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ABSTRACT

Given a steady-state network of flows within an ecosystem, it becomes possible to
systematically and automatically enumerate all distinct simple cycles of flows. Cycles may
be grouped according to shared smallest arcs. The original network may then be decom-
posed into a web of purely cycled flow and a residual acyclic graph consisting of
once-through pathways. The aggregation of elementary cycles according to shared vulner-
able arcs seems particularly effective in locating those transfers which stress is most likely to
disturb.

INTRODUCTION

A large fraction of the elements composing living matter reside at any
instant of time in the world’s biota. Because the earthly pool of these
elements is limited and the rates of exchange among the various components
of the biota are extremely fast with respect to geological time, it is quite
evident that much of the same material is being incorporated again and again
into different biological forms. This observation gives rise to the notion that,
on the average, matter (and some amounts of energy) are involved in cycles.

Although an overwhelming amount of ecological research has been di-
rected towards cycling as a mechanism of renewal and towards establishing
the rates of individual transfer steps in cycles, relatively little effort has been
expended in formally describing the aggregate structure of the loops. How-
ever, there are several theoretical and operational reasons why one might
want to separate the nexus of cycled flow from its supporting single-pass
network,

Perhaps the foremost reason for studying cycle structure is the notion that
the positive feedback associated with these cycles is the critical phenomenon
determining overall system structure. Positive feedback is self-stimulatory,
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F16. 1. Hypothetical perfect cycle of material or energy (see text).

that is, an increase in the output of any element in a cycle when traced
around the loop will engender a further increase in the starting flow. For
example, in the simple loop depicted in Figure 1, an increase in detritus is
likely to enhance detritivory, thereby stimulating carnivory and eventually
adding detritus to the starting compartment. In purely linear systems such
feedback leads to global instability of the system. Positive feedback in real
systems is limited, however, by the finite amount of matter or energy
available and especially by the necessary losses incurred at each step in the
feedback loop (the second law of thermodynamics); see also [1]. In the face
of these limitations, those compartments engaged in positive cycling might
possess a strong competitive advantage over nonparticipating compartments
during any phase of total system growth. Furthermore, in systems with time
lags positive feedback can actually be a stabilizing factor.!

A second reason for wanting to study the structure of cycling lies in the
contribution of cycles to any autonomous behavior the system might exhibit.
Autonomous behavior cannot be traced to exogenous causes. Most logical
analysis concerns cause-effect, deterministic relationships; e.g., an increase in
detritivory (cause) stimulates carnivory (effect). Each (nonautonomous) pro-
cess is considered to be traceable to influences exterior to the system.
Supposing, however, that the cycle in Figure 1 could exist in isolation, one is
then confronted with a perfect causal loop. Detritivory (cause) becomes
detritivory (effect). The behavior of the feedback loop cannot be attributed to
external causes, nor will it suffice to consider only a segment of the cycle
(nonautonomous by definition). Loop behavior is only properly perceived as
an autonomous attribute of the entire cycle ensemble.

The fact that a perfect causal loop cannot exist in isolation does not make
autonomous behavior irrelevant to real systems. As an example of the
semiautonomous nature of most ecosystem networks, consider the energy-flow
diagram of Cone Springs as depicted by Williams and Crouthamel? in Figure
2(a). By inspection one can identify five simple, directed cycles in the graph,
as in Figure 2(b). (A simple cycle is one in which no node appears more than

'R. Nisbet, personal communication.
*Unpublished manuscript.
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FI1G. 2. (a) Energy flow in Cone Springs ecosystem, measured in kC/m? yr (Williams
and Crouthamel, unpublished). Ground symbols represent losses to respiration.

once.) Furthermore, as will be seen, it is possible to assign flow values to each
of the perfect cycles, so that when the cycles are subtracted from the original
graph, the resultant network is acyclic, as shown in Figure 2(c). Although
such decomposition is an analytical artifact, it nonetheless demonstrates that
most real flow systems (and the behavior they exhibit) are interdependent
combinations of autonomous and nonautonomous graph components. Cer-
tainly, the pure cycles cannot exist alone—their circulations are supported by
the once-through flow system. Reciprocally, the magnitudes of the acyclic
network are presumably abetted by the feedback cycles. I wish to associate
the acyclic structure with the identification of trophic dynamics, whereas the
cycles are to serve as the basis for autonomous behavior in ecosystems.

