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Mechanistic simulation modeling has not generally delivered on its promise to turn ecology into more
of a “hard” science. Rather, it appears that deeper insights into ecosystem functioning may derive from
a new set of metaphysical assumptions about how nature functions. Force laws from physics are fun-
damentally incompatible with the heterogeneity and uniqueness that characterizes ecosystems. Instead,
utocatalysis
entripetality
ialectic
cosystems
etaphysics

coherence, selection and centripetality are imparted to ecological systems by concatenations of beneficial
processes—a generalized form of autocatalysis. These structure-enhancing configurations of processes are
opposed by the ineluctable tendency of structure to decay (as required by the second law of thermody-
namics). The dual nature of this agonism can be quantified using information theory, which also can be
used to measure the potential of the system for further evolution. The balance point for these counter-
vailing tendencies seems to coincide with the state of maximal potential for the system to evolve. In an

me l
ostensible paradox, the sa

. Checkered success

The success of ecological modeling has been uneven. Among its
otable successes are numbered some of the tools which ecologi-
al managers rely upon daily to set harvest quotas of fish stocks and
ame species—especially those constructed around Leslie matrices
Caswell, 1989). Models of single species and/or single processes
lso have proved useful for prediction and interpolation (Jassby
nd Platt, 1976), as have models in which physical forces or chem-
cal processes drive the distribution of living organisms, such as
appens with many hydrodynamical simulations (e.g., Wang and

ohnson, 2000) and water quality models (Biswas, 1981). The lat-
er are variations upon the theme of cellular automata, which also
as spawned such disciplines as landscape ecology (Sanderson and
arris, 2000) and individual-based modeling (DeAngelis and Gross,
992).

Unfortunately, as was remarked over a quarter century ago,
s soon as a model encompasses more than one biological pro-
ess, its robustness and utility decline abruptly (Platt et al., 1981),
nd there have been few successes over the intervening years
o revise this assessment. Nonetheless, multiple process models

emain useful for generating and investigating hypotheses about
cological communities. Whether simulation models can be used
o test those hypotheses remains questionable. Multiple process

odels usually behave quite poorly, unless the community being

∗ Current address: Dept. Botany & Zoology, Univ. Florida, Gainesville, FL 32611-
525, USA. Tel.: +1 352 378 7355; fax: +1 352 392 3704.

E-mail address: ulan@cbl.umces.edu.
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ocus seems to attract stable, persistent system configurations.
© 2009 Elsevier B.V. All rights reserved.

modeled is driven by a dominant single physical or chemical
factor.

One can only wonder why the lack of robust multiple process
models? Is it simply a matter of time before modelers discover
more appropriate functional prescriptions to mimic the compo-
nent process (e.g., Patten, 1999), or does the noise inherent in the
environment continually drive the simulation astray? Or could it
be something even more fundamental—namely, that something is
radically wrong with the metaphysical assumptions that under-
lay mechanical models and the notion of nature as a clockwork is
simply a poor metaphor (Jørgensen et al., 2007; Ulanowicz, 2009)?

2. A law-driven ecology?

Mechanisms do lie at the heart of ecological modeling, and
the tacit assumption has been that the growing catalog of various
mechanisms eventually will lead ecologists to formulate law-like
generalizations of ecosystem behavior. But do such laws actually
exist for ecology (Fox-Keller, 2007; Lewontin, 2000)? The answer
remains unclear, but it has already been determined that certain
forms of law must be excluded on purely logical grounds (although
few seem willing to accept this result). To be more specific, Walter
Elsasser (1981) demonstrated that no laws can exist for biology that
resemble the force laws of physics. Elsasser’s argument begins with
the heterogeneity inherent in any collection of biological individu-

als. Williams (1956), for example, noted that heterogeneity suffuses,
if not dominates biology. If one were pressed to do so, one could
even discriminate among individual microbes.

Given the individuality among members of a biotic ensemble,
one can no longer define a set of organisms in the real world, for

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:ulan@cbl.umces.edu
dx.doi.org/10.1016/j.ecolmodel.2009.04.015
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ig. 1. The result of a fixed operation upon two homogeneous sets. The result is a
ingle homogeneous set.

n the strict mathematical sense, a set can only be a collection of
dentical tokens. Although one usually takes the liberty of calling a
ollection of organisms a set, the reality is that one can always dis-
inguish among its individual members. Making such distinctions
mong generic matter, such as the molecules of hydrogen, is impos-
ible. This difference between sets of physical and chemical entities
nd groupings of biological individuals is far from moot when one
earns that Whitehead and Russell (1913) demonstrated in Principia

athematica that the force laws of physics are logically equivalent
o operations between true sets. It follows that if one cannot iden-
ify true (as opposed to pseudo) sets in ecology, proper laws, like
hose that govern forces in physics cannot ensue.

