
Computational Biology and Chemistry 28 (2004) 227–233

Cycling in ecological networks: Finn’s index revisited

Stefano Allesinaa,∗, Robert E. Ulanowiczb

a Dipartimento di Scienze Ambientali, University of Parma, Viale delle Scienze 33/A, 43100 Parma, Italy
b Chesapeake Biological Laboratory, University of Maryland System, P.O. Box 38, Solomons, MD 20688-0038, USA

Received 23 March 2004; received in revised form 19 April 2004; accepted 19 April 2004

Abstract

A chief cybernetic feature of natural living systems is the recycling of nutrients, which tends to enhance stability and is one of the principal
causes of ecosystem complexity. In 1976, Finn proposed a simple and effective measure (later known as the Finn cycling index [FCI]) to
assess the quantitative importance of cycles in ecosystems. This index was successfully applied as a gauge of ecosystem health and maturity
in a wide variety of studies.

It turns out, however, that FCI is biased as a measure of cycling in ecosystems, because it does not include all flows engaged in recycling.
A new, more inclusive version of the index is possible. What is called the comprehensive cycling index (CCI) accounts for all of the fluxes
generated by cycling. Computing the new measure requires a large amount of time, however, even with ad-hoc software. To obviate the
necessity for such heavy computation, a linear transformation of the FCI into the CCI is proposed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

. . . went on saying to herself, in a dreamy sort of way,
‘Do cats eat bats? Do cats eat bats?’ and sometimes, ‘Do
bats eat cats?’ for, you see, as she couldn’t answer either
question, it didn’t much matter which way she put it.

Lewis Carrol, Alice’s Adventures in Wonderland

Energy and matter cycle in ecosystems. This phe-
nomenon, which has been widely examined in literature (see
for example,Ulanowicz, 1983; Patten and Higashi, 1984;
Patten, 1985; Essington and Carpenter, 2000; Christian and
Thomas, 2003), is one of an ecosystem’s most important
features, because it affects the residence time of nutrients
(Herendeen, 1989), acts as a buffer for fluctuations in en-
ergy supply (Loreau, 1994), augments stability (DeAngelis
et al., 1989), and greatly affects ecosystem functioning.

Although the presence of trophic cycles was discovered
early in ecological studies (Hutchinson, 1948), the first
method for actually quantifying the amount of cycling mat-
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ter/energy was not introduced until the end of the 1970s,
by Finn (1976), in the context of ecological network anal-
ysis (ENA) (Baird and Ulanowicz, 1989; Christensen and
Pauly, 1992; Fath and Patten, 1999). What became known
as Finn’s cycling index (FCI) accounts for the percentage
of all fluxes that is generated by cycling, and has been ap-
plied in a wide range of ecological studies (e.g.Bodini and
Bondavalli, 2002; Christian and Thomas, 2003; Fath, 2004;
Heymans et al., 2004; Manickchand-Heileman et al., 2004).

Finn’s seminal work has been extended byPatten and
Higashi (1984), to incorporate biomass storages into the
computation via Markovian techniques. The computation
was further improved byHan (1997)through his definition
of cycling matrix; in a similar fashion,Szyrmer (1984),
expressed the cycling contribution of each compartment
to the “total flow”. Yet another approach was initiated by
Ulanowicz (1983)who devised a procedure to extract cy-
cled flows from the network and compare their activities
with the remaining unidirectional flows.

The chief advantage of FCI has been its simplicity, as its
computation requires but a single matrix inversion. Further-
more, being a percentage, it is dimensionless, a feature that
allow ecologists to compare directly diverse ecosystems.

Here we examine the FCI using Leontief matrices, and
show how FCI, in all its implementations, underestimates
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Fig. 1. Schematic of the network of trophic transfers in the Cone Spring ecosystem. Incoming edges represent imports, while outgoing ones denote
exports and dissipations (dotted).

the magnitude of cycling flows in ecosystems. We begin by
introducing the FCI in its original derivation and discuss its
subsequent emendations. Finally, we show how, using a dif-
ferent approach, one can compute precisely the full amount
of cycling in natural systems. We compare the latter proce-
dure with the earlier calculations and show how FCI culmi-
nates in a biased estimation of the importance of cycling.
Hence, this statistically significant bias must be corrected in
order to assess an ecosystem’s status with precision.

