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ABSTRACT

An information-theoretic comparison of the topologies of observed ecosystem trans-
fers and randomly constructed networks reveals that it is not easy to separate the
members of the two sets. The distribution of ecosystem flow magnitudes, however, is seen
to differ markedly from ordinary probability functions and to resemble the Cauchy or .
Pareto distributions. The agencies that impart such structure to ecological flow networks
are not obvious, but one strong possibility is that autocatalysis, or indirect mutualism,
promotes certain pathways at the expense of others, thereby enlarging the tail of the
distribution of flow magnitudes.

BACKGROUND

The focus of ecology is upon the relationships among populations of
organisms and their surrounding environment. As such, theoretical ecolo-
gists seek to discover that which is common to all ecosystem configurations
and to elucidate the factors that bring these relational structures into being.

For at least two decades investigations of ecosystem structures were
dominated by attempts to relate the degree of trophic connectance in an
ecosystem to the “stability” exhibited by that community. Hutchinson, and
later Odum [20], argued that the redundant pathways that connect the
elements of an ecosystem provide routes for compensatory communication
whenever major arteries of flow are accidentally disrupted. One of the first
efforis to quantify the configuration of ecosystem flow networks was made
by MacArthur and Ranch [18], who proposed that the Shannon—Wiener
index of uncertainty [27] be used to measure the degree of parallelism
among flow pathways. Unfortunately, the Shannon—Wiener measure was
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then applied to population densities, instead of interspecies flows, in what
is now regarded to have been a largely futile attempt to draw a connection
between the diversity of population levels and the stability of the communi-
ties the populations comprised (see [35]).

One of the several reasons why the diversity—stability issue foundered
appears in hindsight to have been that MacArthur’s identification of
diversity with Shannon’s index was premature. Shannon’s version of infor-
mation theory had only recently appeared in relatively inchoate form when
MacArthur attempted to apply it to ecosystem networks. It is not apparent
whether or not MacArthur was aware of later refinements in information
theory such as the ‘“average mutual information” or the “conditional
uncertainty,” or, if he were, that he ever tried to amend his treatment of
compensatory pathways to include these new concepts.

Two decades after MacArthur attempted to quantify system diversity in
terms of the Shannon-Wiener measure of average uncertainty, Rutledge
et al. [26] reasoned that this index was not specific enough to quantify the
extent to which parallel pathways are present in a network. It is necessary
to distinguish between that part of the overall diversity that is constrained
by the obligate coupling of the nodes and the remainder that represents the
latitude for “choice among alternative pathways out of or into a typical
node. Ulanowicz [30, 31] argued that the appearance of constraints is
tantamount to what should be regarded as the “growth and development”
of an ecosystem, that is, the system’s becoming ever more organized. He
modified Rutledge’s measures to draw a quantitative and comprehensive
narrative of the direction in which ecosystem networks evolve.

We wish to investigate ecosystem organization along a different, but
closely related, avenue and show how the calculation of information indices
corresponding to weighted networks of flows is useful for investigating how,
if at all, ecosystem networks are nonrandom in nature. Below, we give
details on how appropriate information indices can be calculated both for
randomly assembled, weighted networks and for a collected ensemble of
estimated ecosystem networks. The resulting comparison of the measures
of the two groups reveals how they differ in both qualitative and quantita-
tive ways that are not apparent from a knowledge of their connection
topologies (i.e., qualitative data) alone.

QUANTITATIVE FORMULATIONS

To be more concrete and quantitative, the magnitude of the exchange
from node (species) i to node (species) j within a system containing n
nodes will be denoted by 7;;. The total amount emanating from i is then
determined by summing the outputs from i over all possible destinations j
and is designated by T;. Rutledge et al. [26] suggested that the inputs to
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j from all possible sources i could be added to arrive at the total input to
Jj,or T} (At steady-state, T; = T; for all i, but the analysis that follows does
not require such an assumption.) Finally, all the compartmental outputs or
all of their inputs can be summed to calculate a unique measure of total
exchange transpiring in the system. This latter index is called the total
system throughput and is denoted simply by T.

Rutledge et al. observed that one could employ various quotients of
these flow measures as likelihood estimators for the joint and conditional
transfer probabilities. For example, the joint probability that an arbitrary
quantum both leaves { and enters j can be estimated by the quotient
T;;/T. The conditional probability that a particular quantum enters J,
given that it already left i, is estimated by the quotient 7 /7. The
unconditional probability that an input is flowing into j would be approxi-
mated by /T, and so on.

