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11.1 
A New 

to be ever more SelE-rlCe 

istic exercise begun to wane. Enlightenment assumption 
atomism appears to be contradicted in all too many instances and it is 
increasingly evident that relationships can track better the behavior of complex 
systems than can the component elements by themselves. Nowhere has this been 
more obvious than in study ofecosystems, where nehvorks ofrelationships have 
been employed to describe ecosystems for more than seven decades ~2,3]. It is hardly 
surprising, then, that scientists in other fields have turned toward nehvorks as 
relational metaphors to represent the broader dynamics of nature and society [4J. 
The overwhelming influence computational and communications networks 
exert on contemporary life only underscores the importance of describing and 
understanding networks. 

It should be remarked, however, that the recent surge in network research has not 
paralleled the historical treatment of ecosystem nehvorks in one important respect. 
Within physics and sociology, work has focused on common graphs, or at most, 
digraphs (ibid.). Ecologists, by contrast, elected from the very beginning to tackle 
ecosystems in terms of weighted digraphs [2]. rne opinion prevalent among physi
cists has been that ecologists are concerned with only a special subclass ofnetworks 
that can be conveniently ignored in order to concentrate on "more general" 
topological forms. It is worth noting that this popular attitude could be mistaken 
and ultimately counter-productive. For example, the strategy known as engineering 
science is one that begins with the most general available descriptions of 
dynamics (such as the full equations of motion) and simplifies as necessary to 
describe the immediate problem the Navier-Stokes equations to describe flow 
in a pipe}. 

That a description of the simple and specific can be abstracted from that of 
most complex and general is the stratagem that be pursued here. focus of 
what follows will be quantification of weighted digraphs. results from this 
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more detailed representation apply afortiori to common graphs and digraphs as 
degenerate corollaries (i.e., by all weights and/or removing arrows). 

11.2 
Entropy as a Descriptor of Structure 

Various forms of the statistical have proven to be useful quantitative 
descriptors of the complexity of [61. Such metrics are especially 
to description of ecological nehvorks, the statistical entropy is a 

logarithmic average (which in turn the geometric mean). Measures in 
ecosystems commonly range over 9 to 12 orders of magnitude, the 
logarithmic mean far more meaningful than a simple average. 

A (and generally unappreciated) advantage of statistical entropies is that 
allow one to extrapolate discrete topological measures into the continuous 

weighted structures [7]. For the node in Figure ILIa has 
topological emanating from it. If are equiponderant, then each 
flow accounts for one-third of the total Therefore, the logarithmic mean 

H piln(pJ, where PI = P2 P3 300/900= 1/3 so that H 1n(3). 
One may an "effective" number of flows as F e1n3 = 3, which in this 
particular instance corresponds exactly to topological count. 

In however, the weights of the can be far from equal, as in 
Figure 11 )b. Here the logarithmic mean fraction, is calculated as -(.OOl)ln(.OOI) 
-(.005)ln(.005) -(.995) In(.995) = .0384, and number of flows thereby 
becomes F eH 1.039. Clearly, simple topological counts can misrepresent what is 
going on in a system. In particular, a count seriously overestimates 
complexity whenever certain edges become which is most of the time 
in natural 

,<O() 

of 

(a) 

Figure 1'1.1 Two nodes, each with three efferent edges (a) of equal and (b) of highly 
disparate magnitudes. 
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prevailing mechanical as determinate structures. Perhaps this is a historical 
consequence of the fact that the earliest networks consisted of electrical circuits, 
which could be analyzed in mechanistic fashion. Whence, the aim in so many 
papers on networks is to uncover a "mechanism" to explain a particular structure. so 
imbued is science in its mechanistic origins. 

