Fall 2017
Date 
Period

Time

Location

Speaker

Topic


September 1  9  4:05 – 4:55  LIT 368  Alexandre Turull  Dade’s conjectures and related conjectures, I 
September 8  9  4:05 – 4:55  LIT 368  No seminar  Hurricane Irma 
September 15  9  4:05 – 4:55  LIT 368  Alexandre Turull  Dade’s conjectures and related conjectures, II 
September 22  9  4:05 – 4:55  LIT 368  Peter Sin  ErdősKoRado problems for permutation groups 
September 29  9  4:05 – 4:55  LIT 368  Peter Sin  EKR for PSL(2,q) acting on the projective line 
October 6  9  4:05 – 4:55  LIT 368  No seminar  Homecoming 
October 13  9  4:05 – 4:55  LIT 368  Peter Sin  EKR for PSL(2,q) acting on the projective line (continued) 
October 20  9  4:05 – 4:55  LIT 368  TBA  TBA 
October 27  9  4:05 – 4:55  LIT 368  TBA  TBA 
November 3  9  4:05 – 4:55  LIT 368  Richard Crew  TBA 
November 10  9  4:05 – 4:55  LIT 368  Richard Crew  TBA 
November 17  9  4:05 – 4:55  LIT 368  Kevin Keating  TBA 
November 24  9  4:05 – 4:55  LIT 368  No seminar  Thanksgiving 
December 1  9  4:05 – 4:55  LIT 368  TBA  TBA 
Spring 2017
Date 
Period

Time

Location

Speaker

Topic


February 10  9  4:05 – 4:55  LIT 368  Tom Wolf  Regular orbits 
February 17  9  4:05 – 4:55  LIT 368  Tom Wolf  Regular orbits (continued) 
February 24  9  4:05 – 4:55  LIT 368  Pantangi  Smith group and Critical group of the Symplectic polar graph.
Abstract: The Smith group and Critical group are interesting invariants of a graph. The Smith group a graph is the cokernel of it’s adjacency matrix. The critical group a graph is a finite Abelian group whose order is the number of spanning forests of the graph. In this presentation, we will focus on some elementary linear algebra techniques that give us partial information about the Smith group and Critical group of a Strongly regular graph. We will also apply these techniques and some representation theory to find the Smith group and Critical group of the Symplectic Polar graph. 
March 3  9  4:05 – 4:55  LIT 368  Cyr  Semipermutability of subgroups in some simple groups 
March 10  9  4:05 – 4:55  LIT 368  No seminar  Spring Break 
March 17  9  4:05 – 4:55  LIT 368  Kevin Keating  What is a Hopf Algebra? 
March 24  9  4:05 – 4:55  LIT 368  Kevin Keating  Affine group schemes 
March 31  9  4:05 – 4:55  LIT 368  Kevin Keating  Affine Group Schemes II 
April 7  9  4:05 – 4:55  LIT 368  Kevin Keating  HopfGalois Extensions 
April 14  9  4:05 – 4:55  LIT 368  Yong Yang  On $p$parts of character degrees of finite groups
Abstract: Let $G$ be a finite group and $\Irr(G)$ the set of irreducible complex characters of $G$. Let $e_p(G)$ be the largest integer such that $p^{e_p(G)}$ divides $\chi(1)$ for some $\chi \in \Irr(G)$. In this talk, we show that $G:F(G)_p \leq p^{K e_p(G)}$ for a universal constant $K$. This settles a conjecture of A. Moreto. 
Fall 2016
Date 
Period

Time

Location

Speaker

Topic


October 17  9  4:05 – 4:55  LIT 368  Alexandre Turull  Maximal Subgroups of Finite Groups
Abstract: 
October 24  9  4:05 – 4:55  LIT 368  No seminar  Because of colloquium talk 
October 31  9  4:05 – 4:55  LIT 368  Alexandre Turull  Maximal Subgroups of Finite Groups, II 
November 7  9  4:05 – 4:55  LIT 368  No seminar  Because of colloquium talk 
November 14  9  4:05 – 4:55  LIT 368  Alexandre Turull  Maximal Subgroups of Finite Groups, III 
November 21  9  4:05 – 4:55  LIT 368  No Seminar  This week 
November 28  9  4:05 – 4:55  LIT 368  Alexandre Turull  Small orbits and regular orbits
Abstract: 
December 5  9  4:05 – 4:55  LIT 368  Alexandre Turull  Small orbits and regular orbits, II 
Spring 2016
Date 
Period