Using such probability estimators, one can approximate all the informa-
tion variables pertaining to a given weighted network. In particular, the
average mutual information is usually defined as

A=H(y)+ H(x)— H(x,y),
where A is the mutual information and H is the Shannon uncertainty! as
calculated on the input (x) and output (y) variables, respectively. H(x, y)

is the joint uncertainty, or total flow diversity. Rewriting 4 in terms of
Rutledge’s likelihood quotients gives
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Shannon gave the name “entropy” to his measure of uncertainty, and most texts on
information theory persist in using this term. However, this term easily can be confused
with the thermodynamic state variable of the same name, and its use in information
theory should be discontinued.
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Ulanowicz and Norden [33] argue that H(x, y) is the most appropriate
measure of the total flow diversity. The mutual information, A, quantifies
the amount of that diversity that is encumbered by structural constraints.
The remainder, ® = H(x, y)— A, represents the amount of “choice’ (con-
ditional uncertainty) pertaining to both the inputs and outputs of an
average node in the network. After simplification, ® becomes
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Dividing & into two terms reveals more about its mathematical meaning.
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represent, respectively, the output diversity at node i and the input diver-
sity at node j. Thus, one sees that the first and second terms (denoted by
@, and ®,, respectively) of Equation (3) are, respectively, the average
output diversity weighted by the total outputs 7, and the average input
diversity weighted by the total inputs 7. The average diversity over both
outputs and inputs thus can be written as © /2.

It should be recalled from information theory that the diversity of
pathways through a decision tree is an exponential function of the number
of branch points or “decisions” that generate the tree. Accordingly, the
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mean, or effective number of flows, s, impinging upon or emanating from
a typical node in the network should be [16]

m=>b%2, 4

where b is the base to which the logarithms are referred (usually 2, e, or
10; in our calculations we shall put #=¢ and log = In). Because m =
b2/ =YpP1F®D = p®1p®2 — iy | it becomes clear that m is the
geometric mean of the input and output connectances.

To show that Equations (3) and (4) yield values of m that appeal to the
intuition, the reader should refer to the hypothetical network shown in
Figure Al (Appendix A). There each node has exactly two inputs and two
outputs, all of equal magnitude. The reader should substitute the uniform
values for the T}; into (3) and (4) to confirm that m =2 for this limiting
case (see also Table Al). In real, weighted flow networks, the exchanges
are virtually never all equal in magnitude, as in Figure Ala, so the effective
connectance per node, m, will almost never take on an integer value. But
weightings serve to impart more meaning to r than is possessed by any
connectance that could be calculated from qualitative linkages alone. For
example, 600 units of flow are configured three ways in Figure Al. In
Figure Ala, medium is distributed as eight equal flows. In Figure Alb,
two-thirds of all medium flows along the four innermost channels; and in
Figure Alc, almost all medium egresses compartment 1 to reach node 2,
while only minute amounts flow along the remaining seven routes. In a
qualitative sense, two outputs exit node 1 in each case. However, when one
reckons the log mean number of outputs using Equations (3) and (4), one
arrives at m = 2 for configuration (a), but » =1.889 for the one in Figure
Alb, and m =1.096 for the third one. The last value accurately reflects the
fact that the flow in the third case is dominated by a single output. Hence,
m is seen to represent the effective connectance per node.

Rutledge’s measures pertain only to closed networks. Hirata and
Ulanowicz [10] show how these indices can be extended to open systems as
well. They define three virtual compartments to provide sources and sinks
for exogenous transfers. For example, the node 0 denotes the source of an
external input, while # +1 and n +2 refer to the sinks that receive exports
of useful and dissipated medium, respectively. (The distinction between
useful and dissipated exports is subjective to a degree, but it is not
altogether essential to this analysis.) Thus, T, o; Tepresents the amount of
medium flowing intc j from outside the system, whereas T, , ., is the
amount of medium dissipated by i per unit time. Simply by extending all
the summations in Equations (1), (2), and (3) to run from 0 to n+2, one
thereby calculates the values of H(x,y), A, and m as they apply to open
systems. ‘ N
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There is a minor complication in applying Equations (3) and (4) to open
systems to calculate the effective connectance per node, m, in that the
resulting value will usually be inflated by what often is a large number of
flows emerging from node 0 and entering nodes » +1 and r +2. As these
nodes are purely hypothetical, it is best not to include their respective
output and input fractions in the calculation of m. An amended conditional
uncertainty obviates such inflation of m by including only the input and
output diversities of the n system nodes. The modified measure of choice
will be denoted by &' and calculated as
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THE TOPOLOGICAL CONNECTANCE