While electrical circuits are often complicated, are complex. is nol 
the case with ecological, economic. or social networks, all of which embody demon
strably aleatoric behaviors. The normal way ofdealing with such sbuchlres is to identify 
a set of rules that operate in abstraction from random events, is, the conventional 
dichotomy between chance and necessity. But behaviors in networks do not readily lend 
themselves to such dichotomy. In most networks each node is connected to only a 
subset of other nodes. That is, behaviors are constrained to only particular other 
nodes. Furthermore, contingent behaviors in cannot easily interpreted 
"blind chance," given the constrained, anisotropic directions in which they may act. 
N or can the efferent effects from any node be described as strictly 
of ambiguity in the at anyone time. 
rprw?-""prlt a amalgam of contingency and 

Addressing Both Topology and Magnitude 

Serendipitous]y, the statistical entropy is well-suited to quantify such complexity [9]. 
To see this, one notes that the magnitude of any edge is jointly associated with two 
nodes its origin and its terminus. Accordingly, one may define a joint frequency, 
Pij==- (Tij/L), where Tijis the magnitude assigned to the edge connecting i withj, and· 
T .. is the sum ofall the edge magnitudes. The complexity ofthe network can then be 
represented 

H= 2..:: TU In(Tij) (11.1) 
.. T
lJ " 

As has just argued, this complexity consists of amalgamated constraint and 
freedom. Can the degrees to which each attribute is manifest in any network be 
separately quantified? Toward this end, it is necessary only to calculate the marginal 
sums of the magnitudes as they apply to afferent and efferent edges, respectively 
[10]. That is, let T J Li Tij and Ti Lj H can then be decomposed into two 

non-negative terms, 

H 2..:: 
ij 

where the first term 

- 2..:: TU 1(TiiT..)A- - n -- ( 11.2) 
.. T TT·'J .. ,t. J 
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quantifies the of constraint that structures system, and the second, 

TT; ) (11,3)( Y.I. T·J 

captures the extent of freedom manifest in system [3J. 
To recapitulate, various forms of the statistical entropy can be invoked to 

complexity of a network [6J. Usually, these measures 
applied to static structures, such as Weighted digraphs, however, 
may also pertain to dynamical situations where, for example, the might 
represent physical flows of various In such dynamical situations it is 
now possible to parse the complexity to assess how much of it pertains to internal 
constraints extant \vithin the system and how much can be attributed to residual 
incoherencies or external factors. 

11.4 

Amalgamating Topology with Magnitudes 

is a topological aspect to decomposition just described. In particular, it 
.is easy to demonstrate that term <P can be used to the effective 
number of edges that impinge upon a typical node of a weighted digraph. In the 
'introduction, it was shown how effective number of edges in any collection 
can be calculated as eH

. This generalizes to a network ofinteracting nodes as 
the measure C == e<t>/2, where C is effective number of edges either efferent or 

to a typical node [12).1) The measure C corresponds to the link density 
[13], defined in conventional foodweb analysis as the number of edges divided by 

number of nodes (FjJ:vj. As with the examples in Figure 11.1, this continuous 
measure yields the appropriate result when applied to degenerate 

2], Appendix 
constraint? 
the number of 

defined R == . Just as A and cP are complementary. 
in the algebraic sense sum to yield H, one may Rand C to be 
"orthogonal." For example, if C is considered to measure "breadth" offreedom 
at each node, then one may conceive of R as the "depth" (or "length") of the 
network. In ecosystem trophic networks, R can be shown to equal one greater than 
the number of trophic that are functioning in the ecosystem. 

In summary, any digraph can be characterized by two numbers, a 
network "breadth," C, and a corresponding "depth," R. conventional graph 

corresponds to C R in this scheme property 

1) The factor 1h in the exponent assures that each is not counted twice. 
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Effective Network Attributes 

F= 

in the introductory of overall 
[14J, Because one now has measures both of effective link 

effective number possible to 
homologous "effective" number of quotient N = FIC Here N repre
sents not the actual nodes as defined by but rather the effective number 
of nodes as functionally grouped by that flow structure. N is usually less 
than the actual number ofnodes. because constraints tend to bind nodes that might 
othervvise act independently of each 

As Bersier [7] indicated, conventional measures, such as tbe number 

how complex networks of natural 

the number of roles, 
their weighted homologs in 

",nr.'r1"nr,co meJsures 

conventional definitions 
can become. 

nodes, number of edges, as in 
conventional fashion for 

respectively. Bersier argued counterparts converge more 
to tIle propciiles 
It can even be 

otherwise might remain 

tllan do 

Limits to Complexity 

The common experience is that natural systems tend to increase in complexity 
up to a point, after which they either fall apart due to lack of or 
simplify at a larger scale the aegis of some synchronous dynamic. That 
the complexity of natural appears to be bounded, but question 
remains, ''To what As regards network breadth, anecdotal 
points toward a limit on density in the neighborhood of 
node: Pimm [15], for noted that his collection of food 
links per node, while [16] reported that networks of 
nisms tended to become unstable above about three links per node. Wagensberg 
et al. [17] ,VIote about "magic number 3" as the watershed beyond which 
networks of ecosystem dynamics do not persist. 