The exact logic of Whitehead and Russell lies beyond the scope
f this text, but a notion of it can be gained from the follow-
ng example (Ulanowicz, 2009): homogeneous sets of integers are
efined as follows: the first set consists of five tokens of the inte-
er 1, the second contains five tokens of the integer 2, the third
ontains 3’s, etc. Now the set of 2s is made to interact with the
et of 4s according to some strict operation. For example, each of
he tokens in the first set might be multiplied by a corresponding

ember of the second. The result would be another homogeneous
et of five eights (Fig. 1). The determinate result is another single
omogeneous set.

Now focus shifts to collections of integers grouped by fives
ccording to magnitude. That is, the first group contains the integers
through 5; the second, 6 through 10; the third, 11 through 15, etc.
ach of these aggregates is inhomogeneous; its members are clearly
ifferent each from the other. Now the first group might operate on

tself according to the same procedure used in the first example.
ne possible result would be the integers 4, 5, 6, 8, and 15 (Fig. 2).
oteworthy is that these products are scattered across three sepa-

ate classes. Other combinations would yield similar indeterminate
esults in the sense that they would scatter among several groups.

The idea here is that operations upon crisp sets yield another
risp set. Operations among heterogeneous groupings, by contrast,
catter among other heterogeneous categories.

Many readers are likely to object that it is hardly news that ecol-
gy deals with fuzzy dynamics (Salski et al., 1996). Noisy systems
re the rule in ecology, and that’s precisely why statisticians are
alled upon to advise ecologists. Surely, there is no harm in gener-
lizing matters in the hope that statistical attributes of groupings
ight behave in law-like, predictable fashion! Indeed, regulari-

ies in ecological dynamics appear everywhere, and one might be

ble to follow these dynamics for short intervals using mecha-
istic relationships between statistical properties. This enterprise,
owever, is doomed to fail sooner or later—and usually sooner.
he notion of mechanisms in ecology remains metaphorical at
est.

ig. 2. The same operation as in Fig. 1 carried out between two heterogeneous
roups of integers yields results that scatter across several different qualitative
lasses.
ling 220 (2009) 1886–1892 1887

3. An ecology beyond statistics?

The reasons why the fit is tenuous go back over a decade
before the critique by Platt et al. Elsasser (1969) had elaborated
the inapplicability of physical-like laws for biological groupings.
He already had provided solid reasons why probability theory ulti-
mately breaks down in ecology: in short, ecosystems are rife with
unique events that cannot be treated with known statistical tools.
To define a probability requires at least several repetitions of an
event, and ecosystems are awash in events that occur once and
never again.

If the last statement sounds like fantasy in a universe that is so
large and old, Elsasser was quick to provide a quantitative argu-
ment to back up his supposition (Ulanowicz, 2004a; Jørgensen et
al., 2007). He asked how many distinguishable tokens would have
to randomly co-occur before one could say with all reasonable cer-
tainty that the particular combination would never again recur
by chance? He argued that this threshold is related to the max-
imal number of simple events that possibly could have occurred
throughout the history and extent of the known universe. Most
recent estimates agree that there are about 1081 simple particles
throughout all of known space. Now the simplest physical events
one can observe would happen to the simplest of particles over
an interval that is characteristic of sub-atomic events (about one
nanosecond). Because the universe has been around for some 13–15
billion years, or about 1025 nanoseconds, Elssasser therefore con-
cluded that at the very most 1081 × 1025, or 10106 simple events could
have transpired. One can safely conclude that anything with less
than one in 10106 chances of re-occurring simply is never going to
do so, even over many repetitions of the lifetime of our universe.
Therefore, one should be very wary about any number greater than
10106 or smaller than 10−106, because such frequencies simply can-
not apply to any known physical reality. Elsasser calls any number
exceeding 10106 an enormous number.

If one asks how many different types or characteristics are
required to assure that a random combination can indisputably be
considered unique, it may surprise some that the required number
is not extremely large. It is not Avogadro’s number (roughly 1023). It
is not one million types, or even 1000. Certifiable uniqueness hap-
pens to require only about 75 distinct tokens! This is because the
combinations of types scale roughly as the factorial of their num-
ber. Because 75! ≈ 10106, whenever more than 75 distinguishable
events co-occur by chance, one can be certain that they will never
randomly do so again.

