
2. A Remarkable Function

By Theorem 5.12 (p 311), we know that for each x in the interval (0,∞), the
integral

∫ x
1

1
t
dt exists. For each x > 0, we could let G(x) or L(x) denote the value of

this integral. The resulting function is a very important function having the interval
(0,∞) as its domain. We should study this function and discover many of its prop-
erties. As we begin our study of this function, we would like to follow tradition and
let ln x stand for the value of this integral [instead of using G(x) or L(x)]. Thus in
the following discussion, we shall let

lnx =
∫ x

1

1

t
dt for each x > 0.

On pp. 338–339 in the text, the authors observe that the derivative of this function
is positive on the whole domain which is an interval and that the range is the interval
(−∞,∞). Thus 1 is in the range of this function. This means that 1 = ln x0 for some
x0 > 0. But since lnx is one-to-one, we know that x0 is unique. Following tradition,
we shall henceforth use e to denote this unique number x0 such that lnx0 = 1.

Definition 2.1. The number e is that unique number such that ln e = 1.

In Ex. 47, p 345, the authors indicate how we may show that

ln br = r ln b for each b > 0 and for each rational number r.(1)

In particular, if we take b to be e and let r be an arbitrary rational number y, then
we have

ln ey = y ln e = y since ln e = 1.

Thus we have proved the following.

Theorem 2.2. If y is rational, then

ln ey = y.(2)

3. Irrational Exponents on e

In a precalculus course, we gave the definition of ay if a > 0 and y is any rational
number. But we did not define ay if y is irrational because this would have been an
extremely difficult task without the use of calculus. We are now in a position where
it is easy to define irrational exponents, and we must do so. [When a physicist or an
engineering professor uses the function g(x) = ex, it is essential that the domain of g
include irrational numbers as well as rational numbers. We should remember there
are far more irrational values of x than there are rational values, and we must not
ignore them.]



We begin by defining irrational exponents on e. The question is: How should we
define ey when y is irrational so as to obtain a useful system?

Well— we choose some law which we already know holds for rational exponents
and deliberately define ey when y is irrational just so that this law will continue to
hold. The law which we pick here is the one expressed in formula (2). We can restate
that law in a more emphatic way as follows (since ln x is one-to-one).

(2∗) If y is rational, then ey is the unique number such that ln ey = y.

Definition 3.1. If y is irrational, then ey is the unique number such that ln ey = y.

Combining Theorem 2.2 and Definition 3.1, we have the following result.

Theorem 3.2. If y is any real number, then

ln ey = y

{
by Theorem 2.2 if y is rational
by Definition 3.1 if y is irrational

(3)

Examining (3), we see that (since lnx is one-to-one) this means:

If y = ln x = f(x), then x = ey = f−1(y).(4)

Now if we properly interpret statement (4), we have the following result.

Theorem 3.3. The function ex is the inverse function of ln x. See Figure 1.
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Figure 1. y = ln x = f(x)

Now we use statement (4) to prove our next theorem.

Theorem 3.4. The Surprise Theorem. If x > 0, then ln x = loge x.

Proof. Let x > 0 and let y = ln x. Then

x = ey by (4)(5)

= elnx since y = ln x.

Now statement (5) explicitly states that lnx is the exponent to which we raise e to
obtain x. Hence ln x = loge x by Definition 1.10 in our first handout.

Corollary 3.5. For each u > 0, we have

u = elnu.(6)



4 . From Rational Exponents to Irrational Exponents

We are now in a position to define ax where a > 0 and x is irrational. To do this,
we choose some law which we already know holds if x is rational and deliberately
define ax when x is irrational just so that this law will continue to hold for irrational
values of x. The law which we select is given in our next theorem.

Theorem 4.1. If a > 0 and x is rational, then

ax = ex ln a.(7)

Proof. Taking u to be ax in (6), we have

ax = eln ax by (6)

= ex ln a by (1) (since x is rational).

Definition 4.2. If a > 0 and x is irrational, then ax = ex ln a

Combining Theorem 4.1 and Definition 4.2, we have the result: If x is any real
number and a > 0, then

(7∗) ax = ex ln a

{
by Theorem 4.1 if x is rational
by Definition 4.2 if x is irrational

Now if we need to perform a calculus operation on au or on vu, then we first
rewrite the expression as

eu ln a or as eu ln v

and then use the formulas which we know for eu.
Calculus operations are differentiation, integration, and finding limits.
Likewise, if we need to perform a calculus operation on loga u, then we simply

rewrite the expression as
lnu

ln a

and use formulas which we know for the natural logarithm.