In an effort to quantify upper bound on link density, May [18] pointed to the 
Wigner [19] semicircle in reference to network properties. May that 

whenever a S: (nr) system would likely be stable. (a is the strength 
of interaction, n is number of nodes in the system, and r is fraction of 
possible connections that are realized in the given system.) Ulanowicz [20] reinter
preted May's criterion in logarithmiC terms as 

1 ") 3n(C S: ---==-
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where C* is the value of C after all edge magnitudes have been set equal. One may 
demonstrate that C is maximal when C* = e2 so that the greatest C possible, Cm 
becomes 

Cw = em S'! 3.01 

which agrees with the anecdotal consensus. 
(\s for food chain length, is less agreement as to where the limit might lie. 

Pimm and Lawton [21) suggested an upper bound on chain length five transfers 
(R 6). Although individual feeding pathways of length greater than five can 
identified \\rithin feeding networks, the average trophic level at which any compart
ment feeds is four or fewer (e.g., [22)), indicating that the maximum 
effective trophic level for the system should even lower. 

Because metaphor of the network implies that contingency and necessity may 
be deeply entvv'ined in a natural system, Rand C are thus likely to have some close 
relationship with each other. A clue to such coupling can be found in the distribution 
of the quotient a AIH, which is purported to measure the relative of 
organization (23). Whereas a was expected to be liberally distributed over interval 
1 2: a 2: 0, ecosystem networks with greater than 13 nodes as estimated from a wide 
distribution ofhabitats happened to cluster closely around the value a:::::; 0.40 [24). If 
a is nearly constant (calling said constant K), then Rand C are close to being 
functionally related. In particular, it is straightforward to show that for constant K 

(:::::;0.40), 

1- K 
In(C) 2K In(R) 

Whence, the value of R corresponding to Co turns out to be Rw (3.613 exp[61 
e}) ~ 4.383. The bottomline is that large majority ofecological systems have 

an effective trophic length less than 3.4, \vhich may account for why so many 
ecosystems can be reasonably modeled as a trophic cascade [25]. 

Knowing and Rv it possible to calClllate and 
numbers of and flows, It 

4.383 x 3.01 ~ 13.2 nodes and FC') Rw 
results. Combined they imply a given ecological network can possess 

hundreds of actual nodes and thousands of real flows, but from a dynamical 
viewpoint system should be adequately represented by a virtual network having 
at most 13 nodes and 40 flows. As surprising as this conclusion might seem, it 
makes intuitive sense. world economy, for example, consists of some 170 
national sectors and well over 10,000 bilateral international trading partnerships. 
When it comes to managing the global economy, however, most decisions are made 
by the international G8 group. Presumably, the 160 or so economies can 
all be folded into the five remaining virtual nodes in power-Jaw fashion. 2) 

2) This assumes that the value K = 0.40 limit N", for economic systems will differ 
determined from data applies as fronl the 13 estimated for 
well to economic which not ecosystems. 
be the case. It is the 
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A corollary result is that the effective overall complexity of nahlrai ecosystem 
networks remains circumscribed. That is, one does not expect to encounter 
ecosystem networks having an overall complexity much greater than :::::: 3.67 nats. 

The value of Co:::::: 3.01 is basically a theoretical result [26], whereas value 
K 0.4 remains a phenomenological observation. For now, one can only conjecture 
as to sets the balance A and cj) that causes systems to cluster around 
a:::::: 0.4. It would appear that when a is lower than 0.4, manifold opportunities exist 
for autocatalytic cycles to arise spontaneously, and the selection generated by such 
autocatalysis increases because participating autocatalytic to grow 
at the expense of nonparticipating nodes Conversely, a is significantly 
greater 0.4, some autocatalytic will have become too specialized and faU 
vulnerable to short-circuited smaller, cycles as the continue to 
appear [23]. 

