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ABSTRACT

Hirata, H. and Ulanowicz, R.E., 1986. Large—scaie system perspectives on ecological modell-
ing and analysis. Ecol. Modelling, 31: 79~103.

This paper suggests that it is time to shift emphasis from deterministic, numerical
simulations of ecosystems, and consider more basic concerns about how to represent them.
Approximating the entities of an ecological community is a problem of aggregation/decom-
position. The most useful representations of ecosystems appear to be networks which are
amenable to such techniques as input-output analysis, environ analysis, information theory
and Markov chain calculations. There appears to be no formal way of adequately depicting
ecosystems as thermodynamic systems, and there is a need to bridge the gap between micro
and macro-perspectives in ecology. A-posteriori methods of identifying system interactions,
such as group method of data handling (GMDH), compartmental diagnosis, reconstructabil-
ity analysis and flow-based modelling, promise to be useful tools in ecological narration.

INTRODUCTION

As Jgrgensen and Mejer (1983) pointed out ‘in their introduction to a
previous ISEM conference, this coming decade should see the development
of a unified theory to describe ecosystems behavior. It should be a time of
fervent theoretical discussion related to real ecosystems. This paper surveys
some of the recent topics of interest in ecological modelling and analyses
those which are relevant to large-scale systems.

In this discourse, computer-oriented models are not addressed. Although
they are sometimes important, the era of computer-simulated, case-by-case
discussions appears to be drawing to a close. The time is ripe to pause and
think a little more theoretically before again resorting to computer numeri-
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cal simulation. Of course, computers are very useful, if properly used, but
blind faith and over-dependence on calculating machines can be dangerous
and can also hinder the development of the unified, conceptual methods that
lead one to true insights. Rather, one should strive to identify common
properties of ecosystems and to develop more general methods of modelling
and analysis. By so doing, one also saves resources (computer time and
manpower) that would otherwise be spent on blind-search techniques.

The authors have found two excellent papers (Halfon 1983a,b) exemplify-
ing the kind of theoretical discussion which should be done before resorting
to computers: they outline a procedure to analyze several alternative model
structures to identify the best one to subject to a more comprehensive
simulation study. Although the method may not be complete, it is nonethe-
less a prime example of how theoretical discussion should precede practical
computation. Such theoretical discussion should become increasingly more
important in the future as a prelude to the modelling of ecosystems.

Aggregation is a subject of keen interest to ecological modellers, and one
can expect a clearer picture of how best to aggregate systems to emerge over
the next decade. This paper systematically discusses both the aggregation
and decomposition problems as two aspects of the single issue of how to
approximate ecosystems.

Because the ability to collect data is very limited in the ecological field,
one of the most useful representations of ecosystems is their portrayal as a
network. Input—output analysis, environ analysis, and the applications of
information theory and Markov chain theory are surveyed, and the relation-
ships among them are considered. It will be demonstrated that, as concerns
flow partitions (propagation of cause), one can prove that the results
obtained through input—output analysis are identical to those obtained by
environ analysis.

The methods of thermodynamics and statistical mechanics are reviewed
with an eye towards the construction of macroscopic models of ecosystems.
Macroscopic models of closed ecosystems are also discussed as one aspect of
macroecology. Discussion to bridge the gap between microscopic and mac-
roscopic thinking in ecology should become more important during the next
decade.

In general, there are two types of problems associated with model
identification: black-box model identification and structure definition. In
relation to black-box model identification, GMDH (the group method of
data handling) is appraised; and with regard to structure identification, the
methods of compartmental system analysis (tracer kinetics), reconstructabil-
ity analysis and flow-based modelling are reviewed. Which method of
identification an investigator should select will depend upon the nature of
data available and upon the user’s intentions.
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Various other modelling methods, the modelling techniques of H.T.
Odum, optimization based modelling, as well as econometric representations
and an application of fuzzy set theory, are also briefly reviewed.

APPROXIMATION PROBLEM — AGGREGATION AND DECOMPOSITION

Because there are limitations on one’s ability to observe and understand
ecosystems, an approximation of the object ecosystem usually has to be
made prior to the process of modelling. Even if the research budget were to
permit huge amounts of measurement and simulation, one would probably
not be able to digest the results obtained from such a complex model.

The approximation problem has two aspects: aggregation and decomposi-
tion. These problems have often been discussed during the past two decades
in the fields of control and power systems (e.g. Aoki, 1968), and aggregation
has been a frequent theme in economics (e.g. Simon and Ando, 1961; Theil,
1967; Fisher, 1969). As this review will show, research on the aggregation
problem is in its early stages, and almost no consideration has been given to
topological decomposition in ecology.

Explanation in simple mathematical terms should help one better to
understand the meanings of both aggregation and decomposition. They are
probably best discussed as dual aspects of the single problem of how to
approximate ecosystems.

