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Abstract — Steady, multicomponent diffusion through two phases, accompanied by an arbitrary
number of reversible reactions between the diffusing species, is formulated as a boundary value
problem. The resuits, achieved after linearization, indicate that non-equilibrium reaction in the
neighborhood of the interface is possible even though equilibrium may exist in the bulk phases. The
effect of the reaction(s) is to augment the transfer as in the case of single films. The extent of this
augmentation effect for a pair of simultancous, coupled reactions of the form

= 2B
B=C+D

is shown. A reaction coupling effect increases the transfer above that due to each reaction occurring

alone.

INTRODUCTION

A GROWING body of data in both chemical
engineering applications (see[4, 13], for example)
and in biochemical areas{3, 9] exhibits the effect
of chemical reaction on interphase transport, and
emphasizes the need for a simple theory for
predicting the effect on transfer of diffusion-
reaction coupling in multicomponent, multi-
reaction, two phase systems.

That chemical reaction may produce an
appreciable effect upon transport in a single
homogeneous film has been known at least since
Hatta’s explanation{8] of CO, absorption into
caustic solution. Hatta’s explanation was based
upon the postulation of a single, esseatially
irreversible, pseudo first order chemical reaction
as being rate controlling, and his analysis pre-
dicted enhanced transfer due to the chemical
reaction. This resuit was in qualitative agreement
(at Jeast) with the experimental results.

The extension of the diffusive transport-with-
chemical reaction-theory to systems involving
more complicated reactions under non-equilib-
rium conditions has been limited because of the
associated non-linearities. However, Olander[11]
was able to obtain the maximum extent to which
steady transfer is enhanced in a single film due to
certain elementary reactions occurring singly, by

use of a model in which diffusion was considered
controlling. That is, the reaction was considered
to be in quasi-equilibrium.

A relaxation of the quasi-equilibrium condition
was achieved by Friedlander and Keller[7] by
use of the affinity function, again for steady
diffusive transport through a single film. This
linearized analysis showed that the extent to
which the reaction is displaced from equilibrium
by the diffusion flux is characterized by the ratio
of the film thickness a to the diffusion-reaction
length A’. Olander’s results based on quasi-
equilibrium are obtained as an asymptotic limit
of this theory as a/\' — large. The effect of the
reaction-diffusion coupling was thus shown to
always enhance, or augment, the diffusive trans-
port; the maximum augmentation occurring
under conditions such that the reaction proceeds
essentially at equilibrium.

Further developments in the linearized, single
phase transfer-with-reaction problem were
provided by Brown[3], Toor[15], and Wei[17].
In brief, in these analyses the linearized theory
was extended to multicomponent, multi-reaction
systems by the use of the theory of matrices,
and various properties of the linear systems
were discussed. Brown’s formulation was posed
in the language of irreversible thermodynamics
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whereas Toor and Wei worked in terms of
concentration.

With this background the extension of the
linearized theory to the steady two phase multi-
component, multi-reaction system is possible and
itis the results of the analysis of this problem that
are presented here. The approach taken is to
linearize the conservationequations viaa *“small”
flux, dilute solute restriction, and to proceed with
the use of matrix algebra in the solution of the
two phase boundary value problem.

The results are applicable, for example, insofar
as the restrictions hold, to convection free liquid-
films, and also to those biochemical problems
dependent on transport through liquid-membrane
interfaces.

APPROACH

The balance equations for species i in phase j
may be written in terms of either the chemical
potential u,;, or the concentration ¢;;. A formula-
tion in terms of the latter quantity is normally
more useful in two phase systems for which the
phase distribution coefficients are either known,
or can be measured. For certain systems such as
those involving transport with reaction through
liquid—-membrane interfaces, especially in bio-
chemical systems the phase distribution co-
efficients are not readily available, however. For
such situations, a statement in terms of the species
chemical potentials may be more useful. A
formulation of the problem in terms of the
chemical potential, however, requires knowledge
of the Onsager transport coefficients %, mean
values of which may be estimated from the
ordinary diffusion coefficients, under conditions
such that the activity coefficients can be taken as
approximately constant.

