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INTRODUCTION

This chapter will introduce a number of the more frequently used network analysis techniques, many
of which trace their origins from Leontief’s (1936) economic input-output analysis and Shannon’s
information theory (1948). We begin by presenting a standard format for recording all of the flow data
related to the ecosystem in a network representation. Having constructed the representation, the direct
and indirect relationships that exist among the different components can then be examined in depth
using a suite of network analyses that have been developed through the years by a number of
researchers. These analyses consist of calculating a number of measures which synthesise some part
of the information about flows of energy or materials through an ecosystem. These measures and
analytical techniques cover from the microscopic level, the level of a component, right up to the
macroscopic level, the level of the whole ecosystem. The measures are presented in a gradation from
micro to macroscopic. The set of measures described herein provides a very rich description of an
ecosystem; a description which looks at the system from many different perspectives. Clearly anyone
applying these measures will have need for only those which reflect the perspectives of interest to the

researcher.

All of the analytical techniques and measures discussed in this chapter have been written up as a set
of computer programs (NETWRK, STRUCTURE, ENVIRON and others). This software is available



from SCOR (see elsewhere in this book, Wulff et al. 1989) or from the authors. Details of how to use
the programs are included with the software. Also, a list of the subheadings in this chapter and the
programs which do the corresponding analysis is also included. Finally, reference to the programs has

been made in the text where relevant.

FLOW NETWORK REPRESENTATION OF ECOSYSTEMS

This section explains how a network representation can be used to describe the flows of mass and

’ Encrgy in an ecosystem. The process of building such a representation serves two purposes. It brings
together all of the avaiiable data refated to mass and energy flows in the ecosystem, and it identifies
what information is missing. A standard data format is presented allowing for easy calculation and
comparison of different ecosystems is presented.

The term "network” describes a collection of elements called nodes, pairs of which are joined to one
another by a collection of elements called edges. Each node represents a.compartment {biotic or
abiotic) of the ecological system and is referred to by a numerically-referenced name, such asxyorxs,
which can also be used to reference the compartment’s standing stock. The edges that connect the
nodes are usually directed, the direction indicating that matter and energy flow from the initial to the
terminal node. Directed edges are called arcy. Arcs are named using the numerical identifiers of the
nodes they connect. For example, the arc connecting componentsxy and xs is referenced as fs. .

Each arc in an ecological flow network can have an associated value. This value represents the
magnitude of flow that occurs from the initial to the terminal node of the arc in a given unit of time.
A network of this sort is said to be weighted. Living systems also exchange matter and energy with their
environment. Thus, ecological networks have at least some arcs that originate or terminate outside of
the system. These are called open networks. All of the networks discussed in this book are open,
weighted networks. ‘ '

The flow diagram in Figure 2.1 illustrates a generalized scheme for diagramming ecological flow
networks. Values are associated with either standing stacks or one of four classes of flow: (1) inputs
from outside the system, (2) flows between components, (3) exports to other systenis, and (4)
respiration losses. Note that all flow values are presented in terms of units of mass or energy per unit
area or volume per unit time, while standing stocks are measured as units of mass or energy per unit

arca or volume.
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Fig 2.1. The four classes of ecological flows: (1) exogenous inputs, (2) intercompartmental
exchanges, (3) exports of useable medium, and (4) dissipation of unuseable medium.

Figure 2.2a depicts a simple weighted network representing the five components of the Cone Spring
ecosystem described by Tilly (1968) and quantified by Williams and Crouthamel (unpub. ms.). Flows
of energy (kmlfmzlyr) are indicated by the values that appear on the arcs, while standing stocks
(kmlfmz) are indicated inside the boxes that represent the nodes. There are two inputs that originate
outside of the system. The arcs that terminate outside the system represent exports of energy inaform
that can be used by other systems. The special ground symbols represent energy that is dissipated
through respiration. This energy is lost from the system and is unusable by any system at the same scale

(Ulanowicz 1986a).
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Fig 2.2a Energy flows (kcallmzlyr) and densities (kazllmz) among the 5 components of the
Cone Springs network.
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Diagrammatical representations of networks are common, but can be confusing and cumbersome when
used to describe large systems. A mathematical network representation which describes an ecosystem’s
structure and function is necessary. In this book a standardized method is used for representing
ecological flow networks using a single matrix (flows between compartments) and four vectors
(standing stocks, inputs, exports, and respirations). (See Figure 2.2b for an example, the Cone Spring
model). This convension must be adopted by the reader in constructing networks for analysis by the

software associated with this book.

o o 0 o 888t 11184 300 2003
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Fig 2.2b. The standardized method for representing ecological flow networks using a single matrix
of flows between compartments (F) and three vectors representing inputs Z, exportsE, and
respiration, R.

