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Abstract

In his 1983 book, Adaptability, Michael Conrad explored the quantitative relationship between adaptability and
adaptation using the conditional ‘entropy’ of information theory as his primary tool. The conditional entropy can be
used to estimate the connectivity of the network of system exchanges, a key indicator of system stability. In fact, the
May-Wigner criterion for the stability of linear dynamical systems can be recast using the conditional entropy to help
identify the boundary along which adaptability and adaptation are exactly in balance—the ‘edge of chaos’ as it is
popularly known. Real data on networks of ecosystem flows indicate that in general these systems do not exist nigh
upon the edge of chaos, but rather they populate a much wider ‘window of vitality’ that exists between the realms
of chaotic and deterministic dynamics. It appears that the magnitudes of network flows within this region are
distributed in power law fashion. The theory also suggests that an absolute limit to the connectivity of natural
self-organizing systems exists, at approximately 3.015 effective connections per node. © 2002 Elsevier Science Ireland
Ltd. All rights reserved.
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1. Introduction

Michael Conrad’s (1983) tome, Adaptability, is
notable both for its ecological vision and for the
attention he paid to hierarchical interactions. He
attempted to formalize what many ecologists long
had been preaching, namely that emphasis in
biology had too long has been focussed upon the
regular, the mean, and the predictable, practically

to the exclusion of the noisy, the stochastic, and
the indeterminate inherent in the system. These
latter attributes often are regarded as useless and
undesirable characteristics to be overcome or ob-
viated in order to discern more clearly the under-
lying dynamics. Even contemporary evolutionary
theory appears to emphasize adaptation over
adaptability. To help redress this imbalance, Con-
rad intentionally skewed his narrative to focus on
adaptability, for he believed, that as much, if not
more, of the evolutionary story lies in the nature
of systems noise and irregularity as in any pur-
ported dynamical regularities.
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Not that Conrad neglected the necessary role of
adaptation in evolution, for he made it quite clear
that both regularity and chance were necessary
elements for system survival and persistence. The
problem arises, however, that within any given
level, the constraints that keep a system adapted
to prevailing circumstances usually interfere with
its freedom to adapt to novel changes in those
conditions. That is, at any specified level, adapta-
tion and adaptability are in conflict, yet some
degree of each is necessary for persistence. Con-
rad resolved the conflicting needs for both traits
by introducing a process he called ‘hierarchical
compensation’— the idea that adaptation could
predominate at one level and adaptability pre-
dominate at another level.

I am not prepared to consider in quantitative
fashion the trans-hierarchical nature of compensa-
tion that Conrad outlined, but I note instead that
neither constraint nor freedom can be excluded
from any particular level of the hierarchy. What I
wish to elaborate here is the balance between
adaptability and adaptation as it may be con-
strained within any single level. How does one
identify the limits to freedom at any level— the
‘edge of chaos’ as it were (Langton, 1992)? While
this problem has received notable attention as it
pertains to linear dynamical theory (May, 1972),
the results have not been as broadly applicable or
as definitive as might have been desired. There-
fore, I wish to approach the problem from a
different perspective— the connectivist viewpoint
of someone interested in informational con-
straints. Furthermore, I will employ as my pri-
mary tool in this inquiry the same one that
Michael Conrad used throughout his book,
namely the statistical measure called the condi-
tional ‘entropy’1.

2. Quantifying adaptability

In the narrower context of connectivism, adapt-
ability is related directly to the connectivity of a
system, because the number of pathways between
any two arbitrary components rises dramatically
as a function of the degree to which the system is
connected. Should a novel disturbance disrupt
any subset of pathways connecting two arbitrary
nodes, a system with high connectivity will retain
more pathways on average over which compensa-
tory flow or communication can occur (Odum,
1953). Whence a quantitative measure of connec-
tivity should serve as a reliable surrogate for the
potential for adaptability.

Regarding the connectivity of natural systems,
Wagensberg et al. (1990) have remarked that
there seems to be a ‘magic value of about 3 bits
per emitter as an actual upper limit to connectiv-
ity in real stationary ecosystems’. Their observa-
tion is consonant with that of Pimm (1982), who
noted that the connectivity of his collection of
ecosystem food webs averaged about 3.1. Kauff-
man (1991), in treating the stabilities of genetic
networks, also related how persistent networks
usually possessed between two and three connec-
tions per node.

