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Perhaps no other idea pervades the body of modern ecological thinking more
than Lindeman’s (1942) exposition of the trophic-dynamic aspect of ecology. In
nearly every discussion among ecologists the terms primary producer, herbivore,
and carnivore are necessary for communication. The notion of grouping or-
ganisms into categories which interact in a cascading fashion possesses a simple
elegance that is difficult to resist. ;

The attractiveness of the trophic concept is that it was the first attempt at a
holistic perspective on an ecosystem which met with any degree of success. Just
as temperature, pressure, and volume allow one to characterize the incomprehen-
sible multitude of particulate motions in a simple gas, the hope is that a small set of
figures, such as trophic storages or trophic efficiencies, permit one to compare two
ecosystems with overwhelmingly disparate complexities. Thus, if it were possible
to demonstrate that an arbitrary network of ecosystem flows could be reduced to a
trophic configuration, the aggregation process thus defined would become a key
component of the evolving discipline of ‘‘macroscopic ecology’ (see also Odum
1977 and Ulanowicz 1979).

Now two notions are key to a trophic representation of an ecosystem. The first
of these is level. A trophic compartment is generally thought of as an aggregation
of members, each receiving matter or energy from a source via the same integral
number of population transfers. The number of transfers, or level, thus ordinates
the trophic compartments. The second consideration is topological in nature—
each level should receive flows only from the immediately antecedent compart-
ment and should contribute flows only to the subsequent level. Such a linear food
chain is the simplest nontrivial configuration an ecosystem can have and will be
regarded as the “‘canonical”” form. While variations on these attributes exist in the
literature, any representation purported to characterize trophic structure should
be clearly grouped according to level and be nearly canonical in form.

Unfortunately, trophic groupings of real populations are not always obvious.
Many investigators (e.g., Hutchinson 1959; Riley 1966) are quick to point out that
exchanges among species resemble complicated webs more than simple chains.
Numerous populations receive energy and mass over several pathways, each with
a different number of transfers. This ambiguity often confounds efforts to assign
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entire populations to trophic compartments on the basis of taxonomy, function, or
a combination thereof,

The idea that populations might be fractionally assigned to trophic levels was
sensed by Riley (1966) who stressed the importance of developing partial feeding
coefficients to properly represent predator-prey relationships within a food chain
framework. Cummins et al. (1966) and notably W. M. Kemp and M. Homer (in
prep.) have expanded this idea by providing numerical schemes for apportioning
populations among trophic levels.

The latter studies have emphasized aggregation of species populations accord-
ing to level. However, these investigators paid little attention to the network
configuration of the final system. Is it, in fact, canonical? Are the laws of ther-
modynamics satisfied by the transformation?

Mappings and transformations are core elements of the theory of linear algebra.
Therefore, in this article we choose to describe the transformation process in
terms of matrices and vectors. It will be shown that level, topological form, and
thermodynamic laws can all be considered within this algebraic framework. Since
much of the progress to date on ecosystem structure analysis has been achieved
using linear algebra, the relation of this present exercise to the larger body of
literature will become immediately apparent. Finally, casting the aggregation
scheme in the form of matrices and vectors readily permits the creation of
computer algorithms capable of treating the most complex networks.

Before describing the grouping of species according to level, it is necessary to
review the fundamental balance equations for ecosystems transfers and to state
some requirements that any trophic transformation must satisfy.

THE ENERGY BALANCE

Attention from this point onward will be on energy flow through the ecosys-
tem. While exchanges of matter and information are also necessary to define the
full set of phenomena, the balance of energy flows offers a convenient starting
point for considering trophic groupings and provides the most obvious manifesta-
tion of compliance with thermodynamic principles.

Most recent theoretical considerations of energy flows through ecosystems
have followed the lead of Hannon (1973) and borrowed from the linear theory of
economic exchanges (Leontief 1951). Hannon uses the methodology to trace
direct and indirect flows through the ecosystem. Finn (1976) employs the same
calculus to define such quantities as average path length, cycled flow, straight-
through flow, and a cycling index of an ecosystem—all useful in discussing
questions of system stability, mineral cycling strategy, and structural changes.
Recently Levine (1977) started from the same balance equations and derived an
extension of Levins’ (1968) niche overlap index which includes indirect as well as
direct flows.