The number of compartments # in the Cone Spring network s 5, 4 of which are bioticand one of which
is abiotic. The vector x contains elements x;.. . xn that indicate the magnitudes of the standing stocks
of each compartment.In order to reap the fu]l benefit of the analysis programs and software associated
. with tlns book, we recommend that the ﬂow network be oonoepmalxzed and quantified so that, when
= ordermg the nodes (assxgmng posmons X1.. Xn), the bxouc components are numbered before the
‘abiotic ones. In the Cone. Spnng example, component 5 (abmtlc detntus) Is assigned the last of the 5
possible numbers. The software program, REORDER, can be uséd in those cases where improperly
ordered network data already exists (see software dow.mentauon for detax]s)

o . Careee e vmeng .
el - .- b Rt . . .
- ~n e b3 ] IV -

_ The vector zis used to store ﬂows that ongmate from outside the system (mputs). Flows between
~ system components are stored in thenxn exchange matrix F. The orientation of the matrix is such that
flow travels from row to column components of the matrix. We adopt the From Row - To Column
orientation throughout this book, but note that many of the analyses we will describe (those developed
by Patten, Finn, Barber, and Bosserman) often use the To Row - From Colunm format. One should
always be careful to note matrix orientation when examining the literature relatmg to speaﬁc analyses.



Losses from the compartments are denoted by the elements of the export vector e and the respiration

vector r. The export and respiration vectors are sometimes summed 1o produce a total loss vector y.

Most network analysis techniques were originally formulated for steady state systems. This means that,
for each compartment, the sum of all its inputs must equal the sum of ali its outputs. Most analyses can
handle non-steady state systems, but care must be taken in interpreting the results. The discontinuities
and nonlinearities that exist in the interactions occurring in nature cannot always be represented by

using a simple matrix description of the ecosystem.

THEORETICAL BACKGROUND

Leontief (1936, 1963) developed economic input-output analysis as a means of quantifying the amount
of raw materials and industrial services required to produce a quantity of consumer goods. His work
introduced the backward case analysis, concerned with tracing output or demand back to inputs.
Augustinovics (1969) later developed the forward case economic analysis that traces the fate of system
inputs through the system to outputs. ’

Hannon (1973) was the first to apply Leontief's analysis to ecological systems. Hannon was interested
in determining the direct and indirect contributions of the system to a unit of output, and therefore
modified Leontief’s analysis to solve the equations differently. His success spawned a flurry of efforts
amonyg systems ecologists. Finn (1976) later developed a forward case analysis for analyzing ecological
“networks. In addition he introduced several measures of ecosystem function, 'includi-n;g cycling, that
aid in the ecological mterpretatlon of the results of input-output analysis. U]anownz (19862) has
documented these analytrml techmqum in textbook fasluon.

Itis meortant to note/ that the network perspecttve provxded by ﬂow analys:s is the foundation on’

which all of the analyses in this book are burlt

Input-Output Flow Analysrs

The basus of flow analys:s are qmte. srmple (see also Costanm & Hannon 1989 th:s volume) Grvenr

the system information provrded in ti:e F mamx and z,¢,and rvectors, one can construct a productlou
matrix, which serves as the basic. oomputanonzl unit for flow analysrs The basnc structure of the
production matrix is given in Figure 2.3a, with the Cone Spring network presented as an example in
Figure 2.3b. The important thing to realize about the production matrix is that the F22 partition is the
F matrix, the F12 partition holds the system inputs (z), while the latter partition conta;r:rs theeandr
vectors (perhaps summed as the total loss vectory).

abg
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Fig 2.3, The basic structure of the production matrix (top) and the Cone Spring network as an
example (below).