The transport equations for a steady, iso-
thermal pure diffusion two phase system with
reaction may be written as

k=§l:n (L VitV VL) =—R, k=

,2,...n. (1)

For the flux sufficiently small, and .%, a “weak”
function of u; the .#; may be taken essentially

constant. Hence, written in terms of the species
chemical potential vector () and the species
reaction rate vector (R), the restricted form of
Eg. (1) becomes in each phase j:

(L1, (), =—(R), j=12 (2)

where [.Z] is the matrix of Onsager (phenomeno-
logical) coefficients. [.#] is symmetric in form (by
principle of microscopic reversibility) and the
characteristic values of [.#] are real and positive.
[-#] need not be strictly diagonal in the following
development.

The n-dimensional species reaction vector (R)
is the resultant of r independent reactions among
the n species. For any non-trivial situation there
are at most n-1 independent reactions between
the n species[l]. The reaction rates of these
r-reactions are defined as components of an
r-dimensional column vector (w) connected
through the stoichiometry as follows:

(R) ;= [v](w); 3)
where [v] is an nXr matrix of the stoichio-
metric coefficients defined such that vy repre-
sents the coefficient of the ith species in the kth
reaction.

For a system near equilibrium (consistent with
the small flux restriction stated above) the reac-
tion vector (w) may be linearized in terms of the
affinity function[12]:

(w);= [L]i(a); (4)
[L] is an r-dimensional matrix of the phenomeno-
logical reaction coefficients. In terms of the
chemical potential, Eq. (4) becomes

(0);=—[LL[¥]7(n). (5)

Substitution of Egs. (3) and (5) into (2) yields
[£1;V3(w) = [V][LL;[v]™(w). (6)

Because of the solvent-fixed frame chosen at the
outset, the matrix [.%];is non-singular and there-
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fore has an inverse[14]. Multiplying by that
inverse on the left gives

vi(r) = [W]i(w) (7)

where :
W)= [Z1 [v) (L];[v]".

Equation (7) may be considered the starting
point of a (linearized) theory of interphase trans-
port with multiple reactions among the n com-
ponents.

A parallel development in terms of the
(perturbed) concentration variables may be
made for the restriction of small deviation from
chemical equilibrium, yielding

vi(c’) = [D]ITK](c') (8)

where (¢') = (¢) — (c°)

[D] = matrix of pseudo-binary diffusion
coefficients

[K] = r-dimensional matrix of pseudo
first order reaction rate coeffi-
cients.

One may formulate the two phase boundary
value problem in terms of Eq. (8). In terms of the
perturbed concentration vector (¢’), however,
one interfacial boundary condition may be shown
t0 be inhomogeneous. In view of this a more
convenient approach, for the case of quasi-
chemical equilibrium specified at the outer
boundaries of the two phases, is to add

[D]VE(c®) = [K](c®) =0
to Eq. (8), yielding
vi(c) = [D]'[K] (<)

where [K] is defined in Eq. (8). The linearized
equations (7) and (8a) in terms of the chemical
potential vector (u) and the concentration
vector (c¢) are therefore of the same form.
The properties of the solution in both w-space

(8a) -

and c-space are similar so the primary develop-
ment in the following section shall be con-
tinued in w-space, with corresponding results in
c-space provided where appropriate.

TRANSFORMATION AND NORMALIZATION

The matrix coefficient [W] in Eq. (7) although
an nXa matrix is of rank r, r < n. Thus for
example, for a system of five species and two
independent reactions, the rank of the matrix
will be two, hence singular. Furthermore, [W]
need not be symmetric even though it is a product
of the symmetric matrices [%]™' and [v]
[L]}[v]". The eigenvalues are always positive or
zero[3,6]. The chemical potential vector (u)
given by Eq. (7) is related parametrically to
diffusion, reaction rates, and stoichiometry
through the matrix [ W]. Thus while not assumed
to be explicitly coupled in the Onsager sense,
diffusion and reaction nevertheless affect one
another through mass conservation. This inter-
dependence may be thought of as diffusion-
reaction coupling in the sense of Toor[l5].