Elsasser’s result is important to ecologists, because it is almost
impossible for anyone dealing with real ecosystems to find one
that is composed of fewer than 75 distinguishable individuals (e.g.,
Kolasa and Pickett, 1991). For example, an ecosystem comprised
of 10 species, each represented by 40 organisms would yield 400
distinguishable entities. But 400! so overwhelms 10106 that an
abundance of unique chance events is more than guaranteed.

One concludes that singular events are not rare; rather they are
legion! They occur everywhere, all the time, and at all scales! (see
Chapter 3 in Jørgensen et al., 2007). The theme of this special issue
is the emergence of novelties, and we now see that novelties are
extremely common. Furthermore, they occur without necessarily
violating any physical laws. The known laws of nature continue to
constrain evolution, but generally they are incapable of determin-
ing actual outcomes in complex systems. To see this one need only
consider that in physics there are six fundamental laws of nature
(the four force laws and the two laws of thermodynamics). This

means that the parametric specification of the laws could cover
at most some 6! (or 720) combinations. In a biological situation
one might be dealing with some 35 independent factors, so that
35! or 1040 combinations are possible. It becomes obvious that the
system exhibits massive degeneracy with respect to the confining
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the center of evolution, it now becomes apparent that competition,
to the contrary, is actually subsidiary to centripetality (which, as
was shown, rests upon mutuality). Competition at any scale simply
could not exist were it not for mutual beneficence at some lower
level.
888 R.E. Ulanowicz / Ecological

aws. That is, a very large number of possibilities can exist for each
pecification of the laws. Those laws are not violated, but rather
re satisfied by a great abundance of alternatives, and the laws
re insufficient to specify the exact outcome. Designation of the
articular outcome must be accomplished by some other agency.

. Coherence in ecosystems

Unique events (which elude treatment by conventional proba-
ility theory) are thus abundant and occur everywhere in a complex
orld. In fact, they are so abundant that one begins to worry
hat holds biotic systems together? Biological systems do, how-

ver, cohere and persist, and so the question arises as to how that
ould be possible? The mechanist would claim that order is being
aintained by yet-undiscovered laws, but Elsasser’s propositions

ave rendered that possibility remote. Some agency, looser but
till effective, must be at work. A clue to the origin of such cohe-
ion was provided by Gregory Bateson (1972): “In principle, then,
causal circuit will generate a non random response to a random

vent. . .” Bateson, one of the founders of cybernetics, was deal-
ng with “causal circuits”, concatenations of events or processes

herein the last element in the chain affects the first—what com-
only is known as feedback. Causal circuits, he implied, have the

apability to endure, because they can react non-randomly to ran-
om stimuli. This inchoate fragment of an idea points the way
owards an understanding of the life process and its origins. Further-

ore, the phenomenon is capable of fixing the outcome whenever
ultiplicity has overwhelmed physical law.
Before elucidating how feedback can resolve indeterminacy, it

hould be emphasized that the links in the circuit do not have to be
echanical by nature. That is, a given input does not have to lead

neluctably to a determinate result. Rather, one can describe the
elationship between chance and outcome as a process. By “process”
ere is meant the interaction of random events upon a configura-
ion of constraints that results in a non-random, but indeterminate
utcome.

If the combination of “non-random” and “indeterminate” seems
onfusing and somewhat contradictory, perhaps the example of
olya’s Urn (Cohen, 1976) will help to clarify the distinctions. The
rocess described by György Pólya begins with a collection of red
nd blue balls and an urn containing one red ball and one blue ball.
he urn is shaken and a ball is blindly drawn from it. If that ball
s the blue one, a blue ball from the collection is added to it and
oth are returned to the urn. The urn is shaken and another draw

s made. If a ball drawn is red, it is replaced along with another red
all into the urn, etc. A first question arises as to whether a long
equence of such draws and additions would cause the ratio of red
o blue balls to converge to a limit. It is rather easy to demonstrate
hat after, say, 1000 draws, the ratio converges to some constant,
ay 0.54681. That is, the ratio becomes progressively non-random
s the number of draws grows.

The fact that the system very rarely converges to 0.5000 prompts
ne to inquire what would happen if the urn were emptied and
he starting configuration recreated? Would the subsequent series
f draws converge to the same limit as the first? It is easy to
emonstrate that it will not. After 1000 draws the second might
pproach a limit in the vicinity of 0.19732. The Polya process clearly
s indeterminate. One eventually discovers that the ratio of balls is
rogressively constrained by the particular series of draws that have
lready occurred. It gradually becomes clear that the limiting ratio
or any long sequence of draws and replacements can be any real

raction between zero and one.