As part of our investigation into the nature of ecosystem structure, it will
prove useful to quantify the information one gains by estimating the
magnitudes of ecosystern connections, that is, by upgrading from qualitative
to quantitative data. Toward this end we devise an alternative measure of
topological connectance cast in the same idiom as m, that is, using
information theory. The éxamples in Appendix A provide a clue as to how
one should proceed. We define the topological connectance per node, m*,
as the value that m would take on if all the nonzero flows in the network
were assumed equal in magnitude (as is implicitly done when one works
with qualitative data). To calculate m*, one simply sets all T;; in (3) or (5)
to the same value, call it T*, and proceeds to calculate a value ®* for the
conditional uncertainty. This value of ®* can then be substituted into (4) to
obtain m*. [In the example in Figure Ala, m*=m. As soon as any two
values of T;; become unequal, then m* > m. See Appendix Al

To recapitulate, m measures the effective’ connectance per node as
averaged over all nodes and all flows in the network. Because flows are
virtually never uniform in a system, its effective connectance per node will
always be less than its topological connectance per node, that is, m < m™*.
The difference, m* — m, is related to the amount of information one gains
about the system configuration once the various magnitudes of the transfers
are- known. As any arbitrary network will yield a couplet (m*,m), the
relationship betweéen its topological and effective connectances can be
graphed as a point on a plane defined by m* and m axes. Because
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m* > m > 1, all possible networks will map into the positive octant defined
by the diagonal line m = m* and the horizontal line m = 1.

PLAN OF INVESTIGATION

In what follows we seek to identify and compare the regions of the
feasible octant populated by randomly assembled and observed networks,
respectively.

Creating a randomly assembled, weighted network involves two steps.
First, one must employ a random number generator to assign locations in a
matrix to nonzero flows according to a given level of overall connectivity. In
this study we assigned flows both to n X n matrices and to (n+3)X{(n +3)
matrices, where in the latter cases the last three rows and columns
represented imports, exports, and resplratlons respectively. (All the ele-
ments of the respiration column, were filled with nonzero flows to interject
the effects of the second law of thermodynamics.) The results were not
appreciably influenced by whether we included or excluded exogenous
transfers, as long as we were careful to use %) whenever exogenous flows
were present. , ,

The second step in constructing a random net is to assign a magnitude to
each nonzero flow in the topology just defined. We tested the effects of
using five different ordinary probability distribution functions (pdf s) to
assign magnitudes: uniform random (white noise), (one-sided) Gaussian
with zero mean and unit variance, negative exponential (Laplacean) with
unit mean, Poisson with mean of 100, and log-normal calculated on the
Gaussian. To test the distribution of each pdf on the m*m plane, we
generated 490 random networks: for each dimension # from 2 through 50
inclusive, we created 10 networks with connectivities equally spaced be-
tween 10% and 100% inclusively.

To see where observed or estimated ecosystem networks stand in rela-
tion to the random networks, we have assembled a set of 37 examples of
weighted webs that have been estimated by at least 17 different investiga-
tors for a wide variety of ecosystems. The number of compartments, #, in
the flow webs ranges from 4 to 36. Prior to the analysis we made no effort
to assess the relative accuracies of the reported flows, either within a given
ecosystem representation or among their numerous .authors. Most of the
data have been reported elsewhere in the literature, although a few were
communicated directly to the first author.?

2Copies of the Fortran source code used to generate the random networks, as well as
the data comprising the 37 estimated networks, can be obtained from either author via
electronic mail (ulan%cbl.umd.edu@umd?2 and toe002@djukfall, respectively on BitNet)
or by forwarding a diskette of the reader’s choosing to one of the authors.
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RESULTS

When all the random networks generated by a particular pdf are plotted
in the m*m plane, the results are at first startling. The points representing
the random networks converge very quickly to a straight line,

m=am*, ‘ ~ (6)

where o is a constant characterizing the generative pdf. In Appendix B we
demonstrate analytically that networks generated by ordinary pdf’s that are
normalized and possess finite means should converge to a ray on the m*m
plot. Furthermore, the slope a of each ray is independent of the mean of
the generating pdf and depends only on its higher-order moments. The
values range from a high of 0.99 (virtually 1.00) for the Poisson distribution
to a low of 0.61 for the log-normal. A random uniform distribution yields a
value of a =0.82, the Gaussian a value of 0.75, and the Laplace distribu-
tion converges to a ratio of 0.65. The five sets of randomly generated
networks are shown in Figure 1, where each radial is labeled according to
its generating pdf,

When the points corresponding to the 37 observed networks are mapped
onto the same axes (see Figure 2), many of the networks with low m* fall
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Fic. 1. Distributions of effective connectance m versus topological connectance. Each
ray is labeled according to its generating pdf together with its slope a from Equation (6).
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Fic. 2. The 37 observed networks are mapped against the same five rays as in
Figure. 1.

among the pdf radials. However, as m* increases, virtually all the observed
networks are situated well below the radial of least slope (the log-normal).
There are two possible reasons behind this divergence: (1) The networks in
question belong to a class of random networks generated by pdf’s with
radically skewed higher moments or (2) they belong to a class that cannot
be generated by ordinary pdf’s. The latter circumstances would have strong
implications for future work on randomly assembled ecosystem networks.