The approach toward obtaining a solution of
such a linear, coupled set as Eq. (7) is to trans-
form them to an equivalent uncoupled set. This
consists of finding a matrix [S] such that

[SI'IA*12LS] = [W]. (9
[A*]? is a diagonal matrix whose diagonal entries
are the eigenvalues of the matrix [W] arranged in
descending order. As [W] is of rank r, a total of
(n—r) of these eigenvalues will be zeroes.
Also, there exists an infinite set of matrices
[S§]1 which will accomplish the desired uncoup-
ling. Choosing one (convenient) matrix [S] from
a subset of this infinite set (as described below),
Eq. (7) becomes:

Vi) = [ST M PPLSHw). (10)
Multiplying on the left by [S] and recalling that
for the small flux restriction the parameters are
essentially independent of position, and also non-
dimensionalizing the Laplacian operator by

1337



R. E. ULANOWICZ and G. C. FRAZIER, Jr.

use of the phase thickness /, results in

Vi) = [A]*(u) ()

where
(v) = [S](w)
[)‘]2___ [z[)‘*]g

A property of the transformation matrix [§]
in addition to uncoupling the Eqgs. (7) is that the
resulting modified state vector (i) created in the
process contains components some of which
describe only reaction eflects, and the rest only
diffusion effects. This separation is useful in
that one may individually follow the course of the
uncoupled reactions throughout the spatial
domain of the problem. A demonstration of this
diffusion reaction separation may be made[16]
after introducing the useful normalization similar
to that used by Wei[17, 10],

SIS =1 ()
It can be shown[16] that a matrix [S] can be
found satisfying both conditions (9) and (12).
That Eq. (12) is a natural normalization to
choose for the two phase problem becemes
apparent in stating -boundary condition (26)
below.

THE PLANAR. TWO PHASE BOUNDARY
VALUE PROBLEM

Our interest is in the mass flux through a two
phase system and the influence of reaction inter-
action on the flux. We therefore formulate the
boundary value problem in terms of a specifi-
cation of the chemical potential vectors (or
alternately, the concentration vectors) in each
of the two phases, and seek a solution for the
total mass flux, which is given by
T= (M)"(J). (13)
The region of many two phase systems in the
neighborhood of the interface may be modeled

as being essentially planar if the zones [, /, in

which diffusive transfer takes place are small in
extent compared with the radius of curvature of
the interface. i.e. for the case of [, I, < R.
Also, for equilibrium existing in the bulk phases
the boundary conditions at the outer edge of
each of the films may be taken as quasi-equilib-
rium to good approximation so long as the
characteristic reaction-diffusion lengths 1/\,, are
small compared with the phase thicknesses[7, 5].
Hence many physical situations of interest may
be approximated by the model shown in Fig. 1,
with the transition in properties from phase one
to phase two taken as a step function at z = 0.

Phase I Phase ||

{ Ho)i Interface

e

(o),

e

z =l =0 1r =,

Fig. 1. Schematic model of a two phase system.

The linearized equations of change for the
state vector (i) in each phase may now be written,
in phase 1

) = V1) (14)
and in phase 11
9 () = [W]o(w) (15)

dm,?
where
nj=Z/IJ! .j= 192.

Equations (14) and (15) ,consist of 2n second
order coupled differential' equations, requiring
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4n boundary conditions to uniquely determine
the solution. The required number of boundary
conditions may be written as:

at
m=1 u= (1), (16)
m=m=0 (W= (u)" (17)
by 4 Z g 4
l_l["?]‘d_n_,(“) —,z[f]zdnz(ﬂ) (18)
at
N, =—1 (l‘») = (IJ»o)z- (19)

That is. the chemical potential vector is speci-
fied at the outer boundaries via conditions (16)
and (19). the fluxes of the components are
matched at the interface, conditions (18), and
the chemical potential vectors are also matched
at the interfacet, conditions (17). The statements
{16) and (19) include the specification of quasi-
chemical equilibrium at the outer boundaries.
The results can be generalized to the case of
non-equilibrium at the boundaries. The system
of equations (14) and (15) subject to the con-
straints (16)-(19) now form a determinate set

which may be solved for both the chemical .

potential distribution and also the flux.