Systems consist of both elements and the relations among them, e.g.,
species and their ecological interactions. The task of approximating any
systems consists of two processes: grouping the elements and deletion of
relations among elements. '

Define a grouping matrix, S, as:

§= [Sik]i:l ..... mok=1,....n (1)

where

O<sy <1, Xs,=1 . (2)
i=1

n is the number of elements, and m the number of groups. The nonzero
positions of s, signify which elements should be gathered into the same
group, /. If all s,, are either 0 or 1, the grouping is referred to below as a
‘discrete grouping’. Otherwise, it is called a ‘weighted (or overlapping)
grouping’. An example of discrete grouping represented by the matrix:

11 1 o o]
oo 0o 1 1 )

appeafs in Fig. 1.

S
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| Group 2

Fig. 1. A discrete grouping of five elements into two modes. O shows an element; an arrow
shows a relation between elements,

After gathering the elements, the deletion of relations between elements
can occur in two ways: (a) aggregation, or the cancellation of relations
between elements mapped into the same group, thereby condensing all the
compartments of a given group into a single new element; and (b) decom-
position, or the elimination of relations between elements in different
groups, i.e., separating the original system into subsystems. Figure 2 sche-
matically depicts the processes of discrete aggregation and discrete decom-
position.

Two problems are apparent: (a) which elements should be gathered into
the same group; and (b) how should the structure of the approximate model
be determined? Because the method of aggregation is dictated by the
purpose of the ensuing model .(Cohen, 1985), the approximation criterion
should be selected to serve the same purpose. Roughly speaking, there are
two methods of approximation, one based on an examination of outputs and
the other based on the internal structure of the system. The difference
between the methods is portrayed in Fig. 3, and the following is a conveni-
ent, simplified explanation of aggregation using a state space (input—state—
output) system representation as cast in the form of differential equations.

Vector x represents the state of the elements of an ecological system with
inputs # and outputs y. Outputs are assumed to be based upon observation
(or measurement). The pair of equations:

dx
E zf(x’ u) ’ ’ (4)
y=g(x) ;
will represent the object (or real) ecological system, where:
X1 Uy Bg!
L] (5

AR Y
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Macrovariable 1 Macrovariable 2

Subsystem 1  Subsystem 2
Aggregation Decomposition

Fig. 2. Schematic diagram of aggregation and decomposition. An arrow is a relation between
elements in the same group; a broken arrow is a relation between elements in different
groups. '

The equations:

dx

E‘ =f(i’ E)
and
y=g(x) (6)

depict the aggregated model for equation (4). Here dim(x) > dim(x).

The criterion used to aggregate the system will be determined by the
purpose of the modelling exercise and will fix the optimal forms of x, f, etc.
One evaluates the difference between y and p, i.e., the loss of output
fidelity caused by the aggregation process. Then internal structure may be
considered as a black box, because it does not directly affect the criterion,
focused as it is on the outputs.
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Object system Object system

|t ————1

Difference of the Difference
internal structure of outputs
- — =] L —— >
Aggregated model Aggregated model

Fig. 3. Two ways of evaluating losses incurred by aggregation.

When one chooses not to fix the form of g(x), the criterion is shifted to
an appraisal of the structural difference between the objective system and
the aggregated model. Although there were several ways to quantify the
structure inherent in the original representation, the difference between
original states and disaggregated states ¥ may be the most useful criterion to
use for state space representation (e.g., Hirata, 1978). The disaggregated
state vector ¥ has the same dimension as x and was created by subsequently
decomposing the aggregated states, x, according to one of several methods
(e.g. Hirata, 1978; Roy et al., 1982).

Evaluating the changes in outputs or structures gives the criterion (cost) ¢
as a function of either y — y or x — X. Generally, ¢ may take the form of an
integration or summation over time. Minimization of ¢ then determines the
optimal form of x, f, 1e.
¢* =minc¢ >0 (7)

xf
The aggregation problem is usually translated into an optimization problem.
If ¢*=0, it is called a ‘strict aggregation’ (no introduced error), and if
¢* >0, it is an ‘approximate aggregation’. No strict aggregation exists,
except for a very special case.

When macro-variables are a composite form of micro-variables (x,), the
output functions must be defined by using the grouping matrix or identity
matrix as:

y=g(x)="5x
F=g(x)=Te=%

(8)
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Cost becomes:

c=c(y—y)=c(Sx—X) (9)
The optimization problem (7) changes to: :
min ¢ ' (10)
S.f

i.e., the process of minimizing ¢ determines the values of the elements in §.
In the case of discrete aggregation the optimization identifies the positions
of the I’sin S.

The decomposition problem can be analyzed in a manner similar to the
above. Equations:

di«'i A A ~ L
dt =.fi(xi5 ui)(lzls L] P) (11)
p=8(k, %5, ..., &)

depict the decomposed model for equation (4). Here:

dim(x) > p, dim(x) > max {dim(%,)}

]IS
and p is the number of subsystems. The criterion is built upon either the
function y—p or x — %, where ¥ =(%|%,|... |%,)". In the former case
( ¥ — ), the decomposition is based on an examination of outputs, and in
the latter instance (x — %), upon the internal structure of the system.
Minimization of ¢ determines the optimal form of x,, f, ie.

c*=  min c=0 (12)

{20}
The decomposition problem is thereby also translated into an optimization
problem. When x and % refer to the same basic elements, the optimization
(12) changes to:

min ¢ (13)

i.e., the process of minimizing ¢ determines the value of the elements in §.