We have strong reason to believe that “well-researched ecosystem
networks” do not belong to the class that can be generated by ordinary
pdf’s. To present the evidence behind this claim, we note that all pdf’s with
definite means and variances generate random networks that are character-
ized by a single, universal relationship. In Appendix C we show that all
ordinary pdf’s generate networks for which the following relation is asymp-
totically fulfilled:

eA=n/m. (7

This relationship implies that on a plot of exp(.A) versus n /m, networks
generated by ordinary pdf’s yield points close to the diagonal. On Figure 3
the 490 networks generated by the uniform-random distribution (shown as
black dots) cluster near the diagonal

Also plotted in Figure 3 are the 37 sample ecosystem networks (open
circles). We gauged the scatter of the random networks around the diago-
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The distribution of random-uniform networks reveals that only nine of
the sample nétworks fall within the 95% confidence interval and an
additional four fall within the 99% interval. Thus, a substantial fraction of
the observed networks lie well beyond the scatter of the generated random
nets, and we conclude that it is most improbable that the outlying ecosys-
tems have configurations that belong to the class of networks that can be
generated using ordinary pdf’s.

The divergence of the distribution of the magnitudes of observed flows
from random types has both practical and theoretical implications. If, for
example, the distance of a network from the diagonal in Figure 3 is related
to the information inherent in the configuration of its flows, then one
should design ecosystem accounting projects so as to have a moderate
chance of capturing such information. That is, from the beginning one
should resolve the system into a sufficient number of compartments that
there remains a reasonable probability that the resultant n /m will exceed,
say, 4. Because effective connectivities of real systems are always greater
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than 1, this means that one should not begin a study with only four or five
compartments. (It is slightly embarrassing to note that the five-compart-
ment Cone Spring network, used widely as an exemplar by one of the
authors and by many others, lies closer to the diagonal of Figure 3 than any
of the other 36 networks!)

We note that aggregating compartments will lower both #/m and
exp(A4) and, in addition, will decrease the relative distance separating the
aggregated network from the diagonal. Our collected data contain two
specific examples that may further illustrate this point: The flow networks
of the ecosystems inhabiting the mesohaline part of Chesapeake Bay and
the Crystal River (Florida), respectively. The 36-compartment network for
Chesapeake Bay [1] has been condensed to 15 compartments (labeled
Ches-36 and Ches-15, respectively, in Figure 3) to match exactly a previ-
ously established compartmental structure of the Baltic Sea ecosystem [36].
Most of this aggregation involves lumping 14 compartments of Chesapeake
finfishes into two categories according to whether they are filter-feeding or
carnivorous. Similarly, seven benthic compartments are combined into
filter-feeding or deposit-feeding aggregates. In the second aggregation
example, a 17-compartment Crystal River ecosystem network [14] has been
consolidated into seven compartments [11] (see Crystal-17 and Crystal-7 in
Figure 4). Unlike the ad hoc aggregation of the Chesapeake ecosystem, the
Crystal River compartments were iteratively combined in pairwise fashion
so as to minimize the (inevitable) decrease in the average mutual informa-
tion at each step (see below). The values for exp(A4), n /m, and the relative
distance D away from the diagonal [calculated from Equation (8)] are given
in Table 1. Both aggregation schemes, although very different in methods
and purpose, result in comparable and, more important, substantial losses
of information, as exemplified by the lower values of D in the aggregated
networks. .

. Ecological data tend to be relatively scarce, so that the need seldom
arises to aggregate system compartments; but the converse is true in
economics, and criteria for aggregating nodes are most useful. Theil [29]
and Hirata and Ulanowicz [11] have suggested that minimizing the decrease
in the average mutual information of the flows, A, is a very effective

TABLE 1
Ecosystem Flow Network n/m exp(A) D
Chesapeake Bay (36 compts.) 17.68 6592 - 0443
Chesapeake Bay (15 compts.) 6.263 3.885 0.268
Crystal River (17 compts.) 9.413 2.730 0.502

Crystal River (7 compts.) 3.885 2718 0.212
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aggregation criterion. However, the results of this analysis indicate that
minimizing the drop in the distance from the diagonal in Figure 3 might be
even more effective in preserving the fundamental traits of the system.
Because of the geometry of the diagonal (slope = 45°), this criterion trans-
lates into minimizing the decrease in the absolute value of the difference,
1-(m /n) exp(A4).