Time

Location

Speaker

Topic


February 5  7  1:55 – 2:45  LIT 305  Alexandre Turull  Characters of Finite Groups
Abstract: 
February 12  7  1:55 – 2:45  LIT 305  Alexandre Turull  Characters of Finite Groups
Abstract: 
February 19  7  1:55 – 2:45  LIT 305  Tom Wolf  More character theory 
February 26  7  1:55 – 2:45  LIT 305  Tom Wolf  More character theory 
March 4  7  1:55 – 2:45  LIT 305  No seminar  Spring Break 
March 11  7  1:55 – 2:45  LIT 305  Alexandre Turull  The Strengthened Dade Projective Conjecture
The Dade Projective Conjecture relates the existences of certain characters for the normalizers of chains of psubgroups of a finite group. This conjecture has been strengthened to include information about the p’part of their degrees, the fields of definition and the Schur indices. We will discuss a proof of this strengthened conjecture for the all the finite psolvable groups. 
March 18  7  1:55 – 2:45  LIT 305  Alexandre Turull  The Strengthened Dade Projective Conjecture II
This will continue the material discussed the previous week. 
March 25  7  1:55 – 2:45  LIT 305  Shahrtash  Recognizing direct products from their conjugate type vector 
March 28 (Monday)  9  4:05 – 4:55  LIT 368  Qing Xiang  A Linear Analogue of Kneser’s Theorem and Related Problems Abstract 
April 8  7  1:55 – 2:45  LIT 305  Kevin Keating  Galois Modules and Ramification Theory 
April 15  7  1:55 – 2:45  LIT 305  Kevin Keating  Galois Modules and Ramification Theory (continued) 
April 22  7  1:55 – 2:45  LIT 305  Josh Ducey  Critical groups of strongly regular graphs
Abstract: An active line of research has been to calculate the critical group for various families of graphs. In this talk we illustrate how to obtain partial information about the critical group of any strongly regular graph. Other methods that can be used to gain further insight will be illustrated through several examples. 
Spring 2015
Date 
Period

Time

Location

Speaker

Topic


January 27  9  4:05 – 4:55  LIT 305  Alexandre Turull  Endoisomorphisms
Abstract: 
February 3  9  4:05 – 4:55  LIT 305  Alexandre Turull  Endoisomorphisms
Abstract: 
February 10  9  4:05 – 4:55  LIT 305  Peter Sin  Title: Representations of the alternating group which are irreducible over subgroups.
Abstract: 
February 17  9  4:05 – 4:55  LIT 305  Kevin Keating  Trace, Norm, Etc. 
February 24  9  4:05 – 4:55  LIT 305  Tom Wolf  The GlaubermanIsaacs Correspondence 
March 3  9  4:05 – 4:55  LIT 305  No seminar  Spring Break 
March 10  9  4:05 – 4:55  LIT 305  Richard Crew  FIsocrystals and division algebras 
March 17  9  4:05 – 4:55  LIT 305  Liz Wiggins  Some Weyl modules for simple algebraic groups
Abstract: 
March 24  9  4:05 – 4:55  LIT 305  No seminar  this week 
March 31  9  4:05 – 4:55  LIT 305  No seminar  this week 
April 7  9  4:05 – 4:55  LIT 305  Peter Sin  The Smith group of the Hypercube graph.
Abstract. The hypercube graph is a basic example, closely related to the Hamming association scheme, which in turn plays an important role in coding theory. This talk is about the recent calculation of the Smith group of the hypercube, or equivalently the Smith Normal Form of its adjacency matrix. (Joint work with D. Chandler and Q. Xiang.) 
April 14  9  4:05 – 4:55  LIT 305  No seminar  this week 
Fall 2014
Date 
Period

