2. A Remarkable Function

By Theorem 5.12 (p 311), we know that for each x in the interval $(0, \infty)$, the integral $\int_{1}^{x} \frac{1}{t} d t$ exists. For each $x>0$, we could let $G(x)$ or $L(x)$ denote the value of this integral. The resulting function is a very important function having the interval $(0, \infty)$ as its domain. We should study this function and discover many of its properties. As we begin our study of this function, we would like to follow tradition and let $\ln x$ stand for the value of this integral [instead of using $G(x)$ or $L(x)]$. Thus in the following discussion, we shall let

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t \text { for each } x>0
$$

On pp. 338-339 in the text, the authors observe that the derivative of this function is positive on the whole domain which is an interval and that the range is the interval $(-\infty, \infty)$. Thus 1 is in the range of this function. This means that $1=\ln x_{0}$ for some $x_{0}>0$. But since $\ln x$ is one-to-one, we know that x_{0} is unique. Following tradition, we shall henceforth use e to denote this unique number x_{0} such that $\ln x_{0}=1$.

Definition 2.1. The number e is that unique number such that $\ln e=1$.
In Ex. 47, p 345, the authors indicate how we may show that

$$
\begin{equation*}
\ln b^{r}=r \ln b \text { for each } b>0 \text { and for each rational number } r . \tag{1}
\end{equation*}
$$

In particular, if we take b to be e and let r be an arbitrary rational number y, then we have

$$
\ln e^{y}=y \ln e=y \text { since } \ln e=1
$$

Thus we have proved the following.
Theorem 2.2. If y is rational, then

$$
\begin{equation*}
\ln e^{y}=y . \tag{2}
\end{equation*}
$$

3. Irrational Exponents on e

In a precalculus course, we gave the definition of a^{y} if $a>0$ and y is any rational number. But we did not define a^{y} if y is irrational because this would have been an extremely difficult task without the use of calculus. We are now in a position where it is easy to define irrational exponents, and we must do so. [When a physicist or an engineering professor uses the function $g(x)=e^{x}$, it is essential that the domain of g include irrational numbers as well as rational numbers. We should remember there are far more irrational values of x than there are rational values, and we must not ignore them.]

We begin by defining irrational exponents on e. The question is: How should we define e^{y} when y is irrational so as to obtain a useful system?

Well- we choose some law which we already know holds for rational exponents and deliberately define e^{y} when y is irrational just so that this law will continue to hold. The law which we pick here is the one expressed in formula (2). We can restate that law in a more emphatic way as follows (since $\ln x$ is one-to-one).
$\left(2^{*}\right)$ If y is rational, then e^{y} is the unique number such that $\ln e^{y}=y$.
Definition 3.1. If y is irrational, then e^{y} is the unique number such that $\ln e^{y}=y$.

Combining Theorem 2.2 and Definition 3.1, we have the following result.
Theorem 3.2. If y is any real number, then

$$
\ln e^{y}=y \quad \begin{cases}\text { by Theorem } 2.2 & \text { if } y \text { is rational } \tag{3}\\ \text { by Definition } 3.1 & \text { if } y \text { is irrational }\end{cases}
$$

Examining (3), we see that (since $\ln x$ is one-to-one) this means:

$$
\begin{equation*}
\text { If } y=\ln x=f(x) \text {, then } x=e^{y}=f^{-1}(y) \tag{4}
\end{equation*}
$$

Now if we properly interpret statement (4), we have the following result.
Theorem 3.3. The function e^{x} is the inverse function of $\ln x$. See Figure 1.

Figure 1. $y=\ln x=f(x)$
Now we use statement (4) to prove our next theorem.
Theorem 3.4. The Surprise Theorem. If $x>0$, then $\ln x=\log _{e} x$.
Proof. Let $x>0$ and let $y=\ln x$. Then

$$
\begin{align*}
x & =e^{y} \quad \text { by }(4) \tag{5}\\
& =e^{\ln x} \quad \text { since } y=\ln x .
\end{align*}
$$

Now statement (5) explicitly states that $\ln x$ is the exponent to which we raise e to obtain x. Hence $\ln x=\log _{e} x$ by Definition 1.10 in our first handout.

Corollary 3.5. For each $u>0$, we have

$$
\begin{equation*}
u=e^{\ln u} . \tag{6}
\end{equation*}
$$

4 . From Rational Exponents to Irrational Exponents

We are now in a position to define a^{x} where $a>0$ and x is irrational. To do this, we choose some law which we already know holds if x is rational and deliberately define a^{x} when x is irrational just so that this law will continue to hold for irrational values of x. The law which we select is given in our next theorem.

Theorem 4.1. If $a>0$ and x is rational, then

$$
\begin{equation*}
a^{x}=e^{x \ln a} . \tag{7}
\end{equation*}
$$

Proof. Taking u to be a^{x} in (6), we have

$$
\begin{aligned}
a^{x} & =e^{\ln a^{x}} \quad \text { by }(6) \\
& =e^{x \ln a} \quad \text { by (1) (since } x \text { is rational). }
\end{aligned}
$$

Definition 4.2. If $a>0$ and x is irrational, then $a^{x}=e^{x \ln a}$
Combining Theorem 4.1 and Definition 4.2, we have the result: If x is any real number and $a>0$, then
$\left(7^{*}\right) a^{x}=e^{x \ln a} \begin{cases}\text { by Theorem } 4.1 & \text { if } x \text { is rational } \\ \text { by Definition } 4.2 & \text { if } x \text { is irrational }\end{cases}$
Now if we need to perform a calculus operation on a^{u} or on v^{u}, then we first rewrite the expression as

$$
e^{u \ln a} \text { or as } e^{u \ln v}
$$

and then use the formulas which we know for e^{u}.
Calculus operations are differentiation, integration, and finding limits.
Likewise, if we need to perform a calculus operation on $\log _{a} u$, then we simply rewrite the expression as

$$
\frac{\ln u}{\ln a}
$$

and use formulas which we know for the natural logarithm.