Modellers of ecosystems usually aggregate the object system into com-
partments according to experience and intuition. Halfon and Reggiani
(1979) and Gardner et al. (1982) have highlighted the importance of aggrega-
tion in ecology. Hence, theoretical discussion about how best to aggregate an
ecosystem is most desirable.

Zeigler (1976) was the first to introduce the aggregation problem into
ecology in a mathematical framework. He has discussed the strict aggrega-
tion of linear dynamic systems, using the concept of a homomorphism which
preserves either the transition structure or the input—output properties..
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Under the special circumstances that one fixes a priori the function of one
aggregation variable, x¥(¢) — the structure of the aggregated model, f(x)
— and when the single macro-variable is the summation of all micro-variables
— S=(, ..., 1)=1 (unit vector) — Cale and Odell (1979, 1980) and
O’Neill and Rust (1979) studied the output aggregation error of several
linear systems. They concluded that strict aggregation (no loss) is possible
only when the elements all have identical turnover times. However, because
systems are usually aggregated into several state variables, rather than into a
single macro-variable, any results which are based on a single macro-vari-
able can be of only limited applicability.

Cale et al. (1983) derived certain conditions under which strict aggrega-
tion based on observed outputs could be performed on nonlinear mass-bal-
ance-type ecological models. Their discussions, however, does not truly
address nonlinear systems, because aggregating into a single state variable
transforms the original nonlinear problem into a linear one. One can easily
see that by grouping all the elements of a conservative system into one
compartment, one neglects all the interactions between elements. The theo-
retical discussion of strict aggregation may be very useful in deriving some
rules of thumb directly applicable to real situations, but it can also some-
times lead to trivial results.

In general, it is extremely difficult to aggregate nonlinear systems without
introducing error. Luckyanov et al. (1983) gave some examples of nonlinear
ecosystems which could be aggregated without loss of observed outputs.
They used special types of macro-variables, which were not simply summa-
tions of micro-variables.

Gardner et al. (1982) wrote a most enlightening paper clarifying aggrega-
tion in ecology. They established the importance and meaning of aggrega-
tion in the field of ecology and proposed some rules of thumb. directly
applicable to local aggregation as practised in ecology. Although they
constructed 40 different models to study four basic types of aggregation,
some of their results can probably be derived from a theoretical treatment of
aggregation based on system structure.

A particular instance of weighted aggregation based on the ecological
exchange matrix has been utilized to transform an arbitrary network into a
trophic chain (Ulanowicz and Kemp, 1979). There was no effort made to
evaluate the consequent cost of such an aggregation.

As concerns aggregation based on structure, Hirata and Ulanowicz (1984)
calculated the information contained in the structure of an ecological
network and showed how the measure may be used to generate a hierarchi-
cal trophic structure (1985).

Although the meaning and purpose of decomposition as defined by M.
Tkeda and §iljak (e.g., 1980) differs somewhat from that described in this
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paper, these investigators have used the concept of decomposition in their
stability analysis of Lotka—Volterra equations. ‘

Defining an acceptable amount of error due to aggregation (i.e., ap-
proximate aggregation) and how to aggregate when system parameters are
uncertain (i.e., randomness of parameters), should be two topics generating
keen interest in ecology during the next decade (e.g., Hirata, 1978; Gardner
et al., 1982). Although almost no consideration has yet been given to
topological decomposition in ecology, the subject is an important one, and
deserves much attention in the near future.

ECOLOGICAL NETWORKS

One of the most useful representations of an ecosystem is its portrayal as
a network. ;

Patten (e.g. Patten et al., 1976; Patten, 1982) has stressed the importance
of addressing causality (indirect and direct effects, i.e., the propagation of
conservative substances) in ecosystems. This is one of the most necessary
and fundamental studies in ecology today. At present there are two methods
to evaluate causality in ecological networks: input-output analysis and
environ analysis.

The network representation is also useful for discussing other properties
of ecosystems. There are two mutually related ways to analyze ecosystem
networks quantitatively: the information theoretical treatment and the anal-
ysis based on Markov chains.

As concerns tracing causality in ecosystems, there are two directions in
which one may proceed (shown in Fig. 4): (a) tracing the flows that
contribute to a specific outflow (input approach, i.e., who receives what
from whom?), and (b) tracing the flows that follow to a specific inflow

Input approach Output approach

Fig. 4. Schematic diagram of two ways of tracing influence in networks.
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Fig. 5. Definitions of total flows used in flow analysis.

(output approach, i.e., who gives what to whom?). In a dynamic model, the
input approach is backward in time and the output approach is forward in
time.