‘We can use the production matrix to compute the throughfiow, Tz, for each compartment i. This value
is defined as the rate of energy or material flow through compartment . It is calculated as the sum of
' the inflows to compartment { (obtained by summing the ith column of the production matrix) or. the
sum of the outflows (calculating the row sums) from i, In a steady state system, the two methods for
calculating T; produce the séme result. For a dynamic system, througbﬂdw is modified 10 include
-changes in storage as inflow or outflow. A positive state derivative (xd +) is considered a loss from the
system pobl of mobile energy, while a negative state derivative (xd.) is viewed as a gain to the pool

F11 F12
F21 F22
N
o 11180 0 o 0 635
2300 0 0 0 0 8881
3525 0 0 75 0 1600
1810 0 o 0 370 200
203 0 0 0 0 167
] 3970 0 5205 2309 0 0

» B (Patten et al. 1976, Finn 1977). The equations for throughflow then become cither, for outflows:

. n
T; ='sz'7 + e + ri + xd+i
1=

or, for inflows:

&)
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n
Ti Z_E!fij + zi + xdi (2
j=
Total system throughflow T (also called total system throughput) is defined as sum of all compartmental
throughflows. It measures the total amount of material or energy flowing in the system, multiplied by

the number of compartments that the flow is passing through. T is one of the total system properties

discussed later in this chapter.

Fractional Coeflicient and Siructure Matrices

We now consider separately the backward (LeontieffHannon) and forward case (Augustinovics/Finn)

flow analyses, beginning with the backward case input or inflow analysis (also called creaon analysis in
Patten et al. 1976). Inflow analysis traces system output back through the network to system input. As
a first step, the fractional inflow matrix G’ is generated for a network by dividing each fij element of
the exchange matrix by Tj, the throughflow entering compartment j. The elements of this matrix
indicate the fraction of compartmental throughflow that originates from a another node in the network.
Ulanowicz (1986a) calls the elements of G” partial feeding coefficients, since each value represents the

proportion of a component’s "diet” that is derived from a particular "feeding" interaction.

The next step involves calculating the Leontief inverse (N*) matrix. We will follow Hannon’s practice
and call N’ the input structure matrix. N’ and its output structure analog N” are often referred to as a
fundamental matrix (Kemeny and Snell 1960) or a transitive closure matrix (Patten et al. 1976). The
elements of the structure matrices show the direct and indirect contributions of each interaction to
system output. Rcmeml;cr that once matter and energy enter a system, they may visit many
compartments along a large number of possible iJathways before exiting. The input structure matrix is
obtained by subtracting G’ from the identify matrix I (a matrix that is all zeros except for the diagonat

‘elements, which have values of 1), and then inverting the result using matrix algebra:

N =@-c7t - ©)
The elements of N’ can be interpreted as (1) n j is the amount of throughflow from i required to

produce a unit of output in j, or (2) n % is the expected number of times energy or matter that ended

_up in compartment j has passed through compartment i. The variances (stored in the U’ matrix)

associated with these expectations can also be calculated using the equations presented in Patten and
Matis (1982). These variances are useful indicators of the complexity of network structure and flow
distribution. '

The forward-looking output or outflow analysis (also called genon analysis) is concerned with tracing

the fate of inputs through the system to outputs. Because ecologists want to know what drives living
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Table 2.1. Matrices produced by Input/output analysis of the Cone Spring network.
Flows travels from rows (1) to column (j) compartments in this format.

The fractional inflow matrix; G?

1 2 3 4 5
1 000 000 .000 .000 73
2 .000 .000 032 .000 139
3 000 {000 .000 1.000 017
4 006 000 000 .000 014
5 000 1.000 .969 600 .000

The fractions of the total inputs to j that flow directly from i.

‘The fractional outflow matrix; G”

1 2 3 4 N

1 000 .000 000 000 794

2 000 000 014 .000 307

3 000 000 2000 155 084

4 000 .000 000 000 451
000 453 201 000 000 -

The fractions of the total outputs from j that flow directly from i.

{I-G’y* inverse matrix (also known as N*)

1 2 3 4 S
1 1.000 933 933 933 933
2 000 1.169 201 201 169
3 000 039 1.039 1.039 039
g % 018 018 1.018 018

1207 1.207 1.207 1207

Represent the fractions of donor throughflow {direct and mdxrcct)
needed to produce one unit of recipient outflow. - :

(I-G”)* inverse matrix (also known as N™)

1 2 3 4 5
1 1.000 434 199 031 958
2 000 1.169 092 .143 374
3 000 084 1.039 .16l - 186
4 000 247 - J1i3 1.018 - 545
5 000 S547 251 039 ° 1.207 -

‘n}i .

chrmnt the fractions of recipient throughflow generated by one unit of inflow
to the donor.
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Table 2.1. Continued

U* variance matrix (of N”)

1 2 3 4 5
1 000 062 .0623 062 062
2 .000 198 229 229 198
3 000 040 040 040 040
4 000 018 179 .018 018
5 000 249 .249 249 249

" U” variance matrix (of N”")