The key feature of a process is that it describes what happens
ost of the time, but not in every instance. It behaves like a “propen-

ity” in the sense of Karl Popper (1990) rather than a force in the
echanistic sense of the word.
Fig. 3. Schematic of a hypothetical three-component autocatalytic cycle.

Returning then to the causal circuits of Bateson, particular atten-
tion is now focused on an interesting subset of feedbacks called
“autocatalysis”. Autocatalysis is a particular form of positive feed-
back wherein the effect of every consecutive link in the feedback
loop is positive. Without loss of generality, autocatalysis can be
illustrated by the simple three-component interaction depicted in
Fig. 3. Here the action of process A has a propensity to augment
the second process B. B in its turn tends to accelerate C in similar
fashion, and C has the same effect upon A.

Kauffman (1995) has shown that autocatalytic concatenations
become inevitable even in medium dimensional systems.

A key feature of autocatalysis is that it exerts a selection pressure
upon all of its components as well as on any of their attendant mech-
anisms. Any change in a characteristic of a component that either
makes it more sensitive to catalysis by the upstream member, or
a better catalyst of the element that it catalyzes, will be rewarded.
Other changes will at best be neutral, but more likely will be decre-
mented by the feedback. Through such selection, the integrity of
the autocatalytic cycle can be maintained through the repair of
the effects of disturbances that may impinge upon it (Ulanowicz,
2009). Furthermore, the entire cycle records its history in the col-
lective behaviors of its component elements and the structures of
the processes linking them.

In particular, this selection will reinforce changes that bring
more material or energy into a participating element (Ulanowicz,
1997), resulting in what can be called (in Newton’s word) “cen-
tripetality” (Fig. 4).

Centripetality is an enormously important feature of life that
eludes description by mechanical models, encumbered as they are
by their inability to change component mechanisms in a sufficiently
general way. Furthermore, centripetality imparts a direction and an
identity to the circuit that generally escapes mechanical description
(Chapter 4 in Jørgensen et al., 2007). It also plays a key but tacit role
in the Darwinian scenario—that of “striving”. The various species
of organisms are engaged in ubiquitous struggle—competing with
each other. But what accounts for the drive behind this competi-
tion? One now sees that striving is the outcome of an autocatalytic
configuration of processes. It stands at the very core of evolution
(Russell, 1960). While orthodox Darwinism places competition at
Fig. 4. Autocatalysis induces centripetality.
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for autocatalytic cycles to form, and those that arise create internal
constraints that increase A (and thereby abet a). This tendency for
a to grow via autocatalysis exists at all values of a. The role of over-
Fig. 5. Centripetality induces competition.

To illustrate how autocatalysis engenders competition, it is help-
ul to regard the sequence in Fig. 5 (Ulanowicz, 1997). In Fig. 5b
lement D appears spontaneously in conjunction with A and C. If D
s more sensitive to A and/or a better catalyst of C, then the ensuing
ynamics of centripetality will so favor D over B, that B will either

ade into the background or disappear altogether (as in Fig. 5c). That
s, selection pressure and centripetality can guide the replacement
f elements.

Some readers may object to the description of autocatalysis as
on-mechanical, because many of the foregoing scenarios seem
menable to mechanical simulation—and in some contrived cir-
umstances they may be. Crucial, however, is the fact that, in light
f Elsasser’s emphasis on how combinatorics overwhelm complex
ystems, it becomes impossible to state apriori all the possible
omplex events that could perturb an element or a relationship,
uch less to specify the direction in which it might move the sys-

em. Stuart Kauffman (2008) calls the ensemble of such complex
ossibilities the “adjacent possible”, and he is at pains to demon-
trate how such evolutionary “preadaptations” remain impossible
o specify.

. The yin and yang of ecology

By now the reader may have noticed that two countervail-
ng tendencies are at play in the development of any dissipative
tructure. In one direction a continuous stream of perturbations
orks to erode any existing structure and coherence. Meanwhile,

his drift is opposed by the workings of autocatalytic configura-
ions, which drive growth and development and provide repair
o the system. This tension has been noted since Antiquity. Dio-
enes related that Heraclitus saw the world as a continuous tearing
own and building up. With the Enlightenment, however, science
pted for a more Platonic view of nature as monistic equilib-
ium.