The present analysis proceeds from the same basic balance equations written in
a slightly different form to facilitate subsequent calculations. The given system is
internally divided into identifiable compartments which may exchange energy (or
other flows) with each other and with the surrounding universe. At steady-state
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the inputs to any one compartment must balance the outflows from the same
compartment. (While storages are essential to any dynamical consideration, they
do not enter into the subsequent analysis of static systems.) Inputs may be
differentiated as coming from another compartment within the system or from the
external universe. Qutputs from a compartment can likewise flow as inputs to
other compartments in the system or be exported out of the system. When energy
is the flow under consideration, a further distinction can be made as to whether the
export might be useful to another system in the universe, or whether it has been
degraded beyond utility (respiration). This separation of respiration from export
will later prove useful in defining important criteria.
Written symbolically, the balance for the ith compartment becomes:

n n
SPit+e=DPu+xitr, i=1,2,.,n, (1)
i=1 k=1

where Py represents the flow from compartment ;/ to compartment & within the
system, ¢; is the input to compartment ; from outside the system, x; is the export of
usable flow to the universe, and r; represents loss to the universe via respiration.
Notice that ¢; is defined differently than in Hannon (1973), where it represented all
the inputs to species i.

In order to rewrite equation (1) in matrix-vector notation, square brackets will
be used to enclose the symbols for matrices and parentheses will denote column
vectors. Accordingly, equation (1) becomes

(PY (1) + @) =PI (D) + &) + (), 2

where the superscript ¢ after a right bracket (or parenthesis) indicates matrix
transportation and the column vector (1) has the value unity in each entry.
Equation (2) is easily rewritten as

) =EIDH+ &+ @ 3
by defining the exchange matrix:
[E] =[P] - ,‘[P]‘. )
The exchange matrix is antisymmetric (Ey; = —FEj;) by definition.

TRANSFORMATION CRITERIA

The r-dimensional energy balance defined by equation (3) is to be transformed
into an m-dimensional system (usually n > m) which conforms to the general
notions of trophic transfers. The requisite linear mapping, represented by anm X
n matrix [A], cannot be wholly arbitrary. It must, for example, assure that: (1) The
first law of thermodynamics is preserved in the resulting network, i.e., total input,
throughput, export, and respiration must be invariant under transformation; and
(2) Exchanges in the transformed system obey the second law of thermodynamics,
thereby requiring that the resultant respirations all be positive quantities. These
criteria must hold for any transformation of energy flows. More specific to the
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notion of trophic transfers is the requirement that (3) The transformed compart-
ments form a straight chain. This means that each compartment should exchange
energy only with the preceeding and subsequent members of the chain. That is to
say, the resultant m X m exchange matrix should be tridiagonal (E; ;.. = 0 for ||
> 1) and antisymmetric.

Now if the transformation [A] is to satisfy the first law, it will be sufficient that
each of the component column vectors of [A] sums to unity, i.e.,

(1) [A] = (D). &)
For example, defining the transformed respiration vector as
(o) = [A] (), ©6)
the total transformed respiration is
(D (p) = (D [A) () = (D) (), )

showing that total respiration (and likewise total input and total export) are
conserved under transformation.

Multiplying equation (2) by [A], on the left, and using the fact (from eq. [5]) that
(1) = [A1(Q1) yields

[A] (e) = [AT[ET[A) (1) + [A] (x) + [A] (). (8)
Defining
(e) = [A] (e), ®)
¢ = [A] &), (10)
LE] = [A] [E] [AL, (1)
along with equation (6) allows (8) to be rewritten as
(e) = [E1 (D) + () + (p). (12)

It is easily demonstrated that [E] is antisymmetric.