1 2 3 4 5
1 .000 393 175 031 436
2 000 .198 091 015 389
3 000 106 040 .141 228
4 .000 269 109 018 A73
5 000 433 207 039 .249

systems, and since gutputs in ecological systems are generally dominated by respiration losses, outflow
analysis has been applied more frequently in ecology. It has also been refined and redefined to produce
new insights into the intricacies of ecological organization. The analysis begins with the calculation of
the fractional outflow matrix G" (together, G" and G’ are referred to as fractional or technical
coefficient matrices). Rather than normalizing the fjj by the throughflow 7} entering j, we normalize
by the throughflow T; leaving the donor compartment . Now, the elements of the fractional coefficient
matrix indicate the fraction of throughflow that is generated as a resﬁlt of the demand from another
node. The elements of the fractional outflow matrix are also called partial host coefficients by
Ulanowicz (1986a).

The Augustinovics in#q_tsc matrix N" is obtained in a manner similar to the Leontief inverse:

N = (-6 | ®

(Due to our desire to keep matrix orientation in the from Row-to Column format, the Augustinovics
inverse is seen here in its transposed form.). N* is the output structure matrix for the network. Each
element can be interpreted as (1) the output yj in compartment j generated by a unit throughflow T; -
in compartment i, or (2) the expected number of times a unit of matter or energy originating in i will
pass through compartment j before leaving the system. U" is the matrix of variances associated with
the elements of G™.The fractional coefficient matrices (G, G") and the structure (N’, N*,) and variance
{U’, U") matrices for the Cone Spring ecosystem are presented in Table 2.1,
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We will later see how the structure matrices can be used to determine the origins and fates of any given
flow in a network, including specific techniques for elucidating the underlying trophic structure. These
matrices also serve as the foundation for the development of a number of information measures, many
of which can be used to measure growth, development, specialization, and diversity in ecological

systems.

Attributes of Individual Compartmenis

. Network analyses produce results that permit the description of an ecological system in terms of: 1)
attributes of the components, 2) relationships between the components, and 3) total system properties.
In what follows, this section focuses on attributes of components, the next three sections focus on
between compartment relationships, and the following three sections focus on total system properties.
One of the goals of this work is to identify what ecological insights are gained from thoroughly analyzing
a network and how well these insights carry over in comparisons of similar systems and very different

ecosystems.

In characterizing individual compartments, the estimation of compartmental throughflows (T7) is
aseful for revealing the relative rates at which the flow medium enters and leaves each compounent.
Where standing stocks are also available, the turnover rate for each compartment can be calculated
by dividing compartmental throughflow by the component’s standing stock. Turnover rates are
‘measured in units of inverse time and indicate how fast matter and energy are exiting from the
“'compartment (because turnover rates are based on losses from compartments, they are presented as
megative numbers). Fést compartments have high turnover rates compared to slow ones. The inverse
of the turnover rate is turnover time, which is the time required for the equivalent amount the original
standing stock to pass through the compartment. In the Cone Spring network, detritus (xs) turns os:er
every 113 days -a much slower rate than the living plant biomass (17 days) that supplies the detritus

pool and the bacteria (8 days), detritus feeders (9 days), and carnivores (17 days) that depend on it for
nourishment. '

Finn (1976) and Patten et al. (1976) introduced a number of flow analysis measures, some of which ~- 7

tharacterize properties of individual system components. By calculating the rows sums of the N* matrix,
we obtain the outflow path length vector ply. If ply; equals 1, the outflow from  is directly connected
lo compartment i. A value greater than 1 is obtained when indirect links (longer paths and/or cycles)
help produce the outflow fromi.

The column sums of N *produce the inflow path length (plz) vector. Each plzj measures the penetration

of exogenous and endogenous inputs to compartment j into the network.
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The outflow path fengths for the Cone Spring model are 1.0 for plants, 4.37 for bacteria, 3.4 for detritus
" feeders, 4.4 for carnivores, and 3.37 for detritus. The inflow path lengihs are 2.6 (plants), 1.6 (bacteria),
1.5 (detritus feeders), 1.9 (carnivores), and 2.06 (detritus). The inflow path length values for the animal
components (including bacteria) of the ecosystem are derived entirely from endogenous inputs. For
the compartments receiving exogenous inputs, the solar inputs the plants receive travel deeper into

the network structure than do inputs to the detritus pool.