Leontief (1966) first formulated input—output analysis (using the input
approach) for the field of economics. Although several investigators had
earlier developed the output approach, Augustinovics (1970) was the first
clearly to formulate the output representation and to discuss the relation
between the input and output approaches. Hannon (1973) introduced
Leontief’s input—output analysis to the field of ecology.

Environ analysis in ecology originated with Patten and Matis (e.g. Matis
and Patten, 1981; Patten and Matis, 1982). The method has the potential to
engender many extensions and applications in the future.

Let us first discuss the relationship between input—output analysis and
environ analysis in an attempt better to understand those problems pertain-
ing to causality.-The fundamental difference between these two analyses is
as follows: input—output analysis is based only on information (or data)
about the flows, whereas environ analysis rests upon information about both
flows and storages. As shown in Fig. 5, f; is the flow from the ith element
to jth element, and x, is the storage within the ith element. F; is the total
outflow from the jth element, i.e. F;=%,f,, and F/ is the total inflow to the
ith element, i.e., F/ =Y, f, ... At steady state the total inflow equals the total
outflow at each element, i.e. F/ = F,. Input-output and environ methods
define different coefficients for each flow and for each approach (input vs.
output) as follows.

— Input—output analysis:

fi;=a;;F; (for input approach) - (14)
fij="b,F/ (for output approach) ' (15)
— Environ analysis:

fi;=al;x; (forinput approach) (16)

fi;=a/x; (for output approach) (17)

ijvi
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The difference between the definitions of the coefficients (a,;, b,;) of
input—output analysis and (a;j;, a;;) of environ analysis should be kept
clearly in mind. Although their forms are similar, the degree of assumptions
required for the two definitions differ. Equations (14) and (15), ie. the g, j
and b,; of input—output analysis, define the fractions of the compartmental
flow that each individual flow comprises. In the static case this is a
mathematical convenience requ1r1ng no assumptlon On the other hand,
equations (16) and (17), i.e., the @/, and a;; of environ analysis, postulate a
relationship between two d1fferent kinds of variables, flows and storages.
That is, equation (16) implies recipient-controlled compartmental dynamics
and equation (17) assumes donor-controlled kinetics.

Because of these completely different kinds of relations, one has to
exercise caution in applying these two methods to real ecosystems. As
concerns input—output analysis, both input and output approaches can be
applied to the same ecosystem so long as it is at stationary state, i.€., one can
.analyze the data on a static object ecosystem from two different directions:
input and output approaches (e.g., Augustinovics, 1970). In the dynamic
case, however, the mathematical manipulations (14 and 15) infer different
assumptions about the dynamics of the system. Attempting to use both
input and output approaches on a single object system at the same time
would result in a physical contradiction. k

As concerns environ analysis, because equations (16) and (17) imply
different assumptions on the dynamics of the object system, one cannot
simultaneously apply both input and output approaches to one object
system even at steady-state. Of course this prohibition applie$ a fortiori in
the dynamic case. Although both input and output environ indices can be
calculated in dual fashion for a single object system at a given time, one is
forced to choose between the input or the output sets. Two contradictory
assumptions about the same system cannot be valid simultaneously. Because
these implicit assumptions correspond to fixing the motive force of a system
(i.e., in economics, assuming the input approach corresponds to controlling
an economical system by the demand, while the assumption of the output
perspective corresponds to control by supply), one has either to choose a
perspective (input or output) for each object ecosystem suitable to its known
properties, or else has to develop a new method which would make it
possible to study both input and output approaches under a single assump-
tion valid in ecology.

Although the purpose of environ analy51s is to analyze not only flow
partitions but also storage partitions, it was theoretically proved that the
partitioning of flows by input—output analysis is the same as that obtained
by environ analysis (Hirata, 1985). This means that when one wishes to
know only about flow propagation, information on storages is superfluous.
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Soon after Hannon (1973) first introduced the input perspective of
input—output analysis into the ecological field and applied it to the Silver
Springs ecosystem, Finn (1976) described the -corresponding output ap-
proach and applied both approaches to three different ecosystems (Cone
Spring ecosystem, etc.). He also derived several measures of ecosystem
structure and function. In particular, he defined a cycling index, using the
tools provided by input—output analysis.

Hannon used total system output and Finn employed total system through
flow as indices of system size. Although Finn declared that both indices
were identical, they are basically different. Finn defined the sum of the
through flows of all elements as the index of system size, while Hannon used
the sum of the through flows and the outputs from all elements as his total
system output. (Because at steady-state total inputs equal total outputs, the
total system output defined by Hannon becomes equal to Finn’s index plus
all inputs.) In open or non-stationary systems, Hannon’s index may play an
important role as a normalizing factor in information theoretic discussions
of ecological networks (Hirata and Ulanowicz, 1984).

More recently, Hannon (1985) has proposed an accounting procedure
which culminates in an index expressing the quality of energy flowing
through each compartment.