AGGREGATION ACCORDING TO LEVEL

The mapping [A] needs to be further defined according to some notion of what
constitutes trophic levels. It is convenient to begin this search with the matrix of
feeding coefficients, defined in Hannon (using the present notation) as:

Z.ij + e
k=1

In words, G;; is the fraction of the total input to compartment j which flows
directly from compartment i.

If one makes the assumption that each compartment is a nondiscriminatory
processor of flows (i.e., any input flow is distributed among the various outputs in

(13)
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proportion to the fraction that each output comprises of the total throughput of
that compartment), then the integer powers of [G] take on a particular significance.
To wit, the i, jth element of [G]* = [G] [G] is the fraction of the total input to
compartment j which flows from compartment i along all pathways requiring two
transfers (i.e., of length 2). Similarly, the i, jth component of [G|?is the fraction of
the total input to the jth species flowing from the ith compartment along all
pathways of length q.
The fraction of the total input to a species, i, coming from outside the system is

fim ——H—— (14)
ZPJ'i + e;
=1

In a trophic sense these flows are primary sources of energy to the system. The
fraction of total input to species / originating from a primary input one link away
(secondary flows) can be represented by the row vector

(an)' = (f)* [G]. (15)
Likewise, tertiary flows to a compartment comprise the fractions
(@) = (IGP, (16)
and so forth:
(ar) = (VIGI. a7

Earlier investigators, including W. M. Kemp and M. Homer (in prep.) and
Cummins et al. (1966) have suggested that the attributes of a given compartment
be apportioned to the mth trophic level according to the fraction of the total input
it receives from external sources along pathways of length m. In the present
scheme, the kth row of the transformation matrix [A] would be (a..), i.e.,

Ay = (@i (18)

Applying the criteria for a canonical transformation to the trophic aggregation
matrix, [A], one may ascertain that two of the required three criteria are satisfied.
Summing any column of the [A] matrix is the same as summing the fractions of the
total input to the given species over all possible path lengths. Since all input to the
compartment must be accounted for by this process, each column sums to unity,
thereby fulfilling constraint (5) and assuring that the first law is invariant under
transformation. An analytical demonstration of the fact that [A] satisfies (5) is
given in the Appendix.

Since the elements of (¢) and [P] are intrinsically positive, the chain of defini-
tions culminating in (18) assures that all elements of [A] are positive or zero.
Hence, the consequent trophic inputs, exports and respirations will all be greater
than or equal to zero, thereby fulfilling the second law.

The exchange matrix derived from the trophic transformation is antisymmetric.
Unfortunately, it is not tridiagonal. Observation reveals that there are many
jump-forward flows, i.e., flows from trophic level & to level k+2 or greater. While
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the common notion of trophic flows could accommodate feedback, jump-forward
flows contribute undesirable complications.

TRIDIAGONALIZATION OF THE TROPHIC EXCHANGE MATRIX

There was no reason to assume a priori that the aggregation by level would yield
a tridiagonal exchange matrix. There was no hint of orthogonality between the
various rows of matrix [A] which would indicate that some off-diagonal terms
might be zero.

It is possible, however, to work with the transformed trophic compartments to
eliminate the jump-forward flows beyond the next trophic level. This is accom-
plished by a series of two-compartment, Jacobian-like transformations.

Consider, for example, a nonzero flow from trophic level r—1 to trophic level s,
where s=r+1 and r>1. The strategy will be to transfer a portion of compartment s
to compartment r so that the flow will be completely shunted into r. This can be
achieved by using an m X m transformation matrix [B1 which differs from'the m x
m identity matrix in only four elements—B,,, Brs, By, and Bg;.

To assure conservation of energy under transformation [B] it is sufficient that

Brr + Bsr = 1 (19)
and
B, + B, = 1. (20)

A complete shunt of the flow away from compartment s implies that the r — 1, sth
component of [B] [E] [BY is zero, i.e.,

ByEryy + ByEy_1, = 0. @1

Finally, the constituent row vectors of [B] should be mutually orthogonal to avoid
interfering with flows other than those involving trophic compartments r — 1, r,
and s. For a matrix as simple as [B] the single component equation

Brr Bsr + Bss Brs =0 (22)

will guarantee mutual orthogonality.
Equations (19) through (22) may be solved for the four components to give

R R e
By =FE, ., Er—ls—l“)Er—l_r 25)
By=FE, . _E—l% (26)

where

D = Ei,, + Ef_.,. 27
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Successive application of this formula for each nonzero flow outside of the
tridiagnoals will result in a transformed system satisfying the third criterion.