One of the most common excuses given for not resolving ecosystem
budgets into more compartments is the increased time and cost associated
with precisely measuring so many exchange rates. We remark here that if a
network lies close to the diagonal in Figure 3, striving for measurement
precision is likely to prove futile, as the resulting configuration will proba-
bly still fail to portray essential characteristics of the network. Conversely, it
appears that flow magnitudes in a highly resolved network need be known
only to order-of-magnitude precision before the network begins to capture
the essential trophic characteristics of the system (i.e., a highly resolved and
roughly estimated network is likely to lie farther off the diagonal than a
poorly resolved, but precisely known set of flow measurements). We hope
this observation will encourage more colleagues to attempt the estimation
of high-resolution (i.e., many-compartment) flow networks.

A plot of n /m* versus exp(A*) for randomly assembled networks also
yields a straight line (see Appendix C). Unlike the distribution of weighted
networks in Figure 3, however, the topological structures of the 37 sample
networks all lie close to the diagonal, intermingled among the random,
topologies (cf. Figure 4). In other words, the observed topological networks
are indistinguishable from their randomly constructed counterparts when
gauged by information-theoretic indices. (In hindsight, this property also
justifies the first step in our procedure for constructing artificially assem-
bled networks.) Knowing the topology of a system certainly can be useful,
but one should be aware that a marginal amount of further effort to attach
rough magnitudes to the indicated exchanges is likely to pay handsome
rewards by revealing characteristics about the system that otherwise would
go unnoticed. ,

In light of the virtual certainty that real ecosystem configurations do not
belong to the grand ensemble of networks generated by ordinary probabil-
ity distributions, the reader may wonder whether stochastic distribution
functions do exist that will generate randomly assembled webs that more
closely resemble real ecosystem networks. In fact, it is quite easy to
construct random networks that populate the octant below the diagonal in
Figure 3. For example, if the arc magnitudes of a flow network are
generated as the ratios of paired samples from the random-uniform distri-
bution [15], the networks that result are dispersed throughout the allowed
octant of the m*m plane, as shown in Figure 5. We demonstrate in
Appendix D that the distribution function for these quotients remains flat
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like white noise until the mean of the uniform distribution used to generate
the numerators and denominators. Thereafter, the distribution falls off as
1/x? (like the Pareto and Cauchy distributions). This distribution function
can be normalized, but it does not possess a finite mean (or higher
moments). The probability that a finite sample drawn from this distribution
will possess one or a few unusually large values always remains palpable,
and it is these outlier flows that drive the network away from the diagonal
in Figure 5 (see also the examples in Appendix A).

When a suite of networks created by the random quotient distribution is
plotted on the m*m plane as in Figure 5, one notices that the envelope of
the generated points closely resembles the plot of (m*)1/2. The existence of
such an envelope suggests that, as topological connectivity increases, the
disparity between measured configurations and those generated in ordinary
random fashion grows even faster.

DISCUSSION AND SPECULATIONS

Most readers are probably aware that the comparison of stochastic and
observed ecosystem configurations also has been a central theme in the
development of a field of theoretical ecology now known as “food web
theory” [8, 9, 12, 19, 25, 37 and, particularly, 6 and 28].

It is difficult to do justice to food web theory in a single paragraph;
suffice it here to characterize the effort as the examination of qualitative
data on predator-prey interactions in a wide variety of communities
[2, 4, 5] for underlying regularities. The central variables in most discussions
are the connectance of the web, C, the number of elements in the web, n,
the length of the trophic chain, and the ratio of predators to prey. Some of
the other issues debated have included: “What, if any, relationship exists
between food web connectance and number of elements?” [22]; “What
determines the maximum length of a food chain within a food web?” [23];
“What lies behind the apparent constancy in the average number of
predators per species of prey resource?” [3].

There are significant differences between the assumptions underlying
“flow analysis” as presented here and those encountered in food web
theory. For example, flow analysis is limited to considering only palpable
exchanges. In food web theory, more general interactions are allowed, such
as spatial interference, ethological communication, and a host of other
processes that are difficult to quantify. Food web analysis usually deals only
with a necessary subset of all possible interactions, but it can be argued that
through the myriad of feedback processes at work in the system, the effects
of the nonpalpable interactions are made implicit in the observed flow
magnitudes that they treat. ! o

In the food web literature the connectance, C, is quantified in one of
several ways, but all methods of reckoning involve dividing the number of
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observed interactions by a quantity that is proportional to the square of the
number of nodes, #. Thus, the product #nC represents an averagé number
of flows per node, or an avérage connectance per rniode. The éffective
connectance, m, likewise depicts a connectance per node, bt one wherein
the contribution of each flow has been weighted according to its relative
magnitude, '