Levine (1977) used input-output analysis to define an index of extended
niche overlap.

There are several applications of input—output analysis to real ecosys-
tems. Richey et al. (1978) compared direct and indirect carbon fluxes in four
lake ecosystems, but were unable to discern any clear pattern. Patten and
Finn (1979) applied flow analysis to the carbon cycling of the Ross Sea
Pelagic ecosystem, Antarctica, and Finn (1980) analyzed several models of
energy and nutrient flow on the Hubbard Brook ecosystem, New Hamp-
shire, U.S.A. Dame and Patten (1981) discussed energy flows in an intertidal
oyster reef.

Bosserman (1981) outlined the sensitivity analysis of parameters in an
input—output analysis.

As mentioned earlier, Matis and Patten (1981) formulated environ analy-
sis and Patten and Matis (1982) applied it to the Okefenokee swamp.
Environ analysis may be applied to study: (a) flow partitions, (b) storage
partitions, (¢) intercompartmental transfers, and (d) residence time. The
discussion of (¢) and (d) relies on approximating linear differential equations
in terms of a Markov chain (Walter, 1979). Although Walter’s approxima-
tion form is valid when one wishes to formulate a difference equation as an
approximation of a linear differential equation, when one starts with the
dynamical system, it is uncertain how much relevance a dynamic property
like the residence time calculated from a Markov chain model has to the
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theoretical discussion of (c) and (d) as derived from static data. The question
is how well dynamic information can be garnered from data on static
systems. .

Barber (e.g., 1978) proposed another type of Markovian model for
ecosystem flow analysis which treated storage and flow in a single matrix
form. ,

The ultimate goal of environ analysis is to describe the dynamics of
systems. Hippe (1983) made some progress towards this end by studying the
effects of time-varying inputs to linear, structurally invariant compartmental
systems.

MacArthur (1955) and later Margalef (1968) introduced information
theory into ecology by attempting to define macroscopic properties of
ecosystems. Rutledge et al. (1976) refined these early attempts by introduc-
ing the conditional entropy as a model for choice which would also quantify
ecological stability in closed systems. Ulanowicz (1980) later claimed that
the emphasis in ecology should be shifted towards the mutal information,
which could serve as an index of development for ecosystems. Hirata and
Ulanowicz (1984) extended Rutledge et al.’s model for choice to include
open ecosystems (ecological networks) and estimated the amount of infor-
mation inherent in the network structure by using the concept of the mutual
information of a channel. They also showed how the amount of information
in a hierarchical structure could be assessed (1985). As mentioned in the
previous section, this structural information is useful in discussing the
aggregation (Hirata and Ulanowicz, 1985) and decomposition of ecological
systems. Information theoretic treatments of ecological networks should be
useful in clarifying the relations between the structure and the macro
properties of ecosystems.

Another way to study ecological networks it to treat them as if they were
Markov chains. Levine (1980) derived a measure of trophic position, i.e., the
average trophic level at which a species feeds, by using a Markov chain
analysis of energy flows. Walter (e.g., 1979, 1983a,b) discussed the relation-
ship between the graphical structure of a network and its dynamical stability
by using a Markov chain model to approximate the system’s linear differen-
tial equations. '

The four methods mentioned above should be the foci of further scrutiny
and refinement during the coming decades. Most importantly, input—output
and environ analysis have been developed to the point where investigators
should begin to attempt to validate these techniques experimentally, for
example, by using radioactive tracer techniques in ecological microcosms.

MACROSCOPIC DISCUSSION

Whether a system description is to be considered as macro or micro
depends on the perspective of the observer. For example, when a population
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is taken to exist at the macro level, then microscale phenomena become
physicochemical processes such as energy transformation, respiration etc.
When a population is said to be at the micro level, then the ecological
community (or trophic grouping) become macro-level entities. Descriptions
of macro properties of ecosystems and of the relations between micro and
macro levels are important (e.g. Margalef, 1968). In a very general sense they
are equivalent to problems of aggregation. It is, however, necessary to
remember that the whole is not usually the simple sum of its parts.

In physics macroscopic discussion is most frequently encountered in
thermodynamics, while statistical mechanics is a description of the relation-
ship between molecular events and macroscopic thermodynamic properties.
There are some applications of thermodynamics and statistical mechanics to
ecosystems (€.g. Odum and Pinkerton, 1955; Kerner, 1957; Patten, 1959), as
well as some new attempts based on accepted thermodynamic concepts (e.g.,
Jorgensen, 1982; Fukao, 1982). Bridging the gap between microscopic and
macroscopic thinking in ecology will become more important in the next
several years (e.g., Orians, 1980). As an important topic in macro-ecosys-
tems, the discussion of closed ecosystems (energy flow and material — or
nutrient — cycling) will be highlighted here as an aspect of macro-ecology.