The precedure is as described in the previous
section. However, it is in general not possible to
find a single transformation matrix which simul-
taneously uncouples the systems (14) and (15).
Two separate transformations satisfying Egq.
(9) are therefore chosen, [S], for phase I and
{5]. for phase II, resulting in modified state
vectors for each phase,

(u), = [S]l(/“') (20)

(1) = [S]a(n) (21)
such that Egs. (14) and (15) can be written
respechively as

tThis latter condition is known to provide a good approxi-
mation to physical reality in a large number of transfer situa-
tions [4], although this may not be strictly valid in general[5].

L, = e, (22)
Uh

(i) = N (23)

Under the above transformations the boundary
conditions (16)-(19) become:

at

m=1 (u);=[5]i(m): = (14p), (24)

m=m=0 [S],7(«), = [S],7(u): (25)

r d _ d
(Sl d__n:(u)l = [S]zrdnz(u)z (26)

Ny =—1 (u),= [ST2(t0)2 = (14)2. 27)
The equations (22)-(27) restate the problem in
terms of the two modified state vectors (u),,
and (w),.

Turning now to the system (22) one recog-
nizes that the solution to the first r of the un-

coupled equations has the form,

i=1,2,
...r (28)

U= A” Sinh Allnl +B“ COSh A“'T]'

whereas the last #—r equations have solutions
of the form
wi=Aym+B,; i=r+1,r+2,...0 (29)

Solutions (28) and (29) can be combined into a
single matrix formula:

(1), = [sinhAn],(A4),+ [coshAn],(B),. (30)
The matrix [sinh An], is diagonal, and its first
r diagonal terms are the entries sinh A;m, while
the last n—r diagonal elements are simply 7,.
Similarly, the diagonal matrix [cosh Am], has as
its first r clements the functions cosh Aym,. with
the last # — r entries being unity.

The solution for the modified state vector in
phase II is:
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(u), = [sinh An].(A).+ [cosh An],(B),. (31)

Applying the boundary conditions (24)-(27)
to Egs. (30) and (31) yields the following values
for the vectors of the integration constants:
(A),= [\ ST™{IRY "+ [R)7} (1)
(32)

(B),= (uo);— [tanh AL, [A], 7 [ST{[R],
+ [RI,7'} (o) (33)

(A)e = [AL'ISLH{IR] T+ [R] 71} (o)
(34)

(B)2 = (ug)2+ [tanh A1, (A1, [S1T{[R],!
+ [R]27'} (o). (35)

See Eq. (38) for definitions of [R],, (R],, and

(I-Ln)~
The flux vectors (J); for the two phases in
terms of the gradients of their respective modi-
fied state vectors (v); are
();=1[81"V(w); j=1,2 (36)

so that the total mass flux T, which is indepen-
dent of position, for the one spatial dimensional
case, becomes:

T=(M)T[S]\"V (u),. (37)
Using the first of Egs. (31) to form the gradient

of (u) for use in Eq. (37) leads to the desired
expression for the total flux:

T=(M[Rl,"+ [R]:7'Hue)  (38)
where

(o) = (1o} 1 = (Ho)2

[R]: = [S,"[A],[tanh A], ™" (S,

[R]y = [S]."[A]:[tanh A], 7 [S],.

A similar development in terms of the con-
centration state vector leads to

T=(M™[R']\7+ [m][R'],7}

{(c?)y — [m](c®).} (39)
where [m] = matrix of phase distribution coeffi-
cients

[R']y = [c°]:[$"],"[A]: [tanh A ], 77 [S7],
(R']a = [c]o[S" T[N ] [tanh N],[S" ]

The resuits (38) and (39) are both reminiscent
of a scalar equation relating a flux to a driving
force linearly through a mass transfer coeffi-
cient. In this analogy the matrices [R]; and [R],.
as well as the “‘primed” ones, are identified with
the mass transfer coefficients of their respective
phases. The phases [ and Il being linked in
tandem in this particular case causes the mass
transfer coefficients to be combined in analogy
with the law of additive resistances to yield an
overall coefficient matrix for mass transfer. This
interpretation is an extension to the case of
interface transfer with near equilibrium reaction
of that of Toor[14] for the case without reaction.