2. Materials and methods

2.1. Network models

Ecological network analysis depicts ecosystems as being
comprised of compartments (black boxes) that exchange
energy/matter with each other. These compartments can
represent species, trophospecies (Yodzis and Winemiller,
1999), nutrient pools, trophic levels, etc., according to
the aim of the investigation. The pictorial representation
of the ecosystems is as a network, that is, a directed,
weighted graph (Bang-Jensen and Gutin, 2000). The ori-
ented, weighted links (edges) account for the flows between
compartments in terms of a specific currency (usually grams
of Cy−1 m−2). Three virtual compartments are introduced
to accommodate the expression of flows entering or leaving
the system, that is, imports (incoming flows), outputs (flows
to other systems) and dissipations (waste).

When the inflows exactly balance outflows over each com-
partment, the network is said to be in steady state (no in-
crease nor decrease of biomass).

Such a network scheme can be readily be formalized in
terms of matrices and vectors. Most often, the representa-
tion will consist of a single square matrix (T) representing
the flows between compartments, and three vectors to ac-
commodate flows of the virtual, external compartments (Z,
imports;E, exports,D, dissipations).

Fig. 1 depicts the fluxes occurring in a simple five-
compartments network, Cone Spring (Tilly, 1968). The
matrix and three vectors would be:



Plants
Bacteria
Det. Feed.
Carnivores
Detritus




, Z =




11 184
0
0
0

635




, E =




300
255
0
0

860




,

D =




2003
3275
1814
203
3109




, T =




0 0 0 0 8881
0 0 75 0 1600
0 0 0 370 200
0 0 0 0 167
0 5205 2309 0 0




Using matrices and vectors we can write the steady state
equation as:

T·i + Zi = Ti· + Ei + Di, ∀i (1)

whereT·i represents the sum of theith column, andTi·, the
sum of theith row. Continuing with the same notation,T··
becomes the sum of all the elements in the matrix.

We define the right-hand side of the equation as the inflow
vector (S) and the left-hand side as the outflow vector (S′).
When the steady state has been achieved,S = S′.

2.2. Leontief matrix

Leontief (1963)developed what has become commonly
known as input–output analysisto estimate the amount
of raw materials and services required to produce a cer-
tain quantity of goods.Augustinovics (1981)extended this
method in the opposite direction to approximate what pro-
duction (output) should result from a given quantity of
input (materials and services). Both the methods have been
introduced into ecology via ENA (Hannon, 1973). Both
approaches require that one calculates inverse matrices,
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which then can be used to portray sundry aspects of the
input–output problem.

Given a matrix of exchangesT, one can normalize its
columns by dividing each coefficientTij by its correspond-
ing inflow Si. Doing this produces the so-calledfractional
inflow matrix G, the columns of which also happen to portray
the “diet” compositions of their respective predator com-
partments. The column sum will be exactly 1 whenever the
compartment relies solely on internal transfers for its suste-
nance, and less than 1 whenever an Import flows into that
compartment.

If we multiply this matrix for itself, producingG2, we
obtain a matrix whose coefficients describe the fraction of
the total flow that emanates from the row compartment that
reaches the column compartment over all pathways consist-
ing of exactly two steps. In similar manner,G3 will trace
the fate of flows over all pathways of exactly 3 steps, and so
forth. If the system contains cycles, matrixGn will tend to-
ward zero asn → ∞, because the coefficients become van-
ishingly small after only a few steps (but never vanish com-
pletely due to cycling). Recalling that the geometric series

∞∑
n=0

qn = 1 + q + q2 + · · · = 1

1 − q

whenever−1 < q < 1, it is possible to demonstrate (Higashi
et al., 1991) that, whenever 0≥ Gij ≥ 1, then
∞∑

n=0

Gn = G0 + G + G2 + · · · = [I − G]−1 = L (2)

whereG0 = I (the identity matrix), andL is the Leontief
inverse matrix.