Lindeman (1942) first studied the thermodynamic aspects of energy
transfer in ecosystems. Odum and Pinkerton (1955) made use of irreversible
thermodynamics to seek the optimal efficiency of biological systems. Patten
(1959) discussed the energy transfer between trophic levels in both thermo-
dynamic (especially entropy and information) and cybernetic terms. Jdrgen-
sen and Mejer have used exergy, which is defined as the maximum entropy-
free energy that a system is able to transfer to the environment, to discuss
ecological order (e.g., Jorgensen and Mejer, 1979; Jérgensen, 1982). When
one considers ecosystems as open systems, the relation between energy flow
and ecological structure becomes especially important (e.g., Morowitz, 1968)
and should be discussed from a more theoretical viewpoint.

Smerage (1976) has used thermodynamic network analysis to discuss
energy transformation processes like photosynthesis or respiration from a
microscopic point of view. Meixner (1966) pioneered the development of
thermodynamic network analysis, and Oster et al. (1973) and Schnakenberg
(1977) extended the concepts and applied them to the dynamic modelling of
biophysical systems. These methods are very useful and effective when it is
possible to identify or assume the flows and forces in the object system.
Such is usually the case when one is treating biophysical or physicochemical
processes at the microscopic level of ecology. However, because wholes are
not usually the simple sums of their parts, forces in physicochemical
processes in micro-ecology cannot be simply aggregated to yield macro-
scopic forces at the population level of ecology. This is a very important
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point. Therefore, the identification of the thermodynamic forces leading to
the biological fluxes at the population or trophic level is a non-trivial and
still unsolved problem.

Along the lines of thermodynamic network analysis, Fukao has con-
structed a macroscopic model of a decentralized, large-scale system to treat
the system thermodynamics from the system-theoretic point of view. He
applied the model to analyze the decentralization of resource competition as
it occurs in ecology (Fukao, 1982; Fukao and Sugai, 1986).

Ulanowicz (1972) was among the first to discuss simultaneous energy flow
and material cycling in closed ecosystems systematically. He, and later May
(1973), suggested that a hierarchy in the specific energy content of the
organisms should exist in simple food chains. Hirata and Fukao (1977)
reformulated the model to correctly explain Ulanowicz and May’s assertion,
and obtained some additional results; for example, that a simple food chain
possesses a hierarchy not only in the specific energy (energy amount per unit
biomass) but also in the specific nutrient contents (the amount of fundamen-
tal nutrient elements like N, P, S, etc. per unit biomass). In complex
foodwebs, inversions in the hierarchy of specific energy may happen in some
parts of the foodweb, but they will disappear during subsequent succession
(Hirata, 1984). ,

In discussing closed systems, it is essential to make the distinction
between grazing flows and detrital returns, i.e., one should not neglect
decomposers which change biological material to inorganic material (e.g.,
Nisbet and Gurney, 1976; Hirata and Fukao, 1977). Because nutrient
cycling usually dominates ecosystem behavior, the study of closed ecosys-
tems should lead to a better understanding of control processes at work in
ecosystems in general (i.e., in both closed and open systems). Unfortunately,
the literature about closed eco-community models is still rather sparse.

Nisbet and Gurney (1976) studied the local stability of any steady state in
which all the standing crops are positive. Hirata (1980b) strengthened their
results by proving that the model of nutrient—producer—consumer transfers
was globally stable under certain conditions and that a similar model with
an improved representation of the cycling process was always locally stable.
Nisbet et al. (1983) discussed the role played by material cycling in stabiliz-
ing a closed system. To quantify the degree of trophic stability, they defined
an index to measure the intensity of fluctuations of standing mass in a
trophic level. ,

Hallam (1978) investigated the structural sensitivity of grazing formula-
tions in a model of a closed community, and Antonios and Hallam (1984)
pointed out that the persistence of the community is independent of the
consumer density dependence in certain types of closed ecosystems,

Generally speaking, in ecology there is no single equation expressing the
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total system energy and population dynamics analogous to Hamilton’s
equation in physical systems. Kerner (1957) originally derived a constant of
motion for a community of populations governed by the Volterra
predator-prey equations and discussed the statistical mechanics of such
ecosystems, Kerner (1959) applied it to actual data on the catches of foxes in
Labrador, Canada, from 1834 to 1925 and got good agreement between
observation and theory after making the ergodic assumption. Some investi-
gators question the relevance of Kerner’s statistical mechanical treatment of
the Volterra equations on the grounds that it is based on assuming both the
antisymmetry of the interaction coefficients and ergodicity. As concerns the
ergodic hypothesis, Goel et al. (1971) showed that it was a reasonable
assumption so long as the numbers of species remained large. Several further
developments have proceeded from Kerner’s original work (e.g. Leigh, 1968;
Goel et al., 1971; Kerner, 1978).

Demetrius (1977) defined some macroscopic parameters in ecosystems,
using the statistical mechanical theory of lattice systems. Addressing the
non-equilibrium dynamics of ecological succession, Allen (1975) used a
Lotka—Volterra type model to show that the ratio of predator to prey
populations should increase with time. Later, Hirata (1982a) was able to
demonstrate that this ratio increased even when saturation effects are
operating, and that under the same conditions the absolute value of the
predator population should likewise increase. Even though ecological succes-
sion is clearly in the domain of non-equilibrium thermodynamics, there is
still no consensus on a formal method for treating these phenomena.

