Fourier analysis on finite abelian groups and uncertainty principles

Qing Xiang

University of Delaware

(Joint work with Tao Feng and Henk D. L. Hollmann)

Let G be a finite abelian group. If $f: G \to \mathbb{C}$ is a nonzero function with Fourier transform \hat{f} , the Donoho-Stark uncertainty principle states that $|\operatorname{supp}(f)||\operatorname{supp}(\hat{f})| \geq |G|$. The purpose of this talk is twofold. First, we present the shift bound for abelian codes with a streamlined proof. Second, we use the shifting technique to prove a generalization and a sharpening of the Donoho-Stark uncertainty principle. In particular, the sharpened uncertainty principle states, with notation above, that

 $|\operatorname{supp}(f)||\operatorname{supp}(\hat{f})| \ge |G| + |\operatorname{supp}(f)| - |H(\operatorname{supp}(f))|,$

where $H(\operatorname{supp}(f))$ is the stabilizer of $\operatorname{supp}(f)$ in G.