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Network ecology

In network ecology one constructs and analyzes
topological models to understand the intricacies of
material and energy flows within ecosystems. These
models (i.e. networks) consist of compartments
(nodes) that contain a designated form of mate-
rial or energy, the flows between these compart-
ments, and those between the compartments and the
external world. Emphasis is on the analysis of the
constructed networks. The term that is most often
associated with the practice of this discipline iseco-
logical network analysis (ENA; also calledecosys-
tem network analysis). In actuality, the method is
more than a single analysis. ENA includes sev-
eral algorithms designed to aid the understanding
of the flow structure of the network and, by infer-
ence, the corresponding ecosystem. These algorithms
are particularly valuable to ecologists in categorizing
compartments and groups of compartments, defin-
ing indirect relationships between compartments, and
indexing system-level attributes. This entry intro-
duces the reader to network ecology and ecosystem
network analysis in the following ways:

1. It familiarizes the reader with the origins of
network ecology and ENA, and explains the
construction of trophic flow networks.

2. It describes two commonly used software pack-
ages for network analysis.

3. Using one of these packages as a guide, it de-
scribes a selected group of algorithms with spe-
cial attention on system-level attributes.

4. It discusses both the opportunities beyond the
analysis of trophic dynamics and the limitations
and concerns associated with the technique.

Origins

Although the use of networks to describe the flow
structure ofecosystems dates to the first half of the
twentieth century [6], the use of formal algorithms
in what is now called ecological network analysis
did not begin to develop until the 1970s [7]. At
that time it became obvious that mechanical sim-
ulation modeling was limited in its capacities to
represent actual ecosystem dynamics [10]. In the
light of this conclusion, the Scientific Committee
on Ocean Research (SCOR) of the United Nations

formed Working Groups 59 (Mathematical Models
in Biological Oceanography) and 73 (Ecosystem The-
ory in Relation to Biological Oceanography). These
groups urged ecologists to shift attention from stocks
and biomasses towards a greater emphasis upon the
measurement and analysis of ecological processes in
general, and upon trophic transfers in particular [4].
Out of this movement arose the systematic analysis
of ecological flow networks [18] and the protocols
for network ecology.

Trophic Flow Networks

Trophic flow networks answer two questions: ‘Who
eats whom?’ and ‘At what rates?’. Often, networks
are depicted as box and arrow diagrams, with each
box representing an ecosystem component (e.g. pop-
ulation, guild or detritus) and the arrows connecting
them indicating the directed flows of a particular
medium (material or energy). Also depicted on such
diagrams are various transfers of the system ele-
ments to or from the external world, e.g. primary
productions, respirations and other exports and losses
(Figure 1). With large food webs (greater than about
40 compartments) (see Community food webs), such
graphical representation becomes too complicated to
interpret visually, and one usually resorts to matrix
and vector representations of the network.

How does one put together such a network?
While the magnitudes of some fluxes are available
for most ecosystems, in virtually no biotic commu-
nity have all the transfers been measured directly.
One may combine thebiomass densities (e.g. grams
of carbon per square meter) of the various com-
ponents with tabulated data on physiological ratios,
such as consumption/biomass, respiration/biomass,
assimilation efficiency, etc. Then, with a knowl-
edge of the diet composition, one may estimate
the various flows. Often this is done in spreadsheet
format, to keep running tabs on the approximate
balance of medium around each compartment. Alter-
natively, one may employ one of the software pack-
ages mentioned below to assist with balancing the
network.

Software for Analysis

Two software packages provide calculations for ENA
and are most commonly used by ecologists: NET-
WRK developed by Ulanowicz (http://www.cbl.



2 Network ecology

umces.edu/¾ulan/ntwk/network.html) and
Ecopath developed by Christensen and Pauly (http:
//www.ecopath.org/). Each has undergone mul-
tiple revisions and contains somewhat different algo-
rithms, assumptions, benefits and limitations. NET-
WRK lists output under the following major headings.
Structure Analysis provides matrices and vectors
designed to quantify both direct and indirect relation-
ships of compartments and fates of imported mate-
rial. Trophic Structure Analysis provides information
about the food web in the context of Lindeman’s
trophic structure [8].Biogeochemical Cycle Analysis
evaluates the characteristics of cycles within the sys-
tem. Information Analysis focuses on system-level
attributes characteristic of the growth and develop-
ment of the system.