As may readily be noticed, almost all of the tools used in the discussions
of macroscopic properties and hierarchical relations have been borrowed
from fields other than ecology. This only emphasizes the need to develop
new methods originating from and pertinent to the field of ecology.

MODEL IDENTIFICATION

In general, there are two types of problems associated with model
identification: black-box model identification and structure definition. The
identification of black-box models is an effort to describe only input--output
relationships while neglecting the internal dynamics or principles of system
operation, whereas structure identification, as the name implies, is the
attempt to identify the actual structure of systems. Usually internal descrip-
tions of mass, momentum and energy conservation constitute the. starting
point for identification problems. Although there are several methods for
approaching each type of problem (e.g., Beck, 1979), we concentrate here on
those methods which have already been applied in ecology and are also of
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some theoretical interest to ecologists. In relation to black-box model
identification, the GMDH (the group method of data handling) is ap-
praised; and with regard to structure identification, the methods of compart-
mental systems analysis (tracer kinetics), reconstructability analysis and
flow-based modelling are reviewed. The method of identification selected
will depend upon the nature of data available and upon the intentions of the
investigator. :

Ivakhnenko (1968) developed GMDH for the purpose of constructing an
extremely high-order regression-type polynomial which relates multiple in-
put variables to a single output variable. One wishes to establish this
high-order, nonlinear input—output relationship with minimal a-priori infor-
mation about the relationships between input—output variables. Although
the GMDH algorithm faithfully reproduces the relationship betwsen the
input and output variables, it does not identify the actual internal structure
of the system.

Many improved algorithms have succeeded the original one (e.g., Duffy
and Franklin, 1975; Ivakhnenko et al., 1979; Tamura and Kondo, 1980,
1984; S. Tkeda, 1984).

Ivakhnenko and coworkers have also performed many applications of
GMDH to the ecological field. For example, Ivakhnenko et al. (1971) used a
GMDH algorithm to predict the quantity of bacteria in the Ryninsk
reservoir. Ivakhnenko and Visotsky (1975) modeled a plankton ecosystem
based on raw data. Duffy and Franklin (1975) used a modified GMDH
algorithm to model a Corn Belt agricultural system producing high nitrate
levels in the drain water.

Maciejowski (1979) made the observation that, in comparison with other
types of models, GMDH is the best method for short-term prediction, but
the worst for long-term forecasting. Tamura and Halfon (1980) confirmed
this observation by comparing their model, created from a revised GMDH
algorithm to identify water quality dynamics in Lake Ontario, with corre-
sponding mechanistic water-quality models. It should be noted, however,
that their results also have shown that GMDH can be usefully employed to
develop models with a very low expenditure of manpower and computer
time.

Farlow (1981) has written a very clear and comprehensive explanation of
the GMDH method and has edited a book detailing applications of this
algorithm to several different fields, including ecology (Farlow, 1984). He
stressed the importance of incorporating more statistical methodology into
GMDH, because it is not based on as solid a theoretical foundation as is,
say, regression analysis, i.e., it is predominantly a heuristic procedure.

As mentioned above, GMDH not only has many merits, like certain
computational advantages (e.g., Tamura and Halfon, 1980; Farlow, 1981),
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but also has several defects. For example, it is not particularly good for
long-term forecasting (e.g. Maciejowski, 1979; Tamura and Halfon, 1980).
The model derived by GMDH is sometimes quite insensitive to inputs
(Tamura and Halfon, 1980) and sometimes very sensitive (Ulanowicz and
Caplins, 1983), i.e. the sensitivity depends upon the nature of data. It is,
therefore, necessary to give consideration to which kinds of data and what
particular classes of problems the GMDH algorithm can best be applied.
Such a study should help this method become more useful and should
engender numerous extensions of the GMDH algorithm.

_ Turning towards the problem of structure identification, Bellman and
Astrém (1970) first formalized the identifiability problem as it applies to
compartmental systems, and many researchers have been following their
lead, especially in creating applications for medical systems (e.g., Carson et
al., 1983).

The goal of compartmental systems analysis (tracer kinetics) is the identi-
fication (estimation) of all unknown parameters of a model created in
a-priori fashion from input—output experimental data. Tracer kinetics be-
come appropriate under the following conditions: (a) linearity of structure,
(b) arbitrary choice of the combinations of input—output positions (per-
turbation experiment), and (c) no restrictions on the number of times the
experiment may be repeated.