Outside of science, Hegel retained Heraclitus’ view of the fun-
amental tension, but with significant amendment. He noted that,
lthough the two tendencies may be antagonistic at the level of
bservation, they may become mutually obligatory at the next
igher level. Hegel’s view is resonant with the picture of ecosystem
ynamics portrayed here. Indeed, the second law does dissipate
hat autocatalysis has built up, but it has been noted that singu-

ar chance is also necessary if systems are truly to evolve over time
nd develop novel emergent characteristics. Looking in the other
irection, complex, evolved systems can be sustained only through
opious dissipation.

The problem with this agonistic view of the natural world
s that, unlike the mechanistic (Platonic) convention, dialectic-
ike dynamics cannot be adequately represented as algorithms. To
epeat again, mechanistic simulation models are inadequate to the

ask of describing ecosystems over the longer run, because the
elfsame selection exhibited by autocatalysis can unpredictably
eplace not only components, but their accompanying mecha-
isms as well. Not only does the notion of mechanism defy logic,

t seems also to poorly match the dynamics that actually are at
lay.
ling 220 (2009) 1886–1892 1889

6. Quantifying agonism

Adopting a more positive attitude, one now asks how to describe
quantitatively this universal “conversation” between structure-
building and dissipation? Obviously, science needs to put a
little more distance between itself and the Platonic, mechanistic
metaphor of the clockwork (Goerner, 1999). Because order per-
sists within living systems that are immersed in a noisy world by
virtue of the action of their constituent autocatalytic processes, it is
only reasonable to turn attention towards description in terms of
processes—or more specifically, towards the description of ecosys-
tems dynamics as configurations of processes (Platt et al., 1981).

The study of linked processes is not a theme foreign to ecology,
even outside simulation modeling. Almost 70 years ago Raymond
Lindeman (1942), a student of G. Evelyn Hutchinson, attempted
to describe quantitatively the trophic processes occurring in the
ecosystem of Cedar Bog Lake in terms of a flow network. A rich liter-
ature of the analysis on such quantitative flow networks has ensued
(e.g., Hannon, 1973; Finn, 1976; Levine, 1980; Fath and Patten, 1999;
Ulanowicz, 2004b).

To summarize some of the relevant results of ecological network
analysis, one designates the flow from taxon i to another taxon, j,
as Tij. If one then denotes the source of exogenous inputs to the
system as component zero and the sink that receives all outputs
and dissipations as taxon n + 1, one can thereby identify and label
all the trophic flows in an ecosystem.1 Proceeding in this man-
ner, Ulanowicz (1979, Hirata and Ulanowicz, 1984; Ulanowicz and
Norden, 1990) has used information theory to quantify the organi-
zation inherent in any network of Tij’s as the system’s ascendency,
A, or,

A =
∑

i,j

Tijlog

(
TijT..

Ti.T.j

)
, (1)

where it can be shown that A is inherently non-negative, i.e., A ≥ 0.
The chief advantage of using information theory to describe

organization is that it allows one also to quantify the opposite (or
complement) to information in similar fashion. Whence everything
that is disordered, incoherent and dissipative in the same network
can be captured by a related, non-negative variable called the sys-
tem’s overhead, ˚,

˚ = −
∑

i,j

Tijlog

(
T2

ij

Ti.T.j

)
. (2)

Furthermore, a system’s ascendency and overhead sum to yield its
overall capacity for development, C,

C = A + ˚

C = −
∑

i,j

Tijlog

(
Tij

T..

)
. (3)

Because 0 ≤ A/C ≤ 1, this ratio (call it a) provides a convenient (and
normalized) measure of the degree of system order. The actual
pattern of order is the result of two opposing tendencies: In an
inchoate system (one with low a), there are manifold opportunities
head, ˚, however, changes as the system progresses toward higher

1 A dot in place of a subscript is a shorthand for summation over that index. For
example, T.. = �i,j Tij represents the sum of all measureable activities occurring in the
system.
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ig. 6. The degrees of order and their corresponding magnitudes of fitness for the 48-
ample weighted ecosystem flow networks used by Zorach and Ulanowicz (2003).

. In inchoate systems (low a), it is ˚ that provides the opportunities
or new cycles to form. In doing so it abets the tendency to increase
utocatalysis. However, in systems that are already highly devel-
ped (a ≈ 1), the dominant effect of ˚ becomes the disruption of
stablished feedback loops, resulting in a sudden loss of organized
erformance. (The system resets to much a lower a.) So at high a,
strongly opposes further increase in a. Presumably, a critical bal-

nce between the countervailing roles of ˚ exists near the value of
at which the qualitative role of ˚ reverses.