AN ILLUSTRATIVE EXAMPLE

Examples of total ecosystems for which the web of energy exchanges between
the species has been quantified are rare. There are, however, numerous examples
of estimated steady-state energy exchanges between aggregated compartments of
an ecosystem. A convenient food web based on the main groups of organisms in
the North Sea has been quantitatively estimated by Steele (1974). In this instance
species have already been aggregated according to both function and habitat.
Nevertheless, the resulting web is still not in canonical form and will serve as a
useful illustration of the described aggregation schemes. The flow estimates in
parentheses (fig. 1) were not provided by Steele and are our guesses. The respi-
rations were calculated by the difference between inputs and outputs.

Figure 2 presents the trophic aggregations effected by the transform defined in
equation (18). There are eight trophic compartments in view of the fact that the
longest path length in the hypothesized web was eight steps. Arrows pointing
away from the chain represent the apportionment of the yields to man from the
various trophic levels. The presence of net jump-forward flows implies that the
transformed system is not canonical as defined by the third criterion. Curiously,
the transformation of the production matrix

(1] = [A] [P] [AT (28)
possesses the symmetry
Hi(j+1) = Hj(i+1)a (29)

which is not apparent from diagramming the net exchanges as in figure 2.

A sequence of nine rotations as described in equations (23)-{27) culminates in
the decoupled food chain exhibited in figure 3. The effect of the decoupling has
primarily been to increase the lower trophic flows at the expense of the higher
levels. The initial aggregation, therefore, tends to overestimate higher-level
phenomena.

The values for the flows depicted on figures 2 and 3 are indicated only by a few
digits to show their relative magnitudes. Some compartments appear not to
balance perfectly, but would do so if enough significant figures were provided.

As stated earlier, the flows depicted in figure 3 can be used to characterize the
ecosystem for the purposes of comparison with, say, a desert biome. In addition,
if one is willing to make two key assumptions, one can use the canonical repre-
sentation to generate possible strategies for management of the North Seas
fishery. Suppose, for example, one wishes to increase the total yield of the system
to man while at the same time ensuring the integrity of the ecosystem.

The assumption is made that the larger the flows at higher trophic levels, the
more desirable is the state of the ecosystem. This statement is equivalent to the
commonly held subjective belief that more diverse, more complex (i.e., highly
connected) ecosystems represent more mature and, therefore, more desirable
ecological assemblages. M. Homer and W. M. Kemp (in prep.) have data which
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F1G. 1.—Estimated flows (kcal/m?- yr) through the North Sea Food Web (after Steele 1974).
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Fi1G. 2.—North Sea food web as transformed according to equation (18) (flows in kcal/

m?-yr).
363 098 136 0095 000124 -000023
9000 900 470 127 404 0574 000158 000001
8100 430 39 856 335 0478 000033 003024

Fi1G. 3.—North Sea canonical trophic food chain (flows in kcal/m?: yr).

purport to show that the effect of thermally stressing a marsh community is to
drastically reduce the aggregated flows at higher trophic levels while having little
effect upon transfers between lower compartments.

In order to maintain or augment the flows at higher trophic levels, one may use
the truism that a chain is only as strong as its weakest link. Trophic efficiencies
(le; — pil/ey) in the North Sea chain go through a minimum of 4.8% in compart-
ment 5. One may view level S as a bottleneck impeding the flow to the higher
levels. Furthermore, 71.3% of the total production from this aggregate is har-
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vested by man, in contrast to the 2.8% and 2.4% withdrawals from levels 3 and 4,
respectively. Assuming that a decrease in the harvest at a given level will result in
an increase in the transfer to the next higher level (and vice versa), the desirable
strategy would be to increase the catch from levels 3 and 4 while cutting back on
the take from level 5.