Cobelli et al. (1979a,b) introduced compartmental analysis to the ecologi-
cal literature and discussed its possible application to ecosystems (1979b).
Beghelli et al. (1982) used the identification procedure of compartmental
analysis along with data on phosphorus cycling in Kootenay Lake, Canada
in order to determine the minimal number of compartments required to
model the phosphorus dynamics. ~

Although  there are many discussions centered on compartment models,
no direct application of the original compartmental system analysis (tracer
kinetics) exists outside of Beghelli et al. (1982). The reasons why this method
has not found wider application in ecology are twofold: (a) the difficulty in
repeating ecological experiments, (b) severe restrictions on the types of
systems which may be treated by the method; i.e., compartmental system
analysis can be applied only to small models (3—5 compartments) or to
systems whose structure is very particular, e.g., those with catenary or
mammillary topologies (e.g., Halfon, 1977). To make compartmental analy-
sis more useful in ecology it must be extended to large-scale systems by
employing the concepts of aggregation or decomposition (e.g., Brown and
Norton, 1982).

Ashby recognized and clearly described the reconstructability problem
(e.g., Ashby, 1964; Madden and Ashby, 1972). Many applications and
elaborations followed, e.g., Klir (1979a) and Cavallo and Klir (1981). Klir
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(1979b) was the first to introduce reconstructability analysis into ecology
under the title of computer-aided systems modelling.

Generally speaking, reconstructability analysis may be divided into two
problems: the decomposition into subsystems and the aggregation of the
properties of subsystems into overall systems attributes, i.e. (a) the problem
of determining which subsystems are adequate to reconstruct specific prop-
erties of the total system, and (b) the task of deriving specific properties of
an unknown whole system from appropriate properties of given subsystems.
Although ecologists may find reconstructability analysis a little hard to
digest because of its complicated mathematical presentation, it may, non-
etheless, have some application to real ecosystems.

The modelling of large-scale systems (like ecosystems) typically runs into
the following difficulties: (a) very few quantitative observations of the
systems are available; and (b) very little a-priori information about the true
system structure is known (e.g. Maciejowski, 1979). In the light of these
considerations, Hirata (1982b) proposed the method of flow-based modell-
ing built around two points: (a) multi-aspects of large-scale systems, and (b)
the relations inherent in the network of flows. Under the assumption that
one knows the topology of the flows (information about the origins and
terminal points of all flow streams), it becomes possible to compensate for
the lack of data about one aspect of the ecosystem by the available
information on another facet. For example, when there is insufficient data
on the biomass of an ecosystem, one may use the data about energy to assist
in estimating the biomass. This method was applied to simple ecosystems
(Hirata and Fukao, 1977; Hirata, 1978, 1980a) and is in the process of being
extended to complex ecosystems. The goal of this method is not only to
approximate the equations of systems behavior, but also to make evident
some properties and principles hidden in the system (e.g., Hirata, 1979).

VARIOUS OTHER MODELLING METHODS

Straskraba (1979) portrays the idea of hierarchical control in ecosystems
from a cybernetic point of view and later (1983) gave it concrete expression
in a simple predator-prey model. There exist four levels of control mecha-
nisms in nature: feed-forward, feedback, self-adaptation and self-organiza-
tion. Although Straikraba’s thinking is incisive and his formulation of the
optimization problem is straightforward, there nevertheless remain signifi-
cant difficulties in actually solving the optimization problem for most object
models.

H.T. Odum (e.g., Odum and Odum, 1976; Odum, 1983) has developed
one of the most significant modelling methods based on energy flows. The
approach has been applied not only to ecosystems but also to problems in
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regional science (e.g. Boynton, 1977; Zucchetto, 1983). Although each par-
ticular model yields interesting insights, and his suggestions about the global
properties of systems have broken new and fundamental ground; the para-
digm should be subjected to further theoretical analysis (especially the work
pertaining to total systems) before resorting to numerical or analog simula-
tion on computers (e.g., Hirata, 1982c).

Zadeh (e.g., 1973) suggested that fuzzy set theory could address the
uncertainty in complex systems and decision processes and Bosserman and
Ragade (1982) were the first to apply this paradigm to ecosystems.

As mentioned in the section on ecological networks, input—output analy-
sis stems from the field of economics. Hannon (1973) first introduced
input—output analysis to the ecological field and later used it to define
several concepts useful in discussing ecosystems evolution in terms of
optimization (Hannon, 1976, 1979). Although ecosystems have many fea-
tures in common with economic systems, some ecological researchers may
feel that treating ecosystems in economic terms (input—output analysis
excepted) is too tenuous an analogy. '

CONCLUSIONS

The time for regarding ecosystems as collections of determinate processes
(as has been the convention in most of simulation modelling) appears to be
over. There is every reason to believe that individual processes actually
change in nature as a result of their mutual interaction with other processes
in the same community. Such circumstance would require that ecosystems
be viewed as a unit with identifiable properties which exhibit some macro-
scopic regularities. (Dare we say laws?)

The tools necessary to describe ecosystems in this new perspective are
evolving rapidly. It is altogether possible that this new direction will yield
discoveries in ‘macroscopic biology’ which will rival the illustrious ones
made in molecular biology during the past three decades.
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