In contrast to these, more or less definitive
limits, May’s analysis of linear dynamical systems
provided no absolute upper bound on connectiv-
ity. Rather, he formulated a hyperbolic relation-
ship that has become known as the May-Wigner
stability criterion. It states that the average inten-
sity of interaction between system components
must be less than the reciprocal of the square-root
of the average number of connections per node
(May, 1972). I wish to explore whether or not
May’s analysis can be recast using the quantita-
tive language that Conrad used to describe adapt-
ability so as to achieve a more definitive statement
of the necessary balance between freedom and
constraint, or between adaptability and adapta-
tion. To begin the search, I turn to the formalisms
of information theory (Rutledge et al., 1976).

From a connectivist viewpoint, the upper
bound on the options available for system re-
configuration is given by the diversity of the net-
work connections (Ulanowicz and Norden, 1990).

1 I reluctantly follow the unfortunate convention in statistics
of referring to uncertainty as ‘entropy’. I emphasize, however,
that no connection with thermodynamical entropy is thereby
implied.
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Hence, if Tij represents the flow from component
i to node j, then the Shannon formula for the
diversity of systems processes can be written as

H= −�
i, j

�Tij

T
�

ln
�Tij

T
�

where T=�p,qTpq, is the total flow occurring in
the system, and ln signifies the natural logarithm.
Not all of this diversity is available for adaptabil-
ity, however, as a certain amount is encumbered
by internal system constraints and must be sub-
tracted from H. This amount may be estimated by
comparing the apriori and aposteriori probabili-
ties of flow from i to j. The probability that a
quantum of medium is leaving i is estimated by
the quotient �kTik/T, while the probability that a
quantum is entering j is reckoned as�mTmj/T. If i
and j exert no constraint upon each other, then
the apriori probability of transfer from i to j
would be the simple product of these two estima-
tors, or (�kTik�mTmj)/T2. But the observed (apos-
teriori) probability of transfer from i to j under
the influence of existing constraints is Tij/T.
Whence from information theory, one may mea-
sure the constraint that i and j exert upon each
other as the difference between the logarithms of
these two probabilities. When this logarithmic
difference is weighted by its corresponding aposte-
riori probability and the result is summed over all
possible combinations of i and j, the outcome is
known as the average mutual information, which
here takes the form

I=�
i, j

�Tij

T
�

ln
� Tij T

�
k

Tik�
m

Tmj

�
.

From information theory it can be proved that
H�I�0, whence one may subtract I from H to
yield a nonnegative remainder called the condi-
tional entropy2, �,

�=H−I

�= −�
i, j

�Tij

T
�

ln
� Tij

2

�
k

Tik�
m

Tmj

�
.

This conditional entropy quantifies the degrees
of freedom that the system possesses. Further-
more, the connectivity per unit node can be calcu-
lated as an explicit function of � in the form
m=exp(�/2), where m is the effecti�e number of
connections per node (Ulanowicz 1997a). To con-
vince oneself that m captures the connectivity per
unit node, the reader should try substituting the
values of Tij shown in Fig. 1 into the formulae for
m and � to discover that m equals exactly 3.0 in
this instance. The reader is invited to test any
other network configuration wherein, (a) the flows
are all equal in magnitude and (b) the same
number of links enters and leaves each node so as
to convince oneself that the correct integer is
always generated. Whenever either (a) or (b) does
not hold, the value of m will not be an integer,
but instead will denote the effecti�e number of
links per node. For example, when the formulae
for m and � are applied to the network in Fig. 2,
the resulting m=1.023. This makes intuitive
sense, because, despite the fact that three links
enter and leave each node, two of them are incon-
sequential in magnitude in comparison to the one
dominant flow.

The properties of the Shannon entropy dictate
that � will increase whenever the magnitudes of
the flows are more evenly distributed. It follows
that for any topological configuration of flows, �

Fig. 1. Equiponderant transfers among four hypothetical com-
partments. Topological connectivity is calculated to be exactly
three links per node.

2 This form of the conditional entropy is not identical to the
one used by Conrad. He used the entropy of the compartmen-
tal throughflows as his reference point, whereas, my reference
point is the joint entropy. One is free to specify the reference
point with respect to which any entropy will be reckoned.
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Fig. 2. Transfers among four hypothetical compartments. To-
pological connectivity equals exactly 3.0 links per node, but
effective connectivity (m) is calculated to be only 1.023 links
per node.

treat the statistics of networks with fewer than at
least seven elements, so I chose to construct net-
works with dimensions corresponding to each in-
teger from 10 to 60. For each dimension, ten trials
with approximate topological connectivities rang-
ing evenly from 0.1 to 1.0 were constructed, yield-
ing a total of 500 trial networks.