There has been much controversy about the existence of what has been
termed either emergent or holistic behavior of ecosystems [2-7]. It appears
likely that emergent behavior derives from the autonomous nature of ecosys-
tem cycles. It should be remarked in passing that autonomous phenomena lie
at the very foundations of ecology as a systems science. Otherwise, strict
reductionists might be justified in their attempts to portray all ecological
events as ultimately derived from biomolecular structures. By contrast, the
ecosystems viewpoint recognizes behavior particular to each level of bio-
logical hierarchy, and events at any one level are involved cybernetically with
(i.e., affect and are affected by) circumstances at levels above and below the
level of observation.

In keeping with the notion that autonomous behavior is an earmark of
more developed systems, E. P. Odum identified the degree of cycling as an
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F1G. 2. (b) Five simple cycles existing in the network in (a).

indicator of more mature communities [8]. Finn has defined an index of
cycling to test this idea quantitatively, but his calculations concern only the
quantity of cycled medium and do not touch upon the identification of cycle
structure [9].

Odum cited twenty-three additional attributes of mature systems, and
other theorists have since advanced other system attributes which they
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F1G. 2. (c) Residual acyclic network after cycles in (b) have been subtracted from
network in (a).
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believe are optimized by more developed ecosystems [10-13]. Doubtless a
better understanding of each of these ecosystem properties would result from
a systematic description of the underlying network of cycled flow.

Finally, there are purely operational reasons why knowing the structure of
cycled flow would be necessary to accomplish other analytical objectives. For
instance, many algorithms available to optimize global properties of flow
networks require at least a qualitative knowledge of cycle structure [14]. In
ecology the effort to map an arbitrary flow network into concatenated
discrete trophic levels has been complicated by the presence of cycles [15]. If,
in general, one were able to decompose a network as in Figure 2, a trophic
analysis of the residual acyclic network would yield a simplified picture of
the trophic-dynamic status of the system. Trophic levels would thereby
appear less as pure abstractions and more as objects which can be quantified.®

METHODS OF CYCLE ANALYSIS

The problem of completely specifying the cycle network has both qualita-
tive and quantitative dimensions. Qualitatively, one usually needs to identify
and enumerate every cycle in an arbitrary network. Quantitatively, one must
assign a flow value to each cycle so that the set of cycles can be subtracted
from the original network, leaving a realistic graph of unidirectional (acyclic)
pathways. Finally, one should ask whether a scheme exists for aggregating
the single cycles into subsets which are useful in the analysis of the effects of
perturbations on ecosysterns.

Enumerating by inspection all five cycles in Figure 2(b) was an easy task.
In general, however, the number of possible cycles in a network with even a
moderate number of components can become quite large. Those familiar with
combinatorics will recognize that the number of potential cycles increases at
least as n!, where n is the number of components (nodes} in the network. As
this number rises faster than exponentially, it does not take long to exceed
the limits of even the largest and fastest computers available today.

Fortunately, the problem of identifying cycles in ecosystems is mitigated
by the observation that most ecological networks realize only a small fraction
of the number of possible direct connections ( & »?) [16], and most path
lengths rarely exceed five transfers. Still, if one wishes to treat ecosystem
networks with 25 or more components, it behooves one to choose algorithms
which are as efficient as possible. Mateti and Deo have reviewed the general
methods of enumerating cycles in graphs and have concluded that backtrack-
ing search algorithms with suitable pruning methods (io eliminate many
futile search pathways) are the most efficient programs in the greatest
number of circumstances [17].