Finn is also responsible for introducing the first measures for estimating the amount of cycling in
ecological flow networks. The diagonal elements of the structure matrices N* and N’ represent the
number of visits that a unit of flow starting or ending in a given compartment makes to that same
compartment. The number of straight through visits is always 1. Therefore, the cycled portion of
throughflow in the ith compartment is calculated as:

ci = [(nie-1)mi) /T . ®
The recycling efficiency is therefore expressed as: '

rei = (na-1)/nii . _ ©
The compartmental cycling efficiencies for the Cone Spring compartments are 0.79, 032, 0.24, 0.45,
and 0.65 respectively.

BILATERAL RELATIONSHIPS

Whereas the suite of measures discussed in the last section focus on the status of single compartments
as they are imbedded in the whole network, much useful information exists concerning the bilateral
relationships between any two nodes of interest where the entire rest of the network serves as the

N

conduit between them.

Input and Output Flow Environs

An input environ is the set of fractional flows generated in the system by one unit of inflow into on'c>
of the compartments receiving input from outside the system. There are as many input environs as
which occur among compartments when one unit of flows leaves one of the exporting compartments.
There are as many output environs as there are 6ompartments which export useful fiows. In matrix
terminology, the fractional coefficient and structure matrices for the ecosystem can be used to trace
the origins or fate of any input, output, or internal flow represented in the network. Let us examine
the backward case first. Because the elements of G’ indicate the fraction of the recipient component’s
throughput that is generated from each donor compartment’s throughflow, it is possible to estimate

the intrasystem flow required to sustain the output from the recipient compartment. One must first



diagonalize the colurnn of the G" matrix that corresponds to the output of interest (for example, to look
at the output from the bacteria in the Cone Spring system, we would use column 2 to form 2 matrix
whose diagonal elements are the elements of column 2 and whose other elements are 0, then multiply
it by the input structure matrix N”, The resultaat matrix T'gis the unit input environ matrix for outflow
yi- The clements of the matrix are generally used to construct a diagram that indicates the location and
magnitude of flow required to generate a unit of output within or from compartment i. Since all
compartmeats in ecological systems lose medium to their envirenment, there will be one diagram for

each compartment. The unit input environs for the Cone Spring ecosystem are show in Figure 2.4.

The unit outflow environs T are constructed in a similar manner as the unit inflow environs. This
time, the elements of the resultant matrix indicate the fate of a unit input into compartment i. One can

2
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Fig 2.4. The unit input environs for the Cone Spring network.The relative amounts of internal
exchanges generated by a unit input to a) Plants, b) Detritus.
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Fig 2.5a-e. The unit outflow environs for the plant and detrital components of the Cone Spring
network. Each figure depicts the amounts of internal flows necessary o sustain the single
unit output shown. Flow units are relative to outputs.
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Fig 2.5 a-e. (continued). ' ' Lo

construct unit input environs for all compartments in the system, but only the ones for compariments
receivingexternal inputs are generally diagrammed. The unit outflow environs for the plant and detrital

components of the Cone Spring model are shown in Figure 2.5.

Total Flow Matrices

Each value in the Leontief inverse matrix represents the amount of flow fromi that it takes to generate

‘one unit of output from j. Such a measure is very useful to know in the field of economics, where

empbhasis is upon exogenous inputs and (especially) outputs. But in ecology the exogenous outputs are

' _dominated by respiration, and the question of how much each compartment contributes, directly and
indirectly, to the sustenance of another, is of more interest. Counversely, one might wish to know the

degree to which a particular species depends upon another for its material existence.
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Szyrmer and Ulanowicz (1987) show how these total intermediate fiows can be calcutated from the

components of the Leontief and Augustinovics inverses. Without going into the mathematical details

here, the total flow from compartment i to j (excluding that which has been recycled back through 1)
is
zij = {(ny -dg) /) Tj @

where 2% is the total flow from { which reaches j {without recycling through i) over all pathways of all
lengths, n’j are the elements of the Leontief inverse, dij = Owhen{ «jand djj = 1 wheni =j,and T}
is the amount flowing through compartmentj.

Looking backwards, it is possible to say how much of the medium arriving atj passed throughi at some
point in its journey through the system:

7= [(ny -dj) /I n&] T; ®)
where 27 is the flow reaching j that at some earlier time passed throughi and »7j is the ijth element of

the Augustinovics inverse,

In general, because of cyclingz’ »2"7. In the Cone Spring example, of the 1675 km]lmzlyr leaving the
bacteria,z"2¢ = 73.02 of those units eventually reach the carnivores; whereas of the 370 units consumed
by the carnivores,z’2¢ = 6354 of them passed through the bacteria along the way.