We wish to suggest that the effective connectance per node, nz, is more
useful than the product #C for evaluating the overall status of ecosystem
interactions. Paine [21], for example, has been highly critical of the data
used in food web analysis. He cites how data on food webs are always
incomplete. That is, it is never possible to study an ecosystem with so fine a
resolution that all the species and all their interactions can be enumerated.
Onée must always aggregate species to some degree (usually more so at
lower trophic levels) and stop counting interactions below some riebulous
threshold. Both of these approximations can strongly affect the perceived
values of » and C (and their product nC) used in all the food web
narratives,

At its root, Paine’s concern is directed against the binary nature of
qualitative food webs, that is, either a connection exists or it does not. Once
an interaction is assumed to be present, its effect upon the connectance is
the same regardless of whether it represents a dominant interchange or a
minute one. However, the values of m in quantified networks should
remain relatively insensitive to the magnitude of the observational thresh-
old, Of course, data on weighted interactions in ecosystems will likewise
remain incomplete; it is inevitable that some small interactions will remain
bevond detection by the observer (see also [7]). However, by virtue of the
small weightings that would be assigned to these neglected flows and /or
nodes (species), the value of m calculated in their absence will differ only
minimally from what would result by their inclusion. As a result, m will
always remain less sensitive to incomplete data than will its food web
counterpart, nC.

The observation that estimated topologies are indistinguishable from
randomly constructed ones (see Figure 4) provides evidence to support the
hypothesis that ecosystem food webs cannot easily be separated from
stochastically’ assembled communities [17]. However, this negative result
does not mean that it is impossible to define some conditional properties
that could be used to subdivide the class of random topologies. One might
then identify observed topologies with a given subclass, for example, the
interval food webs of Cohen [6] or the tightly packed simplicial complexes
of Sugihara [28]. :

"Our conclusion as regards quantified ecosystem networks is quite an-
other matter. On the basis of the available evidence, we feel it not
premature to assert that real ecosystem networks of material and energy
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flows, when sufficiently quantified and resolved, are not ordinary stochastic
systems. Having drawn this inference, we remain at a loss to identify
conclusively those factors that actually impart structure and definition to
real ecosystem networks. At this time we can only speculate, and we wish to
share our inclinations with the reader in the hope of initiating productive
dialogue.

Real flow networks are not the results of unconditional stochastic
allocations in the same way as, say, throws of a pair of dice or even the
frequencies of species in an ecosystem [24]. Enlightened by hindsight, we
now see how it was unreasonable ever to have expected flows to be
distributed so simply. Flows by their very nature are conditional. That is,
how much flows from i to j is always conditional upon circumstances at
both i and j. In trying to envision a stochastic scenario, one might assume
that the activities of the donor compartments were apportioned according
to the random-uniform distribution. The activities of the recipients might
be likewise distributed. Then the amounts leaving a particular donor and
arriving at a chosen recipient would involve conditional probabilities, that
is, Bayesian quotients resembling those that define the random-quotient
distribution discussed in the last section and in Appendix D. (We note in
passing that the Cauchy distribution often is referred to as the “conditional”
distribution.)

It remains conceivable that the uncommon distribution of ecosystem
flow magnitudes derives from some systematic bias in the way ecologists are
inclined to identify ecosystem compartments (i.e., it is an artifact of how the
system is aggregated). We believe that this possibility is remote. To test this
issue conclusively would require that one compare sets of randomly con-
structed networks with collections of observed networks under the con-
straint that all networks in both sets have the same number of compart-
ments. There simply are not enough estimated networks having large
dimensions to attempt such a comparison. (Exercises in aggregating and
disaggregating existing networks show only that the former process moves
the network closer to the m—m* diagonal and vice versa). But the key
indication that the Cauchy-like distribution of flows is not an artifact of
aggregation comes from the fact that the associated stocks are not dis-
tributed in similar fashion. It should further be noted that the family of
probability functions with long tails and without definable means was
introduced first by Pareto to describe the distribution of incomes among
individuals in an economic community. We note that (1) the question of
aggregation in Pareto’s ensembles was moot, and (2) incomes are flow
variables quite analogous to ecosystem transfers. One could even regard the
conclusions presented here as an extension of Pareto’s results into ecology.

It is more likely that the unusual distribution of flow magnitudes is the
effect of some natural bias (i.e., is ontological rather than epistemic in
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nature). There are any number of factors that could impart order to
ecosystem flow networks and thereby distinguish them from ordinary
stochastic ones. Natural selection, of course, heads the list of agencies
believed to impart order to evolving communities. However, natural selec-
tion commonly is regarded to act on species separately, and in that context
is unlikely to account for the distributions seen in Figure 3.