3B. C. Patten, personal communication,
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Backtracking search algorithms are very compact programs, but require
rather lengthy description. One begins by choosing an order in which to
consider the various nodes, or compartments. Taking as an example the Cone
Springs network, it is convenient (see below) to choose the order (1) detritus,
(2) bacteria, (3) detritivores, (4) carnivores, and (5) plants. Next, as an aid to
description it is useful to visualize the order of compartments repeated at six
successive levels, beginning with level 0 as shown here:

Compartment
0 1 2 3 4 5
1 1 2 3 4 5
2 1 2 3 4 5
L
vl g 1 2 3 4 5
4 1 2 3 4 5
5 1 2 3 4 5

One always searches for connections in the array working from left to
right. Starting at the first element in level 0, one checks the list of connections
for the first entry in level 1 to which an arc exists (node 2 in this case).
Attention then shifts up to level 1, and a search is begun for a further
connection from node 2 in level 1 to a node in level 2. One proceeds in this
manner to as high a level as possible, always keeping track of the positions
last visited in each previous level. This list of the last node visited in each
previous level defines the current pathway and is the only storage required
beyond the list of actual links. To keep the search confined to simple cycles it
is necessary to prohibit a move to the next level ending in a node which is
already in the current pathway.

Such a “depth-first” search continues to ever higher levels, until one of
two events takes place. If an arc exists to the starting node in the next level,
then a cycle has been identified, and the current pathway is reported or
stored. If all the possible nodes in the next level have been exhausted (one
runs beyond the right-hand limits), then one “backtracks” to the node in the
current pathway at the preceding level and starts searching the next higher
level at the node to the right of the one from which backtracking took place.
For example, if one is searching from node m in level ¢ and runs out of
possibilities in level ¢ + 1, then one backtracks to node p (the ¢ — 1 entry in
the current pathway) in level g — 1 and resumes searching at level g with node
m + 1. When no further backtracking is possible, all the cycles containing the
present starting node have been identified. The present starting node may be
eliminated from all further searching, and the dimension of the search
originating from the next starting node is thereby reduced by one.

For the reader wishing to practice this method on the Cone Springs
network, the following lists of key operations and current pathways for the
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search beginning with the detritus compartment (1) should prove helpful:

Key operation Current pathway
Begin with node | in level 0 1
Advance to level 1 1-2
Store cycle # 1 1-2-1
Advance to level 2 1-2-3
Store cycle #2 1-2-3-1
Advance to level 3 1-2-3-4
Store cycle #3 1-2-3-4-1
Backtrack to level 2 1-2-3
Backtrack to level 1 1-2
Backtrack to level 0 1
Advance to level 1 1-3
Store cycle #4 1-3-1
Advance to level 2 1-3-4
Store cycle #5 1-3-4-1
Backtrack to level 1 1-3
Backtrack to level 0 1
Further backtracking impossible —

Begin with node 2 in level 0 2

It accidentally happens that all cycles are found starting at the detritus node
and searches beginning with the other nodes detect no further cycles.

Read and Tarjan [18] and Johnson [19] give examples of constraints on
the backtracking procedure, which result in more efficient searching. For the
purposes of this work it has proven sufficient to preordain in a judicious
manner the sequence in which the candidate nodes are to be considered. One
wishes to test first those nodes for which the probability of completing a
cycle at any step is the greatest. This probability is proportional to the
number of cycle arcs terminating in the given node. (A cycle arc with respect
to a given node is any connection from a descendant node to one of that
decendent’s ancestors.) Since all the descendants of a given node may be
quickly determined [20], it becomes an easy matter to count the cycle arcs
back into each node and establish the proper sequence for testing nodes. Of
course, nodes with no incoming cycle arcs may be eliminated from the
backtracking procedure at the very outset. (It was never necessary to consider
the plants in the Cone Spring example.)