For the Cone Spring ecosystem, these matrices take on
the values:

G =




0 0 0 0 0.773
0 0 0.032 0 0.139
0 0 0 1 0.017
0 0 0 0 0.014
0 1 0.969 0 0




and

L =




1 0 0 0 −0.773
0 1 −0.032 0 −0.139
0 0 1 −1 −0.017
0 0 0 1 −0.014
0 −1 −0.969 0 1




−1

=




1 0.933 0.933 0.933 0.933
0 1.169 0.201 0.201 0.201
0 0.039 1.039 0.039 0.039
0 0.018 0.018 1.018 0.018
0 1.207 1.207 1.207 1.207




To illuminate the coefficients of the Leontief matrix,
Higashi et al. (1991)stated that each coefficient represents

the average number of times a quantum of energy/matter
entering the column compartment will visit the designated
row member. As one can readily see from (2), the number of
times a quantum enteringith will visit ith compartment (the
diagonal elements) is at least 1. Coefficients greater than
unity indicate that the compartment participates in cycles.

2.3. The FCI and its improvements

The Finn cycling index (Finn, 1976) utilizes the Leontief
matrix to assess the amount of material cycling within the
ecosystem. The formula, derived from the inverse matrixL
is straightforward and simple:

CI =
n∑

i=1

Si

TST

lii − 1

lii
(3)

where lii is the ith coefficient along the diagonal of the
Leontief matrix, andSi is the inflow to theith compart-
ment. The definition of the “total system throughput” (TST)
varies among authors: in Finn’s original work it stood for
T·· + Z·, the sum of the internal transfers plus the im-
ports (in the steady state condition one could also write
T·· + E· + D·), whereasUlanowicz (1986)andPatten and
Higashi (1984)define TST in more comprehensive fashion
asT·· + Z· + E· + D·—the sum ofall fluxes occurring in
the ecosystem. For clarity and comparison we will adopt
this latter definition in what follows.

Patten and Higashi (1984)extended the cycling index to
incorporate the notion of storage. This was done to decouple
the network analysis measures from the assumption of steady
state. This modified index of cycling index can be equated
to the FCI whenever storages are changing.

Han (1997)estimated the importance of cycles in ecolog-
ical networks by splitting the Leontief matrix into two sep-
arate matrices, one accounting for cycling and the other for
unidirectional flows. This cycling matrix was obtained via
matrix multiplication:

LC = L × C (4)

whereC is a matrix that has coefficients 0 in the off-diagonal
positions and(lii − 1)/ lii along the diagonal. For the Cone
Spring ecosystem, Han’s matrices become:

C =




0 0 0 0 0
0 0.145 0 0 0
0 0 0.0375 0 0
0 0 0 0.018 0
0 0 0 0 0.172




,

LC =




0 0.1349 0.035 0.0165 0.16
0 0.169 0.0075 0.0036 0.0345
0 0.0056 0.039 0.0007 0.0067
0 0.0026 0.0007 0.018 0.0031
0 0.1745 0.0453 0.0213 0.207




LC presents the fluxes generated by cycles (the diagonal
elements of the Leontief matrix). By subtractingLC from L
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one arrives at a matrix to represent the non-cycling flows,
LNC:

LNC = L − LC




1 0.7981 0.898 0.9165 0.773
0 1 0.1935 0.1974 0.1665
0 0.0334 1 0.0383 0.0323
0 0.0154 0.0173 1 0.0149
0 1.0325 1.1617 1.1857 1




We wish to point out that the presence of coefficients greater
than 1 in the last matrix implies that the Han’s cycling ma-
trix does not encompass all the contributions of cycling to
the overall flows. In fact, in any acyclic network, all the co-
efficients of theL matrix will be less than or equal to one.
The Han procedures will be amended presently.

Ulanowicz (1983)attempted to reveal the importance of
cycles in ecological networks by writing an algorithm that
identifies all the simple cycles in a network, weights them
according to their probabilities of completion, and extracts
them from the network. The final result consists of two flux
matrices, one that is constituted only of cycles, and another
that is composed only of non-recursive fluxes. This latter
matrix can be regarded as an acyclic version of the original
network.