Ecopath is an alternative application for network
analysis. (Its Windows versions may be considered
more user friendly than NETWRK.) Ecopath was
intended for application to fisheries, as reflected
by some of its terminology [2]. Ecopath includes
some of the same algorithms as NETWRK, but
also exhibits some differences. In particular, the
information needed to begin calculating flows is
somewhat different. In NETWRK all flows are pro-
vided as input, whereas in Ecopath the flows are
often calculated from ratios, proportions and biomass
information.

Selected Network Analysis Algorithms

ENA is based on the premise that network represen-
tations may be so complex as seemingly to defy ratio-
nal analysis. With mathematical tools one can glean
highly useful insights, at several levels of resolution,
into the functioning of the ecosystem. Selected anal-
yses are summarized in this section as they appear
in NETWRK. Some of the analyses provide insight
into how components inter-relate, and some refer to
system-level attributes. These are by no means the
only analyses that can be employed, nor the only
ways they can be used.

A total contribution matrix is computed in the
structure analysis. It is used to evaluate the frac-
tion that any compartment’s throughput (i.e. total
flow into or out of the compartment) contributes to
any other compartment’s activity. This contribution
is derived from the matrix of exchanges among the
compartments. The matrix coefficients represent con-
nections between compartments that may be either

direct or indirect. That is, no direct connection is
necessary for a contribution to occur. For example,
as shown in Figure 1, zooplankton are seen to eat
phytoplankton. The connection between fish larvae
and phytoplankton is indirect, however, and is medi-
ated by intermediate feeding by zooplankton. The
matrix includes the relative contributions of both the
direct connections (e.g. the fraction of production
from phytoplankton to zooplankton), as well as the
indirect connections (e.g. the fraction of production
from phytoplankton to fish larvae).

The total dependency matrix as calculated in
structure analysis evaluates the fraction of a com-
partment’s throughput that resided at some point in
another compartment. As such, this analysis provides
a mirror to total contribution. It can be used to assess
the extended diet of consumers.

Through a series of vectors and matrices, input
environs analysis computes the contributions of each
import to other system flow. Each import is con-
sidered separately. This analysis could be used, for
example, to determine the fate of primary production
from either benthic diatoms or phytoplankton as it
passes through and out of the ecosystem (see Benthic
ecology).

Algorithms for trophic structure analysis provide a
formalized description of energy flow (sensu Linde-
man [8]). Primary production and detritus formation
are considered to be trophic level 1 activities. Her-
bivory and detritivory are considered to occur at
level 2, and primary carnivory acts at level 3. Higher
trophic levels represent higher levels of carnivory.
Matrices and vectors are assembled from computa-
tions of the various flows at each level (i.e. feeding,
detrital production, respiration, import and export).
These could be portrayed as a flow diagram of canon-
ical (i.e. integer) trophic levels (Figure 2). Individ-
ual taxa, however, may feed across these canonical
trophic levels. The effective trophic level of each
consumer is determined from the distribution of the
trophic levels of its various prey or diet. Thus, a
population that feeds as a herbivore for half of its
trophic needs (at level 2) and as a primary carnivore
for the other half (at level 3) would have an effective
trophic level of 2.5.

Biogeochemical cycle analysis evaluates the nature
of flows associated with cycles within the net-
work [12]. A cycle is a series of transfers that,
in combination, pass material from a compartment,
through one or more other compartments, and return
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Figure 2 The trophic chain corresponding to the network in Figure 1. Percentages in the boxes represent the effective
trophic efficiencies. Units of flows and numbering of the compartments are the same as in Figure 1. Reproduced by
permission of the Ecological Society of America; from Baird and Ulanowicz (1989), The seasonal dynamics of the
Chesapeake Bay ecosystem,Ecological Monographs 59, 329–364

material to the original one. In fact, this is a positive
feedback or autocatalytic loop. The transfer within a
cycle that has the smallest flux is called the weak
arc, and a group of cycles sharing the same weak
arc is called a nexus. One may infer that the weak
arc is potentially the controlling flow within a cycle.
Thereby, all cycles in a nexus share a common con-
trol. In the example shown in Figure 1, a cycle
exists as the following: carbon is passed from par-
ticulate organic carbon (POC) (compartment no.35)
to attached bacteria (no.2) to zooplankton (no.8) and
back to POC. The smallest flux is the consumption
of bacteria by zooplankton, and this is designated the
weak arc. There is also a cycle from 35 to 2 to 8
to ctenophores (no.9) and back again to 35, and its
smallest flow is from 2 to 8. The two cycles form
a nexus. The cycling of carbon through both cycles
may be controlled by their common weak arc. If all
flows within the cycles were to be reduced by the
amount in flow from bacteria to zooplankton, then
both cycles would be broken. If zooplankton feed-
ing were to increase, then one might also infer that
both cycles would have greater flow (see Nutrient
cycling).