Perhaps the total flow information is most useful in its normalized form. Thus, the quotient 2% / Ti

: repr&cnts the fraction of the total output of { which reaches j and z% I T;, the fraction of s total
" consumption which passed thrcught.ln the output from the program NETWRK , the former quotients
are called *total contribution coefficients”, while the latter are termed "total dependency coefficients.”

: \'I'h.e dependency coefficients are especially uscful diagnostic indices because they represent the
- extended diet of the recipient compartmentj. If one reads down the jth column of the normalized flow

matrix, G*, one sees the fractions of the actual diet of the jth species that come from the various other

_ members of the community, Often the entries in the column are sparse, as most species derive food
from no more than about 4 prey items. However, the corresponding column of the dependency

coefficient matrix is usually filled with many non-zero values that portray the history of the same food.
Occasionally, thé_cxtcnded diets reveal important differences not apparent in the rations of direct prey
(Baird & Ulanowicz 1989). A Chesapeake Bay example would be the striped bass (Monrone saxatillis)
and the bluefish (Pomatormus saltatrix). Both appear -as pelagic camivores. Their extended diets,
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however, reveal significant niche separation. The striped bass is a recipient of energy and material that
was passed up the pelagic grazing chain, while the medium reaching the bluefish had arrived mostly
via the benthic community. This disparity in the extended dicts provided a partial explanation of why
the pesticide Kepone (a contaminant of the James River sediments) was appearing in high

concentrations in the flesh of the bluefish, but was not prominent in the striped bass.

Investigators are troubled at first by the fact that the extended diet columns usually sum to a number
greater than unity (i.e., they do not represent well-normalized probabilities). Their anxiety eases,
however, once they realize that a given particle or quantum of energy usually passes through several
compartments before reaching the predator in question. It is only natural, therefore, that the
dependency coefficients represent a systematic multiple counting scheme. In fact, the sum of any
column of this matrix is closely related to the average trophic status of the corresponding species (see
section on trophic analysis below).

Markovian Transition Probabilities

Earlier, we introduced the fractional coefficient matrices G’ and G", which partition a compartment’s
input and output throughflow relative to its origins or destination within ﬁe ecological network.
Another interpretation treats the fractional coefficients as discrete-time finite state Markov transition
probabilities (Kemeny & Snell 1960, Barber 19772,b). A Markov process is the simplest type of

- stochastic process described in statistics. The condition of the ecosystem is represented as a finite set

of states representing the biomasses in the compartments at one time and the flows between them.
The condition of the system at any time is assumed to depend only upon the condition immediately
beforchand and is mdcpendcnt of all time pnor to that. Thus the condition of the system at one mstant
is assumed to contzif enought information to predict the next condition or transition (chrendrc and
chcndrc 1983). It is called a first order process, since it is only going back one step in time to predict
the next condition. Higher powers of G.’ and G* (for example, G"l, G‘z,...G-'sj reﬁrﬁcnt the kth order
distribution of a unit of medium in cach compartment to all compartments following k transitions.

- Onc of the obwous network charactcnsucs that haslargely been |gnorcd mpreuous dzsalssxons is thc
mportanoe of standmg stocks in dctcrmmmg system structure and funcnon. In fact, oniy in our

discussion of turnover rate and turnover time have standing stocks come into play. Barber (19773, b)

was th¢ first to cast forward and reverse case flow analysis in terms of a Markovian model that

_incorporates storage as well as flow probabilities. Environ analysis (Matis & Patten 1981, Patten &
" Matis 1982) was later introduced as a formal methodology for computing storage partitions in addition

to the usual flow partitions produced by traditional inflow and outflow analyses.
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Environ analysis is founded on the development of linear donor and recipient controlied models of

i system dynamics. Any network (such as the Cone Spring network we use in our cxamples) can be

described by a set of difference or differential equations. For a static linear system, this is achieved by
making each flow a function of its donor compartment, fij = aij xi- The linear coefficients 2 canbe
stored in a matrix A” so that

X = A'X +z. 9)

where x is the vector of standing stocks and z the vector of imports into the system.

The diagonal elements of A" are the turnover rates {expressed as negative numbers) for each
compartment. Alternatively, one can normalize each flow by the standing stock of its recipient
compartment. In this case, the change in standing stock is expressed using the following equation:

x = A%+ Y. (10)

where y is the vector of total exports. A” and A? (Table 2.2) are the forward and reverse linear system
matrices for the ecological network.