2.4. Paths taxonomy and Leontief layers

Using the nomenclature introduced into ecosystems re-
search byPatten (1985), we define apath to be an ordered
sequence of alternating compartments and edges. A path
represents a possible walk that a quantum of energy/matter
would take in going from the starting compartment to the
ending one. Paths can be divided into four categories.

1. simple paths→ paths with no repeated compartments;
2. simple cycles→ simple paths in which the starting and

the ending compartments coincide;
3. compound paths→ paths with repeated compartments;
4. compound cycles→ repeated cycles.

Graphical examples illustrating the taxonomy of paths are
presented inFig. 2.

As we compute the powers of theG matrix, we are tracing
all the possible paths from row to column compartments
in n sequential steps. It seems only natural, therefore, to
decompose the power series of matrices according to the
classification of pathways. That is, we may consider that
every power ofG is obtained summing up four different
matrices each one representing a different type of pathways,
i.e.

Gi = Pi + Ci + Πi + Ξi (5)

wherePi accounts for alli-length simple paths;Ci accounts
for i-length simple cycles;Πi accounts fori-length com-
pound paths;Ξi accounts fori-length compound cycles.

Moreover,G0 = P0 = I, andC0 = Π0 = Ξ0 = Π1 =
Ξ1 = 0, that is simple cycles start withG1, whereas com-

(a) (b)

(c) (d)

Fig. 2. Taxonomy of pathways: simple paths (a); simple cycles (b);
compound paths; (c) and compound cycles (d). Dotted lines stand for
repeated edges.

pound paths and cycles require at least two steps. Simple
paths may have a maximum ofn − 1 steps, wheren is the
number of compartments. The maximum length of simple
cycles maximum would ben, while both compound paths
and compound cycles could be infinitely long. Cycles are in-
volved in three out of the four matrices defined, namelyCi,
Πi andΞi. In fact, every compound path embeds at least one
cycle. Along the diagonal of Leontief matrix we account for
only the contributions due to simple and compound cycles.
This implies that, even if compound paths are originated by
cycles, they will not contribute to the Finn cycling index as
currently defined.

Now, if we define

n−1∑
i=0

Pi = I + P1 + P2 + · · · + Pn−1 = PAll (6)

then we can decompose the Leontief matrix into cycling and
non-cycling components:

L = LCyc + LNCyc (7)

where

LCyc = L − LNCyc = L − PAll (8)

becausePAll represents all the contributions that cannot be
ascribed to cycles. (Han (1997)performed the same decom-
position, but only separated out simple and compound cy-
cles.)

2.5. A comprehensive cycling index

Having calculated theLCyc matrix, one can now extend
the FCI to includeall the cycling paths. We choose to call
this new index the comprehensive cycling index (CCI):
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CCI =
n∑

i=1

Si

TST

n∑
j=1

lCycij

l·j
=

n∑
i=1

Si

TST

n∑
j=1

lij − pAll ij

l·j
(9)

As with the FCI, this index is dimensionless and represents
the fraction ofall flows that are generated by cycles. One
may apply CCI in the same way one currently uses FCI,
CCI being simply an amended version of the latter.

The chief practical problem with CCI is that there is no
simple way to calculatePAll . Even with efficient software
the computation ofPAll can require an enormous amount of
time, because even an ecological network with far fewer than
one hundred compartments can contain billions of simple
pathways.

2.6. Network models

Because of the large amount of computation required,
we analyzed only small to medium size networks (5–50
compartments), in our search for any relationship between
FCI and CCI. The 23 ecosystems chosen for the analysis
were comprised almost entirely of models of this size, both
published and unpublished. The collection included both
aquatic and terrestrial networks with different levels of reso-
lution, and even duplicated some systems in their aggregated
forms. For example, we intentionally chose the Chesapeake
network in both its original 36-compartment manifestation
(Baird and Ulanowicz, 1989) and in its 15-compartment ag-
gregated form (Wulff and Ulanowicz, 1989), because the
process of aggregation creates self-cycles that can signifi-
cantly increase the FCI (Ulanowicz and Kemp, 1979), and
we wished to compare this inflation with whatever the cor-
responding effect might be on the CCI.