The matrix [R],71+ [R],~! is symmetric and
unchanged by a transposition of the parameters
of phases I and li. The linearized system in
terms of chemical potential as driving force is
therefore isotropic with respect to mass transfer.

An important property of a phase interface
exhibited by results, Egs. (38) or (39), is thata
non-equilibrium solution for the flux exists for
the two phase system even when quasi-chemical
equilibrium is specified on both outer boundaries.
This is in contrast to the behavior of the steady,
single phase system without convection, for
which only the trivial solution for the affinity
exists if quasi-chemical equilibrium is specified
on both boundaries of the system. This latter
result is due to the homogeneous nature of the
single phase boundary value problem.

Hence, the results of the linearized theory for
the chemical potential vector, Egs. (30) and (31),
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show that for the two phase problem, transfer
forces the reaction from equiliorium within the
wstem even though quasi equilibrium is speci-
jed on the outer boundaries. A consequence of
this is that a non-equilibrium distribution among
the various chemical species may exist in the
neighborhood of an interface during transfer
¢ven though equilibrium may exist within the
bulk phases. This situation is illustrated in the
following section.

PROPERTIES OF THE LINEARIZED THEORY

The results, Egs. (38) and (39). contain the
¢effect of the near-equilibrium chemical reactions
upon the interfacial transport. Of particular
interest is the way in which diffusion and reaction
cffects interact, and i» the multi-reaction case,
how rcactions affect one another through diffu-
sion. The following examples illustrate these
phenomena. A comparison of both results, Egs.
(38) and (39), with experimental data for some
simple reacting systems is provided by Wendt
[18].

Case [ —Transport of two species which may
undergo the reaction
viA = vgB. (40)
For this two-dimensional problem the matrices
may be taken as follows:

o)
(o) = o). (45)

Definitions (44) and (45) are convenient ways of
expressing (M) and (u,) because they introduce
the least number of new parameters.

The resulting combined parameter matrix
according to (7) is:

2

Vs “VaVg
_ L L as
W= S (46)
Lo L
for which the eigenvalues are
2 2
N<2 = L{L‘_+_VL}
YLy L
AE2=0. (47)
An acceptable [$]'is:
—v,
=z,
[s1=| 3/ (48)
z,

which is to be normalized according to Eq. (12),
the result after inversion being:

_ gA"?B}”z{V_Az Ei}—”z
S] ‘{ T 2T,

= e.?‘u 0 ] V4 Vg
1= G, 4D EI A AL
X " v, . (49)
[v] = [—:“] (42) 25 Za
8.
The employment of the foregoing matrix forms
L; 0 in the quadratic form (38) yields, after rearrange-
(=g o] (43)
0 0 ment:
M,

h 5

VA2VB2{$ L 132“-39,42--?31}2

T= + +
Vszfm + VAZ"?BI Vuzfu + VA2$H2 {Vnz-ip,n + VAzgm}z{Vyngz + ",42--?112}2

L L mA

(50)
£ 2L ma

+
{VBZ.-?AI + VAzgyl} tanh IIAﬁ {VBZ"?AZ + VAZ.-?Bz} tanh lzhikz.
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As can be seen in (50) the reaction parameters
enter only in the third term of the denominator
in the form of Aj/tanh /A{. As the eigenvalues
become very large (50) simplifies to

M}-Ln
I, L
Vg T il vt Lt v Ly

re= (51)

which is casily verified to be the total flux when
the reaction (40) is everywhere at equilibrium.
[nspection shows (51) to be an upper bound upon
(50). hence maximum transfer is achieved with
equilibrium reaction as in the case of transport
with reaction through single films (3, 7].