. The fitness of ecosystems for evolution

The degree of organization (a) is a key indicator of the ability
f the system to self-organize. If the degree is too low (a ≈ 0), the
fficacy of the existing constraints is lost among the noise of pertur-
ations (Atlan, 1974). If a is too high (≈1), however, the system will
ecome brittle or “frozen”, and the dominant, inflexible pathways
f feedback can fall victim to perturbations (Holling, 1986). For a
ystem to remain alive and react to the external world, it clearly
ust avoid these endpoints, but that opens the question of how

ystems distribute themselves along the interval? To address this
uestion some index of the ability of a system to evolve is needed.
ccordingly, one defines the fitness of a system for change (F) to be

he product of the degree of system order (a) times the Boltzmann
easure of its disorder (−k log[a]),2

= −ka log(a). (4)

o investigate how the degrees of order for real ecosystems are dis-
ributed, a set of weighted networks of trophic exchanges in 48
ifferent ecological communities (Zorach and Ulanowicz, 2003) are
lotted along the fitness arc, as shown in Fig. 6.

One observes that most systems cluster around the maximal
tness (a = 1/e), with some bias towards higher values of a. Robert
hristian (personal communication) noted that all the systems with
igher values of a corresponded to communities that had been rep-
esented in terms of only very few constituent elements (n = 4–8).
uch depictions are likely to be wanting in richness and detail.
. The return of law to ecology?

Those systems that were described in greater detail yielded val-
es of a and ˚ that clustered closer around the point of maximal

2 The reader might wonder why (1 − a) was not chosen as the measure of disorder.
oltzmann’s choice quantifies the fact that the combinatorics of nature bias reality

n the direction of disorder (the second law of thermodynamics.) More about this
resently.
Fig. 7. The degrees of order and corresponding magnitudes of fitness for the subset
of 17 ecosystem flow networks in Fig. 6 that each possess >12 compartments.

fitness (1/e). Fig. 7, for example, shows the distribution of the sub-
set of 17 systems for which n > 12. The minimal value of the fitness
for this subset was F = 0.954.

The data in Fig. 7 reveals a striking natural tendency for systems
to gravitate towards configurations of maximal fitness for change.
From a purely phenomenological viewpoint, one could say that
ecosystems tend to gravitate towards configurations that possess
maximal fitness for evolution.

In fact, there are several remarkable features about the maxi-
mum in Fig. 7. The first is revealed by calculating the sensitivity of
the fitness with respect to each individual flow. Applying the chain
rule of differentiation yields:

∂F

∂Tij
= F ′ ∂a

∂Tij

or

∂F

∂Tij
= F ′

C

{
log

[
TijT..

Ti.T.j

]
+ a log

[
T2

ij

Ti.T.j

]}
, (5)

where F′ is the derivative of F with respect to a, i.e.,

F ′ = −ea
[

log(a)
log(e)

+ 1
]

.

One notices that at a = (1/e), F′ = 0, so that Eq. (5) becomes
∂F/∂Tij = 0 for each and every flow, Tij. At a = (1/e), all flows contribute
equally towards sustaining the system in this propitious state. In
other words, the system is acting as a coherent whole in endow-
ing itself with fitness. The subject of coherent domains in physics
and their possible relevance to ecology is addressed by Brizhik et
al. (this issue) elsewhere in this forum, and the phenomenology
just discussed lends credence to their conjecture that such domains
exist in ecosystems. It remains to be seen, however, whether such
coherence is maintained in ecosystems by quantum-like phenom-
ena or whether they are linked in macroscopic fashion. Regardless
of the means, whenever the system is not in the state of maximal,
coherent fitness, Eq. (5) can be employed to calculate the relative
degree to which a unit increase in each link would advance the
system towards maximum fitness (Ulanowicz et al., 2008).

Finally, it is noteworthy that information has been defined by

Tribus and McIrvine (1971) as “anything that causes a change in
probability assignment”. This is another way of saying that infor-
mation is to probability as differential calculus is to algebra. Under
this analogy (4) would correspond to a second derivative of proba-
bilities. That real systems cluster around ∂F/∂Tij = 0 hints, therefore,
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t conservative behavior in probability space. That is, only a limited
ange of phase space is available to living systems (see “window of
itality” in Zorach and Ulanowicz (2003)).