As cycles may have different lengths (i.e. different
numbers of transfers per cycle) and quantities of flow,
the system is characterized not only by the number of
cycles, but also by the distribution of flow according
to cycle length. The total flow associated with these
cycles represents cycled flow. This summed flow
can be compared with the total flows in the system
(i.e. total system throughput equals the sum of all
inputs, outputs, and interactions). The cycled flow as
a fraction of total system throughput is commonly
called theFinn cycling index [5].

Information analysis consists of a set of
whole-system indicators that reflect those agencies

potentially responsible for changes in network struc-
tures [13]. These indices stem from the role of chance
and historical contingency in effecting change.
Whenever such indeterminacy is accompanied by
indirect mutualism, as one might encounter in any
autocatalytic configuration of processes (i.e. positive
feedback loops or cycles), then the resulting system
dynamics can depart significantly from conventional
scenarios. Ulanowicz [15] argues that an autocatalytic
configuration affected by chance disturbances can
exhibit a host of attributes that, taken as a whole,
portray a nonmechanical system response. Such
attributes include selection, growth enhancement,
symmetry breaking, centripetality of resources,
inducement of competition between autocatalytic
clusters, and partial autonomy.

The combined effects of such autocatalytic behav-
ior can be both extensive (size-dependent) and inten-
sive (size-independent) in nature. As for the exten-
sive effect of autocatalysis, it is simply to increase
the overall level of system activity. Intensively (or
topologically), the result of indirect mutualism is to
prune the web of flows in a way that reinforces
those links that most effectively participate in the
autocatalytic scheme. The extensive effect can be
quantified readily by summing up the magnitudes of
all the existing trophic exchanges into the total system
throughput,T.

The effect of pruning is a little more difficult
to quantify; fortunately, information theory is useful
here. As a system is pruned, it becomes progres-
sively more constrained. That is, on average each
compartment communicates with fewer other com-
partments at greater relative amplitudes. In infor-
mation theory, such focus upon a few outcomes is
quantified in a negative fashion. That is, one begins
by quantifying the maximal complexity,H, that a
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collection of processes can exhibit as the famil-
iar Shannon–Wiener index applied to the individual
flows (see Diversity measures). However, these pro-
cesses are not randomly construed. Rather they are
constrained by any number of biotic mechanisms to
communicate in a particular pattern. The amount by
which the constraints encumber the potential com-
plexity, H, is called theaverage mutual information
(AMI).

The observation that autocatalytic activity can
be both extensive and intensive prompts one to
scale the last two dimensionless (intensive) mea-
sures by the extensive measure,T. When network
complexity has been scaled byT, the result (T ð
H) is called the system capacity,C. Once the
AMI has been scaled similarly, the ensuing quan-
tity is called the system ascendency,A. It can be
demonstrated thatC ½ A ½ 0. This set of inequalities
insures that the differenceC � A always remains non-
negative and is called the system overhead, denoted
by . In contrast to the ascendency, which mea-
sures the amount of complexity that is expressed
as constrained flow structure, the overhead assigns
a number to the residual flexibility that the system
retains.

These various indices provide an investigator with
ways to gauge and characterize system changes.
For example, when a system is perturbed, a fre-
quent result is that the ascendency falls abruptly.
That is, one can quantify the negative impact of
a perturbation at the level of the whole system
in terms of the consequent drop in ascendency.
Furthermore, one can define the well-known pro-
cess of eutrophication as any response to system
enrichment that increases system ascendency via
an increase inT that more than compensates for
a drop in AMI [14]. This quantitative definition
allows one to distinguish between simple enrich-
ment (which does not induce a drop in AMI) and
the less desirable circumstance, eutrophication (which
does).

