Limits

Limit \# 1. $\lim _{n \rightarrow \infty} n \sin \frac{1}{n}=\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$

$$
=\lim _{x \rightarrow \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}}=1 \text { by L'Hopital's Rule. }
$$

Definition 1. A sequence is a function whose domain is the set of all positive integers.

Definition 2. Let $\left\{a_{n}\right\}$ be a sequence of real numbers and let L be a real number. Then
(a) $\lim _{n \rightarrow \infty} a_{n}=L$ iff the following condition holds:

For each open interval U centered at L,

$$
a_{n} \text { is in } U \text { from some index } N \text { onward. }
$$

(b) $\lim _{n \rightarrow \infty} a_{n}=\infty$ iff the following holds:

For each interval $U=(M, \infty]$,

$$
a_{n} \text { is in } U \text { from some index onward. }
$$

(c) $\lim _{n \rightarrow \infty} a_{n}=-\infty$ iff the following holds:

For each interval $U=[-\infty, M)$,

$$
a_{n} \text { is in } U \text { from some index onward. }
$$

Theorem 6*. $\lim _{n \rightarrow \infty} a_{n}=0$ iff $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$.
Definition Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Then the sequence $\left\{S_{n}\right\}$ given by

$$
S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n} \text { for } n=1,2,3, \cdots
$$

is called an infinite series and is denoted by $\sum_{n=1}^{\infty} a_{n}$.