As the cigenvalues become diminishingly
small, (50) approaches as a limit:
2 2
Tl — Vi Vi
o N R A L)
"TIH ='(£ﬂ2 "f.'ll J/I'Z

which is the result one would obtain for inter-
phase trunsport without reaction. Although the
near-cquilibrium assumption (4) breaks down
after a point, (50) is scen to bchave properly
throughout the entire range of parameters.

Another feature exhibited by Eq. (50) is that
the reaction effect on the transfer is essentially
independent of the phase thicknesses for the
special case of the transport coefficients related
such that %%y, =L 2% y. For this case it
can be shown that Egs. (50), (51), and (52)
become identical, and the steady state is such
that the diffusing components are in chemical
equilibrium throughout each of the two films.
However, in contrast with the equilibrium
reaction effect pointed out above, the reaction
does not enhance the transport. In other words,
when the above special relationship occurs
among the transport coeflicients, there is no
augmentation effect due to the reaction regard-
less of the film thickness. A similar situation
exists in more complex systems also, but a
number of parameter groupings are required to
be null instead of the one grouping as in the two
component system.

The form of the flux in (50), normalized to the
flux without reaction, is shown in Fig. 2 for the
case of the dimerization reaction, vy = 1, vy =2,
The monomer form is dominant in phase 1],
Cyal €42 > 1, while different ratios of ¢g(/E4, are

C/ G2

I |
02 o1 +0 100 102 ©0®
Dimensionless film thickness (A} )

i | | 1

Fig. 2. The effect of diffusion-reaction coupling as a function
of phase length (Case 1).

shown in the three curves. This situation corres-
ponds physically to the transfer of an alcohol
from a hydrocarbon phase to an aqueous phase,
for example. The Onsager transfer coeffi-
cients were approximated by

¢
RT

(53)

i

where the concentrations were taken in the
range of a few tenths of gmoles/l. and the ordinary
pseudo binary diffusion coefficients were taken
of the order of 10> cm?/sec. Also the forward
reaction rates were taken such that k, > k,, with
k, in the range of 10*—10%/sec. The phase
thicknesses were set such that [, = [,. Figure 2
shows that as the dimer-monomer ratio is in-
creased in phase I, the augmentation effect of the
reaction on the transport also increases. The
chief effect of decreasing the reaction rate
coefficients is to increase the film thickness at
which non-equilibrium effects become important,
although this is not seen on a dimensionless
plot such as Fig. 2.
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Finally, all the foregoing phenomena men-
tioned in this two dimensional example can be
generalized to i species and r reactions.

Case I1—Transport of three species according
to the reaction

B=C+D. (54)

This three-dimensional situation is very similar
to Case 1. One new aspect has been introduced,
however, in the form of an extra degree of free-
dom in the specification of the chemical poten-
tial vector at the outer boundaries. In Case 1 the
chemical potentials at the outer boundaries were
in the fixed ratio vgfv, because of the quasi-
equilibrium specification. Now only one con-
straint between three chemical potentials gives
one more latitude in specifying a vector which is
at equilibrium.

Again Onsager coefficients were approximated
by relation (53) where the &; were taken of the
order of 107>cm?/sec and the concentrations
taken in the range of tenths of a gmole/l. or less.
Species B was assumed to heavily predominate
over C and D in phase [, whereas C and D as-
sumed reasonable fractions of B in phase II.
Here k, < k, with the latter in the range of 10?
I/sec.

A computer was used to evaluate the total
flux directly from (38). Special procedures were
devised to handle the highly singular matrices
which occurred[16]. For a representative profile
of total flux for this case as a function of film
thickness see Case 111.

Case 11l —Transport of four species, A, B,
C, and D with two concomitant reactions,
(40) and (54).

With the inclusion of two simultaneous reac-
tions an extra degree of interaction is added to
the model. Not only does each reaction couple
with the diffusing species, but because some
specicys in general are coupled to more than one
reaction (species B in this case), these species
serve to couple the two reactions. (In the case
where direct diffusion-diffusion coupling is
sllowed through off diagonal Onsager coeffi-
cients the reactions need not even share species

in common). It has thus far been demonstrated
how coupling serves to increase the mass
transfer. It would only seem natural that this new
degree of interaction would further enhance the
mass transfer, as shown in Fig. 3.