Having exhaustively enumerated the cycles, one now wishes to attach a
quantity of flow to each loop, so that when all the cycle flows are subtracted
from the original graph, no residual flow will become negative and no cycles
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will remain. Obviously, the quantity assigned to a cycle must bear some
relationship to the quantities of flow in the constituent arcs. But the various
arcs in the cycle differ in magnitude. Is there some reason for placing more
emphasis on one particular arc? The assumption made here is similar to the
concept of the rate limiting step in chemical kinetics, i.e., the critical arc in a
cycle is taken to be the one in which the smallest flow (or, equivalently, the
slowest rate of transfer) takes place.

If the cycles in networks were never to overlap, the method for separating
cycles from the underlying flow would be straightforward. One would
identify the critical arc in each cycle and subtract the magnitude of that
critical arc from each link in the cycle. The critical arc would disappear from
the cycle network (thus breaking the cycle), and the residual flows would
remain positive. Of course, cycles in networks do overlap. In fact, it often
happens that several cycles share the same critical arc. This circumstance is
actually more of a benefit than a bane. In networks with large numbers of
constituent cycles the shared critical arcs suggest that the totality of many
simple cycles may be viewed as consisting of a more tractable number of
subgroups, or “nexuses.” That is, a nexus is defined as a collection of simple
cycles all sharing a common critical arc.

The remaining question becomes how to distribute the magnitude of the
shared critical arc among the member cycles of its nexus. Perhaps the
division with the most intuitive appeal is to assign a fraction of the critical
flow to each constituent cycle in proportion to its circuit probability. The
circuit probability of a cycle is the probability that a quantum of medium
starting at any point in the given cycle will follow the simple pathway
prescribed by the cycle and return to its starting point.

Circuit probabilities are readily calculated from a quantitative network
graph. In passing through a node the probability that a quantum will exit
along a given pathway is estimated by that fraction of the total output from
the node which contains the link in question. For example, the total output
from the detritus compartment in Figure 2(a) is 11,483 kcal/m® yr. The
probability that a quantum which enters the detritus from any source will
subsequently exit to the detritivores is thus 2309/11,483, or 0.20108. In a
similar manner the subsequent probabilities of flowing along the detritivore-
carnivore and carnivore-detritus links are 0.1552 and 0.4514, respectively.
The probability of completing the given cycle of length three is the product
of these three quantities, or 0.0141. The circuit probability is independent of
where the hypothetical quantum begins its journey.

To summarize the process of separating cycled from once-through flow,
one first identifies all simple cycles in the network and seeks out the critical
arc in each cycle. The smallest critical arc of all is then identified, and its

4W. Silvert, personal communication.
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FiG. 3. Three alternate cycles to those in Figure 2(b) which can be subtracted from the
network in Figure 2(a) to yield an acyclic web of flows.

value is divided among all those cycles in which it appears in proportion to
their respective circuit probabilities. The cycles of this nexus are then
subtracted from the network link by link. The set of critical arcs-in the
remainder network is reevaluated, and the subtraction process is iterated
until all nexuses have been removed. The separation of cycled flow in Cone
Springs depicted in Figure 2 follows this scheme.

It should be mentioned that other means of designating the critical arc in
a cycle and other schemes for distribution of flow among the member cycles
of a nexus are theoretically possible. In the latter instance, if the upper limit
on the amount of a given transfer were known (the channel capacity), then
the arc with the flow nearest its maximum could be designated as the critical
arc. Perhaps some other information about physiology or nutritional needs
would point to a critical arc. R. Nisbet and W. Silvert® have suggested that
the velocities (ratios of flows to standing crops) might point to a critical rode
in the cycle, and aggregation might be effected according to shared critical
nodes.

