi/2} r_1^2 d\theta - \frac{1}{2} \int_{\pi/6}^{\pi/2} r_2^2 d\theta \)

E. \(\frac{1}{2} \int_{\pi/6}^{\pi/2} r_1^2 d\theta - \frac{1}{2} \int_{0}^{\pi/6} r_1^2 d\theta \)

Point of intersection: \(A + \theta = \frac{\pi}{6} \)

\(r_1 = r_2 \)
\(\sqrt{3} \sin \theta = \cos \theta \)
\(\sqrt{3} = \frac{\cos \theta}{\sin \theta} \)
\(\sqrt{3} = \cot \theta \)
\(\frac{1}{\sqrt{3}} = \tan \theta \)
\(\frac{\frac{1}{2}}{\sqrt{3}} = \tan \theta \)

To find area of \(r_1 \) use \(\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} r_1^2 d\theta = \)

To get rid of purple region, we find \(\theta \) when \(r_2 \) hits point of origin, i.e., when \(\theta = \frac{\pi}{2} \)

Remember to start for \(r_2 \), \(\theta \) ranges from 0 to \(\pi \) and starts at point (1,0) and draw a semicircle of \(\theta = \frac{\pi}{2} \). We want to get rid of purple area.