A minority of naturalists believe that selection can act on larger units of
the ecosystem. For example, Wicken [34] and Ulanowicz [31, 32] believe
that autocatalytic feedback serves to coalesce populations into coherent
units that compete with each other for resources. Ulanowicz {30-32] has
suggested that the end result of cybernetic feedback is to increase the
articulation of the flow network, that is, to decrease the effective con-
nectance per node, m. It is hardly surprising, therefore, that we should
regard the tendency for large natural systems to deviate from simple
stochastic networks as evidence favoring the hypothesis that selection is
acting on units larger than the individual population. We make no claim
that autocatalytic feedback is the exclusive agent imparting coherence to
flow networks, and invite the reader to speculate on other possible factors.

If left unchecked, cybernetic feedback, and in particular its autocatalytic
form, would result in highly specialized communities—communities with
values of m only slightly greater than unity. Although our collection of
estimated networks includes only a handful of systems with moderate
topological connectance, m*, it is obvious that none of them resembles a
configuration of entirely monospecific trophic interactions. Rather, one
sees the beginnings of what might be called a “window of viability”—a
region of the feasible m*m octant that is withdrawn from the frontiers of
the purely stochastic realm (of higher ) but also does not approach the
limit of m =1 where sustenance flows over very narrow channels.

The emerging picture of the development and persistence of trophic
patterns makes the earlier notion of “diversity begets stability” appear
simplistic by comparison: Systems with large numbers of components are
unlikely to behave as if composed of independent entities—competitive
advantage accrues to constellations of interacting elements. Neither are
they likely to appear as deterministic automata, for such rigidity or “brittle-
ness” [13] renders them incapable of responding to unexpected changes in
their environments. Real patterns of trophic interactions appear to be the
result of a true dialectic—a balance between separate tendencies toward
organization and disorganization that are at the same time obligately
inclusive and mutually exclusive.

This essay has undergone numerous and substantial revisions since the first
draft. James Kay, Samuel Kotz, Robert May, Jacqueline McGlade, Bernard
Patten, Stanley Salthe, Eric Schneider, and John Sinton all reviewed earlier
drafts and offered suggestions that aided in the development of the final
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version. One gnonymous reviewer was especially helpful in suggesting a more
effective introduction of the definitions based on iriformation theory. R.E.U.
received partial support from a U.S. National Science Foundation Grant for
Land-Margin Ecosystem Research. Computations were underwritten by the
University of Maryland Computer Science Center. W.F.W. gratefully ac-
knowledges a travel grant from the Forschungszentrum Jillich. Mrs. Jeri
Pharis patiently and competently typed the many versions of the manuscript.

APPENDIX A

We wish to consider several examples that illustrate the behavior of the
conditional uncertainty, the topological and effective connectances, and the
average mutyal information. We begin with a topological structure identical
to that shown in Figure Al. Although the topology and the total system
throughout will remain fixed, the relative magnitudes of the flows will be
varied to demonstrate how the indices respond.

In the first example, Figure Ala, all flows are equal; for example,
T;; =175, such that the total system throughput is 7 = 600. In the second,
Figure Alb, the four innermost flows (T3, T3, Tos, T4, ) are twice the outer
ones (i.e., equal to 100 and 50, respectively). In the last example, Figure
Alc, all flows are equal to 5.66, except the flow from node 1 to node 2:
T3 = 560, such that 99% of the output of compartment 1 leaves via the arc

N

(b) - (c)

Fic. Al. The hypothetical flow networks used as an example.
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TABLE Al

Example A Example B Example C

Total system throughput 7 600 600 600
Conditional ungertainty @ 2In2 =1.39 1.27 0.182
Effective connectance m 2 1.889 1.09
Topological connectance m* 2 2 2
Aveg, mutual information A In2 = 0.693 0.7498 0.188
exp(A) 2 2.116 1.206
n/m 2 2,117 3.65

to node 2. The values of the various indices for each example are given in
Table Al.

We see in the first example, where all flows have the same value, that
the effective and topological connectances are equal. In the other two
examples the topological conneetance exceeds the effective connectance. In
fact, it can be shown rigorously that the topological connectance always
exceeds its effective counterpart, that is, m* > m, except for m* = m when
all flows 7;; have the same value. Comparing the last two rows in Table Al,
we riote that in Example A, exp(A)=n /m, whereas in the remaining two
examples exp(A4) is always less than n /m.