An 

l
Example 11.1 
The reader is referred to the trophic network depicted in Figure 11.2, in 
which carbon flows (in mg d 1

) among the 17 components of a tidal 
marsh gut adjoining the Crystal River in Florida [3,28). Substituting the 

Figure 11.2 A weighted digraph of carbon flows (mg m-2 d- 1
) among the principal taxa of a tidal 

marsh gut ecosystem, Crystal River, FL. The linked arrows indicate returns to the detritus 
(compartment #3). After Homer et al. [28], with kind permission from Elsevier. 
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magnitudes ofthe exchanges from figure as the in Eqs. (Eqs. (11.1)
(11.3) yields, 

H = 2.160 nats 

A 0.8761 nats 

and <P = 1.3099 nats, respectively . 
. The degree of order (a = AIH) works out to 0.401, which is very close to 
the mean for the entire collection of networks. The remaining parameters of 
the effective virtual net\:vork thereby become 

R eA = 2.402 roles 

c = = 1.925 flows/node 

HF = e 8.671 effective flows 

and N = R x C 4.624 effective nodes. 
The 2.402 roles translate into an effective trophic length for the net\:vork of 

1.402. 
The low values F and N indicate the Crystal River marsh 

ecosystem network is relatively simple, as is readily apparent from the many 
parallel functional pathways evident in 11.1. 

community is too complicated to depict as a flow diagram, but a system 
description and the raw data used can found in ATLSS [29]. 

Evaluation of H, and <P according to 

Example 11.2 
The second example is one of the most highly articulated ecological 
networks estimated to date. network is of the shallow water marine 
ecosystem of Florida Bay during dry season. It consists of 125 
compartments with 2135 exchanges of carbon (gC y-l) among them. 

(11.1)-(11.3), respectively, 

H 3.651nats 

A = L390nats 

¢ =~ 2.261 nats 

R eA ;c;···4.012 

C 3.098 flows/node 

F = = 41.05 effective flows 

R x C 12.43 effective nodes. 
11.1, the Florida Bay 

envelope on In two parameters slightly exceed 
I the upper bounds indicated above. (C= 3.098 C()} 3.01. and F 41.05 
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(39.9.) One needs in mind. however, that values used for the 
are estimates that can easily differ actual by factors 2 or 3. 

.o'-L'''"'."'-,' were used to estimate many of the flows. Such 
T"YYYnh, tends to even out distribution of flow magnitudes, 

Hand cp (and consequently, 
the 

I theoretical limits is quite acceptable. 

A New Window en Complex Dynamics 

To summarize, statistical has heretofore in a myriad 
ways, to characterize static structures, as \vhich can 
characterized in terms of common graphs or digraphs. In contrast, or,·w'.,,,",Yn.0 

connections therein span a 
a description of systems as 

be adapted to address the dynamical features of these more complex 
conditional nature ofdynamics in ecosystems prompts the introduction and 
conditional probabilities into the calculus, which allows the decomposition of the 
network entropy into separate terms that reflect the complementary attributes of 
constraint and flexibility. 

importance of this separation cannot be overemphasized. For too long now, 
science has focused solely on laws and constraints that g~ide (hut not 
determine) how phenomena transpire to the exclusion of the manifold noise, 
inefficiencies, and opportunities that actually determine true change in 
tionary By separating H into A and <P, one is able to follow the progress 
of these antagonistic tendencies within the framework of a unified calculus 
[20,24]. 

In addition, the introduction of a logarithmic calculus has facilitated the 
identification of the limits to complexity in natural systems. Arbitrarily complex 
systems fall apart spontaneously, whereas excessively efficient and streamlined 
systems perish, because they cannot adequately adapt to novel conditions. The 
decomposition of statistical entropy into its Bayesian components allows one to 
pinpoint the propitious balance between constraint and contingency that enables 
systems to persist [20]. 

Finally, adapting entropy measures to fully detailed, weighted digraphs empowers 
investigator to apply same indexes in corollary fashion to more degenerate 

networks, that digraphs and common graphs. For example, it remains to be seen 
what, if anything, the separate indexes for constraint and redundancy will reveal 
about structures of large, complicated organic molecules. 

Treating the statistical entropy in Bayesian fashion leads to a totally different 
description ofliving reality - one L1at resembles the mechanistic clockworks of 
decades past and more a transactional image that provides a more complete picture 
of complex living world [1,30]. 
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