] ] 1 i
04t 03 02 ot 10
Film thickness(cm)

] ]
-5

Fig. 3. A comparison of the effect of diffusion-reaction coup-
lingin Cases [, Il and I11.

Figure 3 consists of three profiles of the total
flux of the four species as a function of film
thickness. Curve I shows the enhancement to
mass transfer that would derive from reaction
(40) alone. Curve 11, likewise, shows the en-
hancement from reaction (54) alone. Curve 111
shows the effect of (40) and (54) occurring simul-
taneously. As anticipated, the increase in total
flux with both reactions occurring is greater
than the sum of the enhancements caused by the
reactions individually (by some 22 per cent in
this case). Parameters used in these trials are
exactly those described in Cases I and 11.

Finally, Fig. 4 shows the normalized chemical
potential profiles across the length of the two
phases. The norm for the chemical potential
vector was chosen as

[l = { ()T (o) }12 (55)
Of special interest is the profile of w),. Fed by
reaction (54) in a positive sense, species D
appears to have “accumulated™ at the interface,
i.e. its potential is higher there than at either
end of the two phases. '
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Fig. 4. Chemical potential profiles near the interface (Case 111).
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NOTATION
A species in reaction (40)

Ay integration constant for transformed
species i in phase .
(A) vector constant of integration
(a) vector of affinities

B species inreactions (40) and (54)
Bj;; integration constant for transformed
species i in phase j
vector constant of integration
c; concentration of species i in phase j
¢; mean concentration of species i in
phasej
C species in reaction (54)

(c) vector of concentrations
(c?) vector of equilibrium concentrations
(¢") defined after Eq. (8)
[coshAn] matrix defined after Eq. (30)

D species in reaction (54)
%; pseudo-binary diffusion coefficient
of species i

[P] matrix of pscudo-binary diffusion
coefficients
[#] identity matrix
(/) molar flux vector

ki
[K]

ly
L
L ai
L
(]

(L]

(M)

[sinh An)
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aforward reaction rate in phase j

matrix of pseudo first order rate
constants

the length of phase j

Onsager phenomenological co-
efficient of diffusion relating
species i and k

Onsager diffusion coefficient of
species A in phasej

Onsager diffusion coefficient of
species B in phase j

matrix of Onsager coefficients of
diffusion

matrix of Onsager coefficients of
reaction

defined by Eq. (44)

vector of molecular weights

matrix of phase distribution co-
efficients

number of species present

number of independent reactions

gas constant

molar reaction rate of species i

matrix defined after Eq. (38)

matrix defined after Eq. (39)

transformation diagonalizing [ W]

transformation diagonalizing [D]~!
(K]

matrix defined following equatio
(30



Interphase transfer with non-equilibrium chemical reaction

T total mass flux, absolute temperature vy stoichiometric coefficient of B in
T, defined by Eq.(51) Eq.(40)
T, dcfined by Eq.(52) v;m stoichiometric coefficient of species
{tanh A] matrix defined similarly as [cosh An] i in rcactionm
(1) the vector () transformed by [S] [v] axr matrix of stoichiometric co-
(uy); the vector (u,); transformed by efficients
(S]; (w) reaction velocity vector
[W] matrix defined following Eq. (7) |
z distance from the interface Subscripts
) { speciesindex
Greek letters j phaseindex
m; dimensionless distance in phasej k species index
A" reaction-diffusion length m reaction index °
A%, rootof eigenvalue m in phasej
(A*]* matrix (W] in normal form Superscript operators
(A]? matrix [A*]2in dimensionless form —1 matrix inversion
[A] matrix defined similarly to [cosh An] T matrix transposition
o defined by Eq. (45) —T commutative inversion and trans-
wi; chemical potential of species i in position
phasej
() vector of chemical potentials Operators
(me); chemical potential vector at outer V  gradient operator
boundary of phase j V dimensionless gradient operator
(mo) vector defined after Eq. (38) V- divergence operator
v, stoichiometric coefficient of 4 in V?  Laplacian operator
Eq. (40) V? dimensionless Laplacian operator
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