Concerning the distribution of flow within a nexus, one could alternatively
have chosen to divide the critical flow equally among the cycles, or to
maximize the entropy of all the cycle magnitudes subject to the constraints
that no residual arc becomes negative [21]. In contrast to this latter option,
one could as well order the cycles according to their contributions to the
network ascendency (a measure of organization in the network [13]) and
remove their flows in sequence until all cycles have been eliminated. Simpler
still, one could identify a set of fundamental cycles [20] in the network, as
depicted in Figure 3, and subtract them sequentially from the network to
yield an acyclic dendrogram. Although the assignments within a given nexus
may vary radically according to the apportionment scheme chosen, it is
reassuring to report that the residual networks left after removing all the
nexuses change little as one switches algorithms. This is especially evident
when there are many overlapping nexuses in the starting network.

3Personal communication.
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Among all the options just discussed, the algorithm chosen for use in this
paper appears plausible and is methodologically quite tractable. Whether it
remains the method of choice in analyzing flow structure depends upon how
effective it is in providing insights into ecological dynamics. To investigate
what sort of insights the analysis may afford, it is necessary to consider data
on an ecosystem network of more challenging complexity.

AN ILLUSTRATIVE ANALYSIS

Because of the high cost of gathering data on all the flows occurring in an
ecosystem, extremely few networks with more than 10 nodes have been fully
quantified. Still fewer pairs or sets of networks are available which allow
comparison of the same or similar ecosystems under different environmental
conditions. A notable exception to both restrictions is the carbon flow data
among the populations of two tidal salt-marsh guts near Crystal River,
Florida.® The lower trophic levels are highly aggregated, but the species of
fish are considered in detail, so that carbon flows among 21 compartments
are described in each tidal creek. One of the creeks is exposed to thermal
effluent from a nuclear power station, raising its temperature 6°C (on the
average) above ambient. Otherwise, the environments of the creeks do not
significantly differ.

The carbon flow data are displayed as two 17-compartment networks in
Table 1(a) and (b). The species lists of the two creeks were very similar; the
few nonoverlapping species could easily be aggregated according to feeding
patterns, so that both networks could be condensed into 17 common com-
partments. Such consolidation did not alter the qualitative nature of the
results described below. The unperturbed flow network [corresponding to
Table 1(a)] is depicted in Figure 4.

The composite cycled flows for the unperturbed creek computed using the
methods described above are shown in Figure 5. The residual acyclic flows
may be found by subtracting these cycled transfers from their original
counterparts in Figure 4, and the results appear in Figure 6. When one
aggregates these once-through flows into strict trophic transfers according to
the method of Ulanowicz and Kemp [15], the resultant straight chain is
certain to truncate in n steps or less (in an n-node network). In this particular
instance no pathway exists with more than four internal transfers, resulting in
a five-component trophic chain as depicted in Figure 7(a). The corresponding
analysis performed on the perturbed creek yields the chain in Figure 7(b).

Most differences between the two chains are not overwhelming. One
notices a decrease in the level of flow through the perturbed system,

5M. Homer and W. Kemp, unpublished manuscript; see also [13].
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Fig. 8. A l4-cycle nexus of circulated flows associated with the vulnerable arc (heavy
arrow) depicting the grazing of Gulf killifish by stingray, measured in (mg carbon),/m? yr.

reflecting an 18% drop in primary productivity. The efficiency of the second
trophic compartment has been somewhat impaired in the disturbed chain;
however, these losses are compensated by a more efficient third trophic level.
Possible system disturbances at higher trophic levels are suggested by a
severalfold decrease in flow to the top trophic compartment.

Other properties shared by the two networks do not appear to have
changed drastically between the two configurations. The species lists were
almost identical; structure among the lower trophic levels remains essentially
unchanged; the percentage of the flow being cycled actually rose from 11 to
14% in the impacted creek; and, as predicted [13], the warmer creek had a
lower network ascendency and a higher (proportion of) pathway redundancy
than the control.