Time

Location

Speaker

Topic


July 28  8  3:00 – 3:50  LIT 368  Pham Tiep  Nilpotent Hall and abelian Hall subgroups Abstract: To which extent can one generalize the Sylow theorems? One possible direction is to assume the existence of a nilpotent subgroup whose order and index are coprime. We will discuss recent joint work with various collaborators that gives a criterion to detect the existence of such subgroups in any finite group. 
September 12  9  4:05 – 4:55  LIT 368  Alexandre Turull  Generalizations of Jordan’s Theorem 
September 19  9  4:05 – 4:55  LIT 368  Peter Sin  Some remarks on Veronese and Grassmann varieties in characteristic 2 
September 26  9  4:05 – 4:55  LIT 368  Alexandre Turull  The GlaubermanIsaacs character correspondence and its inverse 
October 3  9  4:05 – 4:55  LIT 368  Doug Brozovic  An introduction to sharp permutation groups Abstract 
October 10  9  4:05 – 4:55  LIT 368  No seminar  this week 
October 17  9  4:05 – 4:55  LIT 368  No seminar  Homecoming 
October 24  9  4:05 – 4:55  LIT 368  Christopher Cyr  Title: A Theorem of Isaacs on SSemipermutable Subgroups and Some Consequences
Abstract: The familiar notion of a permutable subgroup can be generalized in many ways, one of which is Ssemipermutability. In recent years many authors have explored what can be said about a group when many subgroups satisfy a particular permutability condition. In this talk, we present a recent theorem of Isaacs concerning the normal closure of an Ssemipermutable subgroup H of a finite group G. In addition to proving the theorem, we mention some corollaries which result from considering the special cases where H is a Sylow psubgroup or a Hall πsubgroup of G. 
October 31  9  4:05 – 4:55  LIT 368  Alexander Gruber  Title: Design and Cryptanalysis of MatsumotoImai and its Variants
Abstract: The MatsumotoImai (MI) Cryptosystem was proposed in 1988 as a candidate for the national cryptosystem of the Japanese government. The MI scheme exploits the difficulty of determining the hidden structure of a finite field extension, promising similar security to RSA, yet with much faster encryption and decryption speeds. MI was broken in 1995 with an algebraic attack published by Jacques Patarin; however, there are several proposed improvements that offer increased security. In this talk, we outline the MI scheme, discuss its cryptanalysis, and 
November 7  9  4:05 – 4:55  LIT 368  Venkata Raghu Tej Pantangi  Title: Introduction to symmetric functions
Abstract: Let $X$ be a set of variables indexed by the natural numbers. A symmetric function $f$ is an element of $\mathbb{Q}[[X]]$ which is invariant under any permutation of $X$ and the degrees of monomials involved in $f$ are bounded. One can also view them as the elements of the inverse limit of the rings of symmetric polynomials in finite number of variables, considered as graded rings. Any $\mathbb{Q}$basis of the ring of symmetric polynomials is indexed by partitions of natural numbers. We will see four important bases and the linear relations among these bases. The role played by symmetric functions in the character theory of symmetric groups will also be discussed. 
November 14  9  4:05 – 4:55  LIT 368  Yong Yang  Title: Orbits of group actions
Abstract: The idea of a group is the mathematical abstraction of the common notion of symmetry. Group actions allow the study of groups via their action on suitable sets (such as vector spaces) which models the ways they arise in the real world. Naturally, the information on the orbits induced by a group action is central to the understanding of the action. As in the case of Sylow’s theorems, a result on the orbits of a group action is often at the core of a seemingly unrelated problem. In this talk, we discuss some recent developments in this area, and address some open problems. 
November 21  9  4:05 – 4:55  LIT 368  No seminar  this week 
November 28  9  4:05 – 4:55  LIT 368  No seminar  Thanksgiving 
December 5  9  4:05 – 4:55  LIT 368  No seminar  this week 