Table 22. The forward (A”) and reverse (A”) linear system matrices for the

Cone Spring network.
A" matrix
1 2 3 4 5
1 -39.240 .000 000 000 31.160
2 000 -44.640 643 000 13.720
3 2000 000 -39.730 6.167 3333
4 000 2000 000 -21.760 9.824
5 000 1.454 645 - 000 -3.208 .
N
A’ matrix ,
1 2 3 4 5
1~ 39240 000 000 000 000
2 £00 -44.640 .000 000 44.640
. 3 000 1250 -39.730 000 38480
4 000 000 21760 -21.760 000 e
5 244 447 - 56 047 -3208 =

Knowing A" and A", we can compute the discrete time Markov transition matrices P* and P* as follows:

"P =(+hAY) (11)

- and

P’ = (1 + h(-A)) , (12)
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where lis the identity matrixand i is ascalar selected 1o guarantec that cach element along the diagonal

of the transition matrices is positive.

In terms of time, h represents the number of discrete points within one unit of time ¢. This makes sense
when one remembers that the inverse of the turnover rate is turnover time, meaning that i must be
small enough that it captures the dynamics of the fastest component {where ¢ is given in whatever real
time units used in formulating the flow rates for the model). The value of % nwst therefore be less than
or equal to the value of fastest compartmént’s turnover time. An & of 1 means that 1 time unit (days,
weeks, etc.) is sufficient for recording the turnover of standing stock of each compartment. An b of
025 days indicates that one must sample at least 4 discrete points within a time unit to catch the
dynamics of the faster components. Each Markovian transition would correspond to 0.25 days.

An clement p"5 of P* indicates the probability that an initial unit of medium will flow from i to j during

t/h units of time, while an element p’ of P indicates the probability that the unit of matter or energy

now inj traveled from i during one transition interval. The prbbabilitis on the diagonal {p"s and p%)
' then indicate the probability that the medium originated or remained in { duringone transition. Table
2.3 shows the Markov transition matrices for the Cone Spring ecosystem.

Table 2.3. Forward (P} and reverse (P?) Markov transition matrices for the Cone Spring
netwark.

P" matrix
1 2 3 4 s 6
1 387 - 1000 1000 000 487 126
2 2000 303 010 000 214 471
3 2000 1000 379 096 052 an
1 2000 1000 2000 659 154 187
5 000 03 010 1000 949 017
6 946 1000 000 1000 054 2000
P’ matrix
1 2 3 4 5 6
1 387 000 000 000 000 613
2 1000 303 1000 1000 698 1000
3 1000 019 379 1000 601 1000
1 000 1000 340 659 1000 1000
s 039 007 001 001 849 003
5 195 299 154 017 335 000
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. This approach essentially relates the flow and standing stock properties of the system. However, as
Barber (1978b) points out, a high resolution perspective of an ecosystem might view ecological
tresources as particulate in nature. Since 2ll of the particles that comprise a compouneat’s standing stock
presumably possess the same potential behavior, it follows that a model of resource flow could follow
the movement of one such particle through the network, where the distribution of all particles is
represented in terms of the random variables of a Markovian transition matrix, and the flow of particles
among components is described as a stochastic process. The meaningful application of such a model
10 an ecological network rcqﬁircs that one exercise care in aggregating components. For example, it
would be incorrect to lump a fast component with a slow one, since the probabilities for retention of
medium would vary significantly between the two.

Markovian Flow Partitions

The higher powers of the P* and P* matrices can be used to trace the fates or origins of a unit medium
of flow through the network over k transitions in the same manner as that described earlier for the G*
and G’ matrices. P and P’ are time-referenced by k, so the probabilities now represent probabilities
of transfer over ¢k units of real time. The Leontief and Augustinovics inverses (and associated
variances U" and U*) can be computed for each of the Markovian probability matrices using the
following equations: '

=q-pyl (13)

and

=q-py? . - )

The clements of Q" and Q’indwate. inthe ﬁrstmsc,thenumbcr of times material m;wﬂlvxsn jbefore
leaving the system, and mthc second case, the cxpccted number of times substance in f has wsztedj
since entering the ,sys;cm. When the model.is parameterized so that h approaches infinity
{corresponding to continuous time), the P* and P’ matrices are identical to the G* and G* matrices, SO
that N* and N are equivalent to Q" and Q' (Patten & Matis 1982). Patten (1985) has developed an
extended eaviron analysis (not prescnted in this volumc) thatisa mxcrosooplc analysis for tracing the
position of particlesin thc network through time. - o o
A pair of Markovian unit input and output environs (E'j and E'j) can be computed for each system
input and output by multiplying the linear coefficient matrices A’ and A" by a diagonalized column of
their negative inverses (see Patten & Matis 1982). These environs are storage-referenced rather than
throughflow-referenced (as are the environs T and T%). The elements of the output environ matrix

E'jare interpreted as the flow from i toj that is generated from a unit input toi. The values in the input
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environ matrix E'j give the quantities of flow needed to generate a unit of outflow from /. Standing

stock is now treated as a source of flow for this set of environs.