The transformation matrix defining the canonical heirarchy shows that pelagic
fish are apportioned to ranks 3 and 4 in almost a 90%/10% split, whereas demersal
fish are assigned 27% to stage 4 and 70% to stage 5. It should be possible,
therefore, to increase the take of pelagic fish considerably, cut back vn the catch
of demersal fish by a moderate amount, and still transmit more energy to levels 6,
7, and 8!

Of course it is possible that a more detailed analysis of the dynamics of the
original system or a study of the life histories of the individual species involved
will prove this strategy to be folly. No one should advance a steady-state analysis
as the sole determinant of a management decision. The canonical trophic analysis
should function, nonetheless, as a rational generator of working management
hypotheses. ‘

REMARKS ON THE GENERALITY OF THE TRANSFORMATION SEQUENCE

It would be extremely satisfying to be able to present the two-step transform as
a general method for reducing food webs to canonical trophic form. At present
such an assertion is premature at best. A clue to possible difficulties is the negative
sign on the export from the eighth compartment in figure 3. While one might be
able to rearrange exchanges and exports in such a case to make all flows appear
positive, it is another matter if one of the rotation transformations results in a
negative respiration. In fact, there is no intrinsic mathematical reason (as there is
in the initial aggregation) why negative respirations cannot result from rotation.
Calculations with arbitrary food webs show that while the rotations tridiagonalize
the exchange matrix, they do not, in general, preserve the second law.

Experience shows that violations of the second criterion occur routinely when
there is significant external input to a species feeding at a higher level. It is
possible to circumvent this situation, however, by decomposing the given network
with several inputs to separate networks, each with one of the given inputs as the
sole source. This is readily accomplished by employing Hannon’s (1973) method
to calculate the fraction of any given flow attributable to a specific input. The
separate networks can subsequently be transformed in turn with much less proba-
bility of the second law being violated.

As long as the exchanges and respirations vary independently, however, there
remains the possibility that a negative respiration may appear. Studying equations
(23)-(26) reveals that this will happen whenever

Bypr + Byps < 0, (30)
or, equivalently, when

&_1(>’_EL—_1£—1|. 31)

Pr r—1,r
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As mentioned, the example trophic chain possesses eight componenis—a di-
mension commensurate with the longest path length in the food web. In this
instance the sequence of row vectors calculated by (17) automatically truncates
after eight rows. Should there be a feedback loop imbedded within the starting
web, however, the sequence of calculating row vectors will go on indefinitely.
W. M. Kemp and M. Homer (in prep.) show how, in most instances, these loops
may be obviated by dividing the troublesome populations into age-class compart-
ments. In the remaining cases one must decide how to treat the residuals. Since
the columns of the transformation vector always sum to unity, the magnitude of
any residuals can always be calculated. One may, therefore, continue creating
trophic compartments until the residuals fall below some specified level, or one
may calculate a predetermined number of rows (say n — 1) and lump all the
residuals (higher-order transfers) into the final compartment.

It is worth noting that total systems throughput (see Finn 1976) is conserved
under both transformations. This will not be apparent when studying the trans-
formed exchange matrix as in equation (11). Questions concerning total systems
throughput are best addressed with the aid of the transformed productivity matrix,
[I1], as defined by equation (28). The diagonal elements of [II] are generally
nonzero indicating the transformations give rise to ‘‘internal circulations’” within
trophic compartments.

Finally, Odum (1971) has pointed out that most ecosystems exhibit two major
food chains—a grazing chain and a detritus chain. For comparison it is often
helpful to describe both chains rather than lumping them together and masking
certain functional properties of the ecosystem’s populations. This is easily ac-
complished under the general methods outlined in this paper. One simply amends
the boundary between system and universe to excise both autotrophs and detritus
from the system. Their contributions to the various species now appear as exter-
nal inputs and the web may be separated according to Hannon’s scheme into two
webs, one having only autotrophic inputs and another having only detrital inputs.
The distinct networks are subsequently transformed via the methods outlined
previously into two parallel trophic chains.