These indices have been extended to incorporate
other aspects of ecosystem ecology. One can also
use the relationships amongC, A and  to help
quantify what until now have been the anecdotal
concepts of ecosystem health [9] and integrity [16].
In brief, A represents the level of system perfor-
mance, or how healthily the community seems to
be functioning. While overhead might appear at first
to be a measure of dysfunction, one notes that

some degree of disorganization is necessary if a sys-
tem is to adapt to unforeseen disturbances. Whence,
 becomes a surrogate for the system’s poten-
tial resilience in the face of novel perturbation. As
integrity requires both that a system perform well and
that it remain robust in response to injury, the sum
of the ascendency and the overhead,C, becomes an
appropriate measure of ecological integrity. The four-
dimensional counterparts toA,  andC follow from
information theory and have been used to evaluate
time-dependent change [11]. Using another modifi-
cation of the indices, one is able to pinpoint those
flows that limit nutrients to other parts of the food
web [17].

NETWRK and Ecopath share some analyses, but
not all. The Trophic Structure Analysis and Informa-
tion Analysis sections are common to the outputs of
both NETWRK and Ecopath. In place of the Structure
Analysis in NETWRK, Ecopath provides a Mixed
Trophic Impact Matrix that gauges the sum of both
positive impacts (e.g. food source or predator of a
competitor) and negative impacts (e.g. competitor or
predator) of each compartment on every other one.
(Actually, such an analysis is also available as a com-
panion to the NETWRK software package.) Instead
of characterizing the cycling structure of the network,
Ecopath focuses on the pathway structure. The num-
ber of different ways in which energy or matter can
flow from a primary producer or prey to a predator
at any trophic level is described. Also, the amount
of primary production needed to support each con-
sumer is calculated. Ecopath provides an omnivory
index that calculates the variance of the trophic lev-
els of a consumer’s diet. Omnivores that feed over
several levels have a higher index than consumers
that feed over fewer levels. Finally, note that Eco-
path includes sensitivity analyses and numerous aids
for the user.

Beyond Trophic Networks

Most network studies have focused on trophic flows,
but other kinds of material exchanges can be stud-
ied in a similar manner. Nutrient cycles have also
been analyzed [3, 5]. Although the same software
can be used to perform nutrient analyses, some
results pertaining to nutrient cycles become difficult
to interpret because of differences that may exist
between nutrient cycle and trophic network struc-
tures. In nutrient cycling networks, the emphasis
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on inorganic or abiotic forms of the nutrient may
cause the construction of a network with a greatly
aggregated food web. This restricts the application
of the trophic structure and information analyses.
Also, carbon cycling in trophic networks generally
involves only organic forms (e.g. organisms or detri-
tus) with carbon dioxide being outside the system
(see Forest carbon cycling). Nutrient cycle networks
may include several inorganic and organic forms as
compartments, changing the meaning of the cycling
indices.

Concerns and Limitations

Perhaps the most important source of concern for
network analysis is the lack of data with which to
construct networks. Each compartment must be iden-
tified by its standing stock and by its connections
with its environment. There is the qualitative concern
that each connection be properly positioned (e.g. are
all food items represented?), along with the quan-
titative concern that the values for standing stocks
and flows are appropriate. Some flows may have
been derived from more than one parameter, and an
estimate is needed for each parameter. Direct mea-
surement of each stock, flow or parameter is rare. It
is more likely that some large fraction of the val-
ues will come from various literature sources, and
are general estimates. The consequences of using
information from such sources are rarely assessed.
Furthermore, little evaluation is made of the ramifica-
tions ofstochasticity or uncertainty upon the network
analysis.

Because ENA is not a single analysis, or even
a single class of algorithms, it is difficult to dis-
cuss the issue of sensitivity in a blanket fashion.
One general limitation is that most of the analyses
are based on linear algebra (see Matrix popula-
tion models) and, therefore, are not prone to the
complexities associated with nonlinearities. Different
analyses are sensitive to different aspects of model
structure. The two aspects of structure are (a) the
number and position of flows and compartments
(topology) and (b) the magnitudes of flows and com-
partments. Both are important in almost every net-
work analysis. The Biogeochemical Cycle Analysis
of NETWRK and the Pathway Structure Analyses of
Ecopath are, however, generally more dependent on
the number and position of flows and compartments.

Other analyses are more sensitive to the quantities
of flow.
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