APPENDIX B

We now wish to demonstrate that all networks generated randomly by
the same ordinary pdf yield effective connectances that are linearly related
1o their topological counterparts, that is, they plot along the ray m = am*,
where @ is characterized by the higher moments of the given simple
distribution. We begin by assuming that the magnitudes of the flows, T,
are distribited according to an ordinary pdf P(¢), ¢ > 0, with mean (¢} and
variance s. The existence of a well-defined mean (¢) implies that as the
network becomes sufficiently large (and not too sparsely populated), all row
and column sums asymptotically approach a value equal to the number of
flows (pn) within each row or column times the mean value of the flows
{t}, that is,

T, =T = pnt), | (B1)

where n denotes the size of the netwotk (i.e., the number of nodes), p is
the fraction of existing flows (such that pn?® is the total number of flows),
and { )= [...P(¢)dt. Accordingly, the total system throughput is given by
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T = pnz(t>. The conditional uncertainty under these assumptions becomes

2
© ey DTy T+ 2o (B2)

Now, the first term can be estimated as
1
727}jlnTl—j=<tlnt>, (B3)
0J

so that the conditional uncertainty becomes

_ 2(tnt)

P = T+2ln<t>+2ln(pn). (B4)

The reader should note that the first two terms in (B4) are independent of
the size of the network # and the fraction of existing flows p. Furthermore,
for any ordinary pdf the sum of the first two terms in (B4) is always
negative (which can be shown using Jensen’s inequality). Thus, we arrive at
the inequality

® <2In(pn), (B5)
where the equality is achieved only when all flows become equal, T}; = t*,

or equivalently, P(t)=8(t — t*). Therefore, the maximal value of @, de-
noted hereinafter as ®*, is given by

®*=2In( pn). (Bo)

Using (B6), (B4) can be rewritten as
5 ;
<I)=—W<tlnt>+21n<t)+¢*. (B7)

Exponentiating both sides of (B7), we obtain the linear relationship be-
tween the topological and effective connectances:

m=am*, (B8)

The coefficient « is given by

q=<t>exp(—%l]=exp(—<—i>—ln<+>). (B9)
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Because « depends only on the normalized variable ¢ /{t), it is indepen-
dent of the mean of the pdf and can vary only with changes in the higher
moments of the distribution.

We have checked the accuracy of the approximations involved in obtain-
ing (B9). For example, for the random uniform distribution the expectation
values in (B9) are given by

(=172, (tlney=—1/4, (B10)

such that a =ve /2 = 0.8243, which agrees well with the numerical value
0.8240 obtained for the slope of the Monte Carlo trials. Similar agreement
results between values calculated using (B9) and the slopes of the plots of
networks generated by other pdf’s used in the trials, although the expected
values in (B9) for the other pdf’s are more difficult to calculate.

APPENDIX C

We wish to show that all networks generated by ordinary pdf’s approxi-
mately satisfy the universal relationship (7) in the text. Combining the
expressions for the average mutual information (2) and the conditional
uncertainly (3) yields the equality

0] 1
A+—2-=lnT—7TZTijlnT}’1},‘ (C1)
i
The same approximations used in Appendix B, in particular
T,=T; =~ pn{t), T=pn¥t), (C2)

and

2 7 =1, (C3)

N3

can be used to reduce the right-hand side of (C1) to In n, whence
ed=n/m. (Cd)

We emphasize that this result holds only if the mean (¢ of the pdf is finite.
This relationship may not necessarily hold for non-simple distributions,
such as that considered below in Appendix D.

APPENDIX D

The nature of the distribution of ratios of arbitrary pairs of uniformly
distributed random numbers can be outlined using simple geometric argu-
ments. (See also Exercise 35.13, p. 140, in [38].) In Figure D1 the line
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y

A U:Rx

> K

(a) (b)

Fic. D1. Schematic representation of the probability space for quotients of arbitrary
pairs of samples from the random uniform distribution: (a) R >1; (b) R <1,

y = Rx divides a unit square into two separate regions. The upper left,
hatched region contains all points (x, y) for which y > Rx or y /x > R. The
probability that y /x is greater than R, P(y/x > R), is thereby given by
the area of this region. The remaining area represents the probability
P(y/x <R), that is,

1-R/2, Rx1
P(r>R)=<1/2R/ a (D1)
where r =y /x. Because
P(r>R)= [ P(R) R, (D2)
R

we derive the desired distribution function by differentiating (D1) with
respect to R as

1/2, R<l

1/2R%, R3x1. (D3)

P(R)=—%P(r>R)={

P(R) is normalized, [FP(R)dR =1, but all higher moments do not exist. In
particular, the mean is undefined, which is why the linear relationship
between m and m* derived in Appendix B does not hold for this distribu-
tion,

We note in passing that by considering the ratio y/x/?,0 <o <1, one
may produce random numbers having the distribution

a/(ac+1), R

<! D4
a'/[(a'+1)R1+”], R=1. (D4)

o |

Obviously, (D2) is the special case o =1. All distributions (D4) produce
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qualitatively similar results whenever the effective connectance of the
networks they generate is graphed against the topological values m*. They
populate most of the area under the rays in Figure 2.
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