DISCUSSION

The development of a systematic trophic aggregation scheme has both applied
and theoretical implications. W. M. Kemp and M. Homer (in prep.) have already
dwelt at length on the utility of their aggregations to the comparative ecologist. It
is no small advantage that the transform is unambiguous and results in a system
which ‘*makes biological sense.”’ It is of great help in reducing the dimension of
the system to be considered. For example, it is possible, in concept at least, to
condense a complicated ecosystem with hundreds of species into five or 10
compartments. The comparison of two many-specied communities is thereby
enabled. Even the troublesome jump-forward flows could provide useful keys
with which to contrast the underlying dynamics of the two systems.

The fact that the initial transformation does not yield a ‘‘canonical’ trophic
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food chain provides some interesting questions for both theoreticians and empiri-
cists. In this paper only one of an undetermined number of possible secondary
transforms has been explored. It remains to either discover an aggregation for-
mula satisfying all three criteria, or to prove conclusively that no such transform is
possible.

Even if it can be deduced that a canonical transform necessarily satisfying the
laws of thermodynamics does not exist, several ecological questions remain, For
instance, it may be possible that a given type of canonical transform is sufficient to
treat real ecosystems. Supposing, for the sake of argument, that the joint trans-
formations described in this article always yielded well-behaved canonical trophic
analogs when applied to real data. Then the inequality (31) would be ‘‘prohibited’’
by weight of empirical evidence. Physical science is replete with instances where
mathematical possibilities are not realized by the real system (e.g., forbidden
transitions in quantum mechanics).

Certainly, ecology would benefit by more theoretical-empirical interplay such
as has advanced the science of physics. Unfortunately for ecology, the scope of
precision necessary in experiments which would test many current hypotheses
greatly diminishes the opportunity for feedback. Nonetheless, this exercise has
been advanced in the hope of stimulating such interaction.

SUMMARY

Steady-state input-output analysis of energy flows in an ecosystem conveniently
delineates the discrete steps of energy processing in a given ecosystem. The
fraction of a specific flow between species which results from a given input via any
integral number of transfers can be calculated. The portions of all flows which are
the same number of steps from any external input may, therefore, be aggregated.
Furthermore, the mapping which creates these groupings preserves the first and
second laws of thermodynamics.

The aggregated compartments are ‘‘trophic’’ in the sense that they are ordered
according to the number of transfers from an external input. They do not, how-
ever, represent a sequential chain of energy flow in the strict sense. Transfers
between compartments which are not nearest neighbors in the chain are still
present.

A secondary transformation which decouples the exchanges between non-
neighboring compartments can be effected. In the resultant chain of flows more
energy appears to be dissipated in the lower trophic levels. There is no a priori
reason why the second law of thermodynamics should be preserved under the
second transformation.
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APPENDIX

It is to be demonstrated that the column vectors of the initial trophic transformation
always sum to unity, i.e.,

SAy=1, j=12,...,n, @AD
=
where (A1) can be expressed in matrix-vector format, using (17) and (18), as
oy IZ[GJH} = (1) ‘ (A2)
=

Now the infinite series of matrices enclosed in braces converges to the limit {{/1 — [G1}!
(Yan 1969), so that

(O - (G131 = (). (A3)

Where [I] is the n X n identity matrix. Since the term in braces is generally nonsingular,
matrix multiplication from the right by the inverse is permitted, giving

= @ {1 - IGI} (A4)
or
= ¢ + (VIG1. (AS)
Equation (AS) is the vector transpose of
O = (O + [GT(), (A6)

which may be written in component form with the aid of (13) and (14) as

n
2P
€; j=1
= n - + n b4
zpki+ei ZPki—Fe,-
k=1 k=1

fori =1,2,...,n.Since k andj are dummy indices, (A7) is immediately recognized as an
identity for each i and the demonstration is complete.

1 (AT)
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