Each network was constructed in three passes.
One begins the construction of a network of
dimension n by setting each of the n2 possible
links to zero. Then each possible link is visited in
turn, and if a random number generator yields a
number less than the specified nominal topologi-
cal connectivity assigned to that trial, the value of
the link is reset to one. This specifies the topology
of the network (recorded as zeroes and ones in
what is known as the adjacency matrix) that has a
topological connectivity (m*) close to the specified
nominal value. On the final pass each entry with a
one is visited and assigned a magnitude between
zero and one using the random number generator.
The effective connectivity (m) of this weighted
network can then be calculated.

When the 500 random networks thus generated
were plotted on a scatter diagram of m versus m*,
they fell close upon a line having a slope of 0.832.
The first 359 such points are shown plotted in Fig.
3. That is, the effective connectivities (m) of ran-
domly assembled flow networks are closely pro-
portional to their topological connectivities (m*).

We now wish to compare this linear distribu-
tion with how a collection of observed ecosystem
networks fall on the same plot. For this purpose
the author collected a set of 41 ecosystem net-
works. They ranged in dimension from 4 to 125
and were taken from 25 separate projects in which
a host of investigators participated. They repre-
sent ecosystems from a multitude of different
habitats—aquatic, marine, estuarine, wetland,
and terrestrial. These 41 networks are shown in
Fig. 4 plotted on the m*–m plane. Towards the
lower-left-hand corner of Fig. 4 one notices that
the lower-dimensional ecosystem networks lie
close to the extrapolated line defined by the ran-
dom networks. The higher-dimensional ecosystem
networks had higher topological connectivities
(m*), but their effective connectivities (m) fell
radically below their counterparts among the ran-

will achieve its local maximum, �*, whenever all
the flows have exactly the same value. For obvi-
ous reasons, �* is called the topological condi-
tional entropy, and �*��. The corresponding
value m*(�m) is called the topological connec-
tance per node.

Of course, networks of actual systems will al-
most always be open (contain non-trivial ex-
changes with the external world), unlike the
closed examples presented in Fig. 1 and Fig. 2. It
is not difficult to amend the formulae for �, �*,
m and m* to yield values for open networks that
accord with intuition. The amended formula is
given in the Appendix A.

3. Adaptabilities of hypothetical and actual
networks

Having quantified system adaptability using the
measures just defined, we now ask how the adapt-
abilities of observed networks of ecosystem ex-
changes compare with randomly assembled
networks? Randomly constructed networks hav-
ing randomly chosen magnitudes of flow should
possess the highest adaptabilities possible. Such
networks are rather easy to construct. One first
specifies both the dimension of the network and
the approximate level of topological connectivity
that one wishes the system to have. Ecosystem
networks found in the literature usually consist of
about 4–60 compartments, but it is difficult to
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Fig. 3. The topological connectivities (m*) and effective connectivities (m) of 359 randomly constructed networks plotted on the m*–m phase plane. Combinations
above the dotted line (m=m*) are mathematically infeasible.
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dom networks. Presumably, the differences in ef-
fective connectivities are due to the organizational
constraints inherent in the ecosystem networks,
which represent, at least in part, adaptation by
the constituent populations both to the external
environment and to the other populations within
the system.

4. The balance between adaptability and
adaptation

That ecosystem networks should show evidence
of organizational constraints is hardly surprising,
but the wide discrepancy between the effective
connectance of ecosystem networks and their ran-
dom counterparts prompts one to ask where
ecosystems stand with respect to the tradeoff be-
tween degrees of freedom (adaptability) and in-

herent constraints (adaptation)? In other words,
exactly where does the ‘edge of chaos’ lie on the
plot of m versus m*? Conrad suggested that
adaptability plays a larger role than adaptation in
the evolution of organisms (and presumably of
ecosystems as well). His opinion would tend to
support the conjecture by Langton (1992) and
Kauffman (1995) that living systems teeter upon
the brink of chaos.

As mentioned above, May (1972) proposed a
criterion that delimited the transition between sta-
ble and unstable linear systems, or the chaotic and
the well-behaved, for randomly assembled linear
dynamical systems. He did so by invoking Wign-
er’s criterion that is written in terms of the topo-
logical connectance and the strength of
interaction. To be more precise, the test for a
stable system is whether

a� (nC)−1/2

Fig. 4. Plot of randomly connected networks (small dots) along with 41 observed ecosystem networks (triangles) on the m*–m phase
plane.
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where a is the average strength of interaction; n,
the system dimension; and C, the topological
connectance of the system. It was shown above
that the topological connectance, m*, is a func-
tion of the conditional entropy of the topologi-
cal connections (�*) and serves as an intuitive
surrogate for the product nC. This allows us to
rewrite the criterion as

a� (m*)−1/2.