Analytical proof that a = [1/e] (or ∂F/∂Tij = 0) is an attractor point
or living systems has yet to be provided. A heuristic numerical
peration is available; however, that conveniently illustrates some
f the dynamics at play. The reader may recall that the notion of
rocess was defined above as “the interaction of random events
pon a configuration of constraints that results in a non-random,
ut indeterminate outcome.” Furthermore, the Boltzmann formu-

ation (−log[a]) was chosen to be the metric of choice to quantify
isorganization, chance or “noise”. One may regard this measure as
n “operator” in the mathematical sense of the word, which, when
t acts upon the system organization, a, projects the system into its
ext configuration. Mathematically, this can be represented by the
equence,

−log(ai)]
◦ai → ai+1, (6)

here the symbol (◦) is interpreted as “operates upon” (multiplies),
i is the degree of order at time i, and ai+1, that during the following
ime interval.

It is straightforward to prove that, whenever the starting value
0 < (1/e), the sequence converges (usually in short order) to
= (1/e). For example, when a0 = 0.2, the resulting sequence is:
.200000, 0.321888, 0.364877, 0.367867, 0.367879, 0.367879, . . .

If, however, a0 > (1/e), the initial transition takes the form of
“catastrophe” that abruptly decrements the degree of order to

elow (1/e), from whence successive states will converge, as in
he first sequence, to (1/e). For example, when a0 = 0.8, the ensu-
ng sequence is: 0.800000, 0.178515, 0.307596, 0.362646, 0.367842,
.367879, 0.367879, . . .

It is not difficult to demonstrate that the more a0 exceeds (1/e),
he smaller the ensuing a1; that is, the more drastic becomes the
ollapse.

Many ecologists will immediately recognize this dynamic. It
s strongly resembles the well-known “Figure 8” hypothesis that
olling (1992) patterned after Schumpeter’s (1942) notion of “cre-
tive destruction”. Holling described the sequence whereby an
mpacted ecosystem recovers its robustness slowly, but eventually
overshoots” its most propitious configuration. The overshoot then
enders the system vulnerable to catastrophic collapse, which starts
he cycle all over again.

It is worth noting that when, a0 = (1/e), [−log(a0)]. a0 = a0. Hence,
t the attractor point itself, noise plays the role of an idempotent
perator. That is, it acts on the system status to recapitulate itself.
his recursion has important implications for sustainability theory,
ecause it indicates that systems in nature could sustain them-
elves indefinitely at (1/e) without supplementary work. It appears
o be the point of natural sustainability. It is not that systems cannot
xist when a > (1/e) (as with many artificial systems, e.g., agricul-
ure or economics), but that additional work is required to maintain

etastable configurations, and the greater the overshoot, the more
aintenance necessary to keep them there.
Of course, noise and determinism do not readily mix, so that

ne should not expect systems to zero in on a0 = (1/e). Rather, one
hould anticipate some scatter around the attractor, which is what
ne observes among the data in Fig. 7. The data, in fact, seem skewed
owards the upper side of the attractor point, but remain along the
at portion of the curve, where overshoot and recovery do not imply
rastic changes in fitness.

By definition, a process is non-random but indeterminate. Data

eveal that systems are drawn non-randomly towards a particular
alue of a, but is such attraction determinacy at work? The answer
s a definite “no”, because any given value of a pertains to a manifold
nfinity of particular network configurations—just as an infinity of

olecular configurations correspond to any particular value of a
ling 220 (2009) 1886–1892 1891

thermodynamic variable, such as entropy. There remains, therefore,
an enormous latitude for any configuration that maps into a = (1/e)
to continue to change and evolve, even though its overall degree
of organization remains relatively fixed. The reader will recall that
the measure of fitness was conceived as the potential to evolve. It
follows that a maximum in this attribute should provide greatest
potential for further evolution.

A final issue relates to thermodynamic equilibrium. Does not
a → (1/e) represent a convergence to equilibrium? Ecologists are
justifiably wary of equilibrium theories (Gil Friend, personal com-
munication). But as with determinacy, this misgiving is likewise
misplaced, because the system at maximum fitness fails the test for
thermodynamic equilibrium. That is, if the system at the attractor
were to be isolated, it would undergo subsequent change. Systems
at true equilibrium will remain the same after being isolated. Obvi-
ously, all living systems that cluster around the attractor would die
and decay after isolation.