The only analysis showing a dramatic change between the two foodwebs is
the vulnerable arc grouping of the simple cycles present in both ecosystems.
One can identify 119 distinct simple cycles in the graph of the control creek,
whereas only 46 cycles can be counted in that of the heated embayment. The
aggregation of cycles by least arc shows that the number of nexuses has not
decreased quite as drastically—from 41 nexuses in the control to 30 in the
perturbed, with 25 vulnerable arcs common to both communities. The chief
reason for the decrease in the number of identifiable cycles is the disap-
pearance from the perturbed network of several many-cycle nexuses present
in the control ecosystem. One 14-cycle, one 13-cycle, one 10-cycle and three
6-cycle nexuses are all absent from the disturbed network, which possessed a
single 4-cycle nexus as its largest aggregation.

e
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Fic. 7. (a) Consolidation by trophic status of the residual flows [in (g carbon)/m? yr]
which result from subtracting the cycled flows in an undisturbed tidal creek (Figure 5) from
their counterparts in the original network in Figure 4. (b) Similar trophic aggregation for
flows in the perturbed creek.

The 14-cycle nexus of the unperturbed network depicted in Figure 8 gives
a clue to the differences between the two configurations. The vulnerable arc
(indicated as a heavy arrow in the diagram) represents feeding by stingrays
upon the Gulf killifish. Under normal conditions the various killifish are not
a major portion of the diet of the stingray, which subsists mainly on mullet.
In the presence of heated effluent, stingray feeding activity has fallen off
considerably and is now focused upon anchovy and mullet. Apparently,
under stress the (trophically more costly) feeding upon killifish has been
abandoned in order to survive by concentrating on subsistence rations.
Examination of the 13-, 10-, and 6-cycle nexuses in the control web indicates
that similar changes in predation by the pinfish and needlefish are responsi-
ble for the demise of these cycle aggregations.

In a broader view of the changes in cycling structure between the two
networks, one can say that the thermally stressed network exhibits symptoms
akin to eutrophication. The higher-order (longer and presumably slower)-
cycles have disappeared under stress. The shorter, faster, trophically lower
cycles now turn over more intensely. Faster cycling under stress has also been
observed for a Gulf of Mexico shelf ecosystem subjected to high salinities.”

The advantages of cycle-structure analysis in describing the systems-level
changes in ecosystems appear to be two-fold. First, subtle changes at higher

B. C. Patten, personal communication,
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trophic levels are dramatically portrayed. The numbers of distinct cycles
associated with any vulnerable flow is likely to increase geometrically with
increasing trophic position of the critical transfer. In terms of the number of
cycles identified, the analysis is therefore skewed towards being most sensi-
tive to what would otherwise appear as insignificant changes. Furthermore,
this particular analysis indicates that it may be possible to identify the most
sensitive flows and species prior to the imposition of any stress. The designa-
tion of stingray, pinfish, and needlefish as “indicator species” in this
ecosystem might have been possible on intuitive grounds; nonetheless,
vulnerable-arc analysis of the unstressed system gives analytic support to
such a choice.

DOCUMENTATION OF ALGORITHMS

All the above methods have been incorporated into a set of FORTRAN IV
subroutines constituting a network analysis package, NETWRK, as docu-
mented by the author [22]. The package operates on an arbitrary steady-state
flow network in four phases. Each phase addresses the flow network at
increasingly higher levels of resolution. First, the traditional structure matrix
[23] is constructed, allowing one to analyze the ancestors (causes) and
descendants (effects) of any particular flow in the network (see also [24]).
Next, the cycles are all identified and removed according to the least-arc
aggregation scheme described above. Then the residuval flows are transformed
into a trophic-level concatenation, and finally the system-level attributes
(ascendency, redundancy, tribute, and dissipation) are printed.

This work was supported in part by a grant from the National Science
Foundation (ECS-8110035). The Computer Science Center of the University of
Maryland also contributed free computer time. The author wishes to thank Dr.
Alan J. Goldman for directing him to several key references on enumerating
cycles in graphs and for reviewing an early draft of the manuscript. Drs. Roger
Nisbet and Bernard Patten and another reviewer provided extremely helpful
critiques of the manuscript. This is contribution No. 1405 , Center for Environ-
mental and Estuarine Studies, University of Maryland.
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