3. Results

We computed thePi matrices for all of the 23 systems
chosen and applied (8) to each ecosystem network to com-
pute the cycling matrix. From this cycling matrix we then
computed the CCI, and compared the resulting value with
the corresponding FCI. For example, with the Cone Spring
ecosystem one can trace all the path matrices and, by sub-
traction, the corresponding cycling matricesGi − Pi as fol-
lows:

P0 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

G0 − P0 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




P1 =




0 0 0 0 0.773
0 0 0.031 0 0.139
0 0 0 1 0.017
0 0 0 0 0.015
0 1 0.969 0 0




,

G1 − P1 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




P2 =




0 0.773 0.750 0 0
0 0 0.135 0.031 0
0 0.017 0 0 0
0 0.015 0.015 0 0
0 0 0.031 0.969 0




,

G2 − P2 =




0 0 0 0 0
0 0.139 0 0 0
0 0 0.017 0 0
0 0 0 0 0
0 0 0 0 0.156




P3 =




0 0 0.024 0.749 0
0 0 0 0.135 0.4E − 3
0 0.015 0 0 0
0 0 0.4E − 3 0 0
0 0 0 0.031 0




,

G3 − P3 =




0 0 0 0 0.121
0 0.001 0.005 00 0.022
0 0 0.015 0.017 0.003
0 0 0 0.014 0.002
0 0.156 0.151 0 0.015




We can then compute the matrixPAll = ∑n−1
i=0 Pi, and

LCyc = L − PAll = ∑n
i=0C

j + ∑∞
k=0Π

k + ∑∞
l=0Ξ

l to be:

PAll =




1 0.77 0.77 0.77 0.77
0 1 0.17 0.17 0.14
0 0.03 1 1 0.03
0 0.01 0.01 1 0.01
0 1 1 1 1




,

LCyc =




0 0.160 0.160 0.160 0.160
0 0.169 0.034 0.034 0.029
0 0.006 0.038 0.038 0.006
0 0.003 0.003 0.017 0.003
0 0.207 0.207 0.207 0.207




Finally, applying (9), we obtain CCI= 0.0744. The cor-
responding Finn’s cycling index turns out to be 0.663.

The full results from the 23 networks are depicted in
Fig. 3. One notes as how FCI is always less than or equal
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Fig. 3. Values of CCI (circles) and FCI (crosses) computed for the chosen
23 ecological networks.
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Fig. 4. The linear model CCI= αFCI. The dotted line is the bisector of
the first quadrant.

to CCI. When FCI= 0, then CCI= 0. The differences be-
tween the indices seem to increase with the amount of cy-
cling, as expected.

Plotting FCI versus CCI reveals that the two indices ap-
pear to be linearly dependent. Using a linear model, we
found that CCI= FCI·1.142 (standard error= 0.022,P <

2e − 16∗∗∗) and that the regression is very tight (R2 =
0.9915,F1,22 = 2694,P = 0) (Fig. 4).

4. Discussion and conclusion

Although it has been widely applied, FCI appears to be
biased as a measure of the importance of cycling in ecolog-

ical networks. While the difference between FCI and CCI
(the exact amount of flows generated by cycles) is negli-
gible for networks that are nearly acyclic, the disparity in-
creases as the number of cycles and their importance rises.
The two indices seem to be strongly correlated in a nearly
linear fashion. Such linearity might be due in part to the fact
that every compound path is composed of one or more cy-
cles that are attached to one or more segments of straight
chains. The probability of transiting such a compound path
could, therefore, be expressed as the probability of complet-
ing the cycles multiplied by a coefficient that accounts for
the probability of traversing the straight segments. The lin-
earity between FCI and CCI seems to imply that every cy-
cle “creates” compound paths that, when summed, augment
the cycled flow by some 14% on average. This increment
is practically constant over all the networks considered, and
probably reflects the low efficiency of trophic transfers.

The linear relationship between the two measures has
one major practical advantage. It means that the costly
computation ofPAll is not required after all. One may
approximate the actual amount of flow generated by cy-
cling (CCI) simply by inflating the commonly used FCI by
some 14.2%.
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