The actual ‘edge of chaos’ or border between
the domains of the stable and the unstable will
be crossed whenever the inequality is replaced
by an equality, i.e.

a= (m*)−1/2 (1)

If a could somehow be expressed in terms of
m and m*, then the May-Wigner criterion
would describe the transition between the stable
and unstable domains of the m–m* plots. With
an eye on this possibility, we define a to be that
constant value, which, when it multiplies each
input fraction T*/�iTij, or output fraction T*/
�iTij, in the formula for �*, yields the corre-
sponding value of �. That is,

�= − �
n

i=1

�
n

j=1

�aT*
T
�

ln
� a2T*2

�
p

Tpj �
q

Tiq

�
�= −2a ln(a)−a �

n

i=1

�
n

j=1

�T*
T
�

ln
� T*2

�
p

Tpj�
q

Tiq

�
or

�=a(�*−2 ln[a ]).

Substituting the definitions of m and m* in
the last formula recasts it as

ln(m)=a(ln[m* ]− ln[a ]).

The strength of interaction, a, can be ob-
tained from either of the last two transcendental
equations by any number of iterative solution
techniques. Doing so, we discover that a, for the
network in Fig. 1 is 1.0 (by definition), while
that for the network in Fig. 2 is approximately

0.003345 (a value that is logarithmically central
to 0.997, 0.002, and 0.001).

Substituting the May-Wigner demarcation Eq.
(1) into this last equation eliminates the parame-
ter a and defines the separatrix between the sta-
ble and unstable domains of the m–m*
quadrant as,

ln(m)=
3ln(m*)
2(m*)1/2 (2)

The solution couplets to transcendental equa-
tion Eq. (2) are depicted on Fig. 5, plotted on
the m–m* plane along with the random and
observed networks.

Fig. 5 exhibits several interesting features.
First of all, the observed networks show no evi-
dence of crowding upon the ‘edge of chaos’.
Most networks fall well between the separatrix
and the horizontal line, m=1. One concludes
that ecosystems do not appear to exist at the
edge of chaos, but rather they inhabit a broader
‘window of vitality’, remaining sufficiently re-
moved both from the edge of chaos and from
the ‘frozen’ or maximally constrained configura-
tions represented by the line m=1.

Secondly, one notices that the separatrix ex-
ceeds the diagonal line m=m* for all values of
m* below 2.25. Since, m�m* for all possible
network configurations, one may infer that all
networks with m*�2.25 are inherently
stable. Kauffman (1991) reported what appeared
to be a transition point as the dimensionalities
of his genetic networks were reduced. Most of
the networks he probed were unstable until a
point somewhere near two connections per
node, below which they became predominately
stable.

Lastly, one’s eye is drawn to the very flat
nature of the separatrix beyond the value of ca.
m*=5. In fact, the boundary appears to curve
downwards beyond m*=8. That this in fact is
the case can be demonstrated analytically. Dif-
ferentiating Eq. (2) with respect to m* reveals
that a global maximum for the separatrix exists
at m*�7.389, at which point m takes on the
value e (3/e), or ca. 3.015—very close to the
‘magical number’, three.
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Fig. 5. Randomly constructed and observed networks plotted along with the boundary (tightly dotted line) that separates the
domain of stable networks (below) from unstable ones (above).

5. Discussion and conclusions

Perhaps the first issue suggested by these results
is how they reflect on the popular ‘edge of chaos’
hypothesis. It is relevant that the ‘edge’ hypothesis
arose out of purely algorithmic models. Just as
true randomness can be only approximated by
algorithms, so also the ‘knife-edge’ character of
the transition between the deterministic and
chaotic could possibly be an artifact of an entirely
mechanically synthesized creation. There is strong
suspicion abroad that living systems cannot ade-
quately be addressed by explicit algorithms (Pop-
per, 1982; Rosen, 1999; Salthe, 1993; Ulanowicz,
1997b), and the data tend to support these
doubts.

The results bear mixed implications for Con-
rad’s suggestion that adaptability predominates

over adapted (efficient) behavior. On the one
hand, if adaptability were to play the dominant
role in evolution, one might expect that systems
indeed would evolve to retain as much adaptabil-
ity as continued existence would allow. That is,
they would crowd upon the edge of chaos. The
data seem to indicate that such is not the case. On
the other hand, neither do the actual systems
crowd the m* axis, which would have indicated
an unrestrained drive towards determinate behav-
ior. That real systems do give evidence of non-me-
chanical behavior argues for the necessity of
adaptability as a very vital aspect of evolution.
Furthermore, our approach, constrained as it is to
a single level, has not begun to probe the implica-
tions of Conrad’s ‘hierarchical compensation’,
whereby, adaptability and adaptation segregate
themselves at different levels or among different
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components—much like most of the human body
is a marvel of adaptation, while the central ner-
vous system exhibits extraordinary adaptability.