9. Nature as a balancing act

To summarize the dynamics: only two states of thermodynamic
equilibrium are possible (a = 0 and a = 1). Whenever a source of
external energy acts upon coupled entities, equilibrium states cease
to be the most probable configurations. The system will then move
to some intermediate value of a, and the system fitness will gravi-
tate eventually towards the maximum at a = (1/e). At this maximum
the system achieves a balance of sorts between its countervailing
tendencies.

Reversing the scenario, if external sources of free energy are
removed from the system (it becomes isolated), matters will
devolve towards the polar extremes (a = 0 and a = 1) both of which
represent true equilibrium. It is significant that the end state is
not unique, because under Boltzmann’s assumptions, which per-
tained to a rarified ideal gas composed of homogeneous atoms
which did not interact, the only possible end state was a = 0. On
the basis of Boltzmann’s results, cosmologists concluded that the
physical cosmos will ultimately reach a state they called “heat
death”—the uniform distribution of weak, long-frequency radia-
tion throughout the universe. Ulanowicz (in press) has suggested,
however, that portions of decaying systems may converge instead
into “perpetual harmonies” (at a = 1), and that it was just such a
convergent process that yielded the stable atoms and molecules
that serve as the starting point for the materialist ideology. Of
course, it is difficult to imagine how biological systems might some-
how culminate in equilibrium structures, but the fact that living
systems converge towards coherence leaves open such possibil-
ity.

The significant departure of ecosystem dynamics from the
mechanical paradigm necessarily has its practical implications. One
notes how systems that cluster around F′ = 0 are those likely to
be most sustainable under the prevailing inputs of energy and
resources. As living systems that are “self-entailing” (Rosen, 1999),
no further subsidies should be necessary. The appearance of new
resources would likely cause a system to deviate from the most
probable degree of order, but the ensuing configuration would then
be at risk in at least two regards: for one, a supply of auxiliary
resources must be sustained to retain the system in its less proba-
ble state. Secondly, the further the system is artificially separated
from a sustainable configuration, the more likely is a catastrophic
“avalanche” or sudden collapse of the system to a more disordered
state (a < [1/e]). In this regard, relation (5) provides a tool, not only

for assessing how far a system is removed from a sustainable con-
figuration, but also for identifying which elements of the system
should be tuned and by which relative magnitudes in order to turn
the system towards a more sustainable, persistent state (Ulanowicz
et al., 2008).



1 Model

c
i
t
i
a
h
o
s
d

1

p
D
l
t
t
t

w
l
g
a
d
s
o
c

a
d
m
p
o
c
t
2
i

R

A
B
B

B

C
C

D

D

E

E

892 R.E. Ulanowicz / Ecological

What, then, are the consequences of dialectic-like ecologi-
al dynamics for ecological modeling in general? While the new
nsights do not render mechanical simulation modeling useless,
hey do appreciably circumscribe its utility. Mechanical scenar-
os can still help one diagnose why a system may be misbehaving
nd afford some insight into possible diagnosis/remedy. The time
orizon for such assessment is usually quite short, however, and
ne cannot expect the diagnosis to remain appropriate for any
ignificant duration, because the radically different dynamics just
escribed must eventually intervene.

0. Science is like a muscadine grapevine

Doubtless, many will balk at this critique of the mechanical
aradigm. Most view the progress of science akin to the simile that
aniel Dennett (1995) used to describe natural evolution. Dennett

ikened evolution to “cranes built upon cranes”. That is, the founda-
ional crane is used to lift to its top new materials that can be used
o assemble yet another crane. The process can then be repeated so
hat the tower of cranes grows progressively taller.

This mechanical simile is a poor fit to the life sciences, however,
here the organic metaphor of growing muscadine grapevines is

ikely to prove more appropriate (Ulanowicz, 2004c). Muscadine
rapevines begin as a single vine that becomes a trunk supporting
n arborescence of vines leaves and grapes. Later, however, the plant
rops from its lower members adventitious roots, some of which
ink deep into the ground and thicken. Still later, the original trunk
ften dies and rots away, as sustenance is taken over by the later
onnections.

An extended column of cranes can eventually become unstable
nd come crashing down like the tower of Babel. Not so the musca-
ine vine, where the replacement of original members by younger,
ore efficacious connections occurs naturally. The mechanical

aradigm has served science admirably through the early stages
f the enterprise. It has nourished the accumulation of a signifi-
ant body of knowledge, but this very knowledge now suggests that
he time has come to replace the original foundations (Ulanowicz,
009). Such is evolution; such is the march of knowledge; and such

s progress in ecosystems science.
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