The evidence seems quite clear that networks of
ecosystem processes are not assembled randomly
in the manner described above. Although only the
random uniform distribution was used in this
exercise, there is good reason to believe that the
application of any well-behaved probability distri-
bution (one that can be normalized and possesses
a definite mean) will give similar results (Ulanow-
icz and Wolff, 1991 Appendix A). As for the
placement of the observed networks in the m*–m
plane, it has been demonstrated how flow magni-
tudes that are distributed according to power laws
cause the networks to draw much closer to the m*
axis (ibid Appendix A). That they distance them-
selves so far from randomly assembled networks
is an indication that adaptational constraints are
very active in shaping ecosystems.

What might be the origin of these organiza-
tional constraints that impart structure to ecosys-
tems? The conventional answer is that natural
selection works to diminish certain processes with
respect to others. It should be noted, however,
that Darwinian selection is always exerted from
outside the system and that it can work directly
only against a feature and can favor others only in
indirect ways. As mentioned in the previous para-
graph, power law distributions seem more appro-
priate for describing how ecosystem flows are
apportioned. The ‘fat tails’ of power law distribu-
tions imply the dominance of the system by a very
few processes. It is a stretch to explain the growth
of these predominate system elements solely in
terms of a mechanism that can act directly only in
a negative way.

It is noteworthy, therefore, that power law dis-
tributions lately have become a popular theme in
self-organization theory (Watts, 1999; Johnson,
2000). The positive feedback or autocatalytic-like
agency inherent in self-organization theory is ca-
pable of exerting selection that directly fa�ors the
growth of participating elements and acts internal
to the system itself (Ulanowicz, 1997b). Biologists
have been more than reluctant to allow the selec-
tion generated by the self-organization process as
a legitimate parallel agency in the evolutionary

narrative (usually wielding Occam’s razor to ex-
cise it from any discussion). Conventional evolu-
tionary arguments are growing progressively more
indirect and unnaturally mechanical (Dennett,
1995), however, and there comes a point at which
Occam’s razor eventually cuts those who apply it
with such abandon (Ulanowicz, 2001).

Conrad (1985) was never enamored of the
strictly mechanical, and often criticized the artifi-
cial intelligence endeavor for being too exclusively
algorithmic. It was his Adaptability that first
opened this author’s eyes to the possibility that a
causally open universe could be just as amenable
to quantitative description as one that is closed. It
is my fervent hope that this exercise will stand as
a fruitful exploration of the directions that
Michael Conrad’s extraordinary intellect helped
to pioneer.
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Appendix A

The conditional entropy, �, used to calculate
the connectance of closed networks must be
modified to apply to open systems. The problem
is that when dealing with open systems, it be-
comes necessary to define artificial nodes to serve
as the origin of inputs to the system and the sinks
for useful exports and dissipations. The conven-
tion has been to define the nodes 0, n+1 and
n+2 to accommodate these functions, respec-
tively, (Hirata and Ulanowicz, 1984). The prob-
lem is that these artificial nodes emit and receive
large numbers of flows to and from the whole
system. To treat them exactly like the other sys-
tem nodes would impart a positive bias to the
average number of nodes per link. To avoid such
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bias, the external exchanges are never regarded
from the inward-facing perspective of the artifical
nodes, but rather are counted twice from the
outward-directed perspective of the compartments
in the system with which they communicate. The
entropy thus modified, denoted by � �, looks like

� �= − �
n

i=1

�
n

j=1

�Tij

T
�

ln
� Tij

2

�
p

Tpj�
q

Tiq

�
−2 �

n

j=1

�T0j

T
�

ln
� T0j

�
p

Tpj

�
−2 �

n

i=1

�Ti, n+1

T
�

ln
�Ti, n+1

�
q

Tiq

�
−2 �

n

i=1

�Ti, n+2

T
�

ln
�Ti, n+2

�
q

Tiq

�
The reader is urged to substitute the flow mag-

nitudes and topology shown in Fig. 6 to ascertain
that this formula yields the intuitive connectivity
of exactly 3 links per node. He/she is further
invited to test other open network configurations

to assure oneself that � � yields results that accord
with intuition.
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