Qrigin and Destination Probabilities

When one computes the row or column sums over all environs E'and E%, the end resultis an expression
of the origin (W’) and destination (W) probabilities for the ecosystem resources. Thess matrices are
shown for the Cone Spring model in Table 2.4. Each entry w' indicates the probability that medium
in{ had entered the system via the inflow toj. The elements of W™ give the probability that a unit of
medium entering the system as z; will exit via the outflow from j. In Cone Spring, we can see most of
the exogenous energy entering from both primary production and detrital inputs will exit via the
detritus and bacteria compartments. The origin probabilities show that the overwhelming majority of
energy in all compartments can be traced back to the sun.

Storage Partitions and Residence Times

The most significant analytical contribution of discrete time environ analysis is its ability to estimate
the mean residenice times and storage partitions for network medium. The mean residence time
matrices M” and M" (Table 2.5) are calculated as -(A’)'1 and —(A')' respectively, When corrected for
the Markov time step k (as are all the matrices computed using the ENVIRON program), the values
stored in these matrices indicate the mean time that a particle now in oompamnenti has resided in i
since entering the system (M) or the average time that resources m:wﬂlspcndm;beforclmngthc _
system (M"). When referenced back to system input (z) or output (), one can estimate what poruon

.- of each compartment’s standing stock was gcncmtcd by cach system input (stored in matrix X) and

what panofcaphmd;ngstockwﬂllcgvethesystcmmcaehoutﬂow(X’). Forexample, fortthonc
" Spring ecosystem (Table 2.6), all of the plant biomass is generated via the input 10.x;, but the other
compartments owe some of their standing stock to external inputs to the detritus pool. On the other
hand, energy that began as plant biomass may ultimately leave through any of the system’s outflows.
However, an almost equal amount of the energy bound in the detrital biomass will ultmatcly cxu
" through bactenal mcbabohsm as that dlrecﬂy lwvmg the dctntus compar.tnent.

TROPHIC ANALYSIS

© Anyone who has worked in the field of ecology for even a short while is usually impressed by the
* complexity of the feeding relationships within an ecosystem. The feédiﬁg “web" is often quite
convoluted. Given this, one might well ask of what use is it fo continue to speak of herbivores and
carnivores as if the feeding relationships always could be sequenced in a linear fashion? If one focuses

on any species beyond the primary producers, then one is often faced with a sitnation where there exists




35

Table 2.4. Matrices of destination (W') and origin (W) probabilitics for the

Cone Spring network.
W Matrix
1 2 3 4 5
1 206 295 151 017 331
2 000 000 000 000 000
3 000 000 000 000 000
4 000 Z000 000 000 000
5 000 2N 19 021 417
W Matrix
1 2 3 4 5
1 1.000 000 600 000 J
2 933 000 000 000 067
3 933 000 000 000 067
4 933 000 000 000 067
5 933 000 000 000 067

Table 2.5. Mean residence time matrices for Cone Spring ecystem resources

M Matrix
1 . 2 3 4 5
1 025 000 000 000 000
2 024 026 001 001 376
3 024 004 026 001 . 37
4 024 004 026 047 376
5 024 301 001 001 376

The mean time thata particle now in compariment i has resided in j since
entering the system.

M” Matrix
1 2 3 4 5
1 025 009 . 005 . 001 299
2 .000 026 002 - 001 117
3 2000 002 026 007 058
4 .000 006 285 047 169
5 000 012 - 006 002 376

The average number of times thata paftic!c in i will cycle to j before leaving
the system.

RS
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Table 2.6. Storage partitions using erviron analysis for the Cone Spring network.
Variances in parentheses.

Inflow Z, partitioned among compartments X,

X1 285.000 (81225.01)
X2 108.819 (51919.48)
X3 55.996 (29603.41)
X 4 15.866 (16339.81)
X5 3340.548 (L169E+03)

Inflow Z partitioned among compartments X;

X1 000 (.000)
X2 7.281 (198.309)
X3 4.004 (116.378)
X4 1.134 (66.068)
Xs 238852 (57050.450)

Outflow Y, partitioned among compartmeats X;

X1 $8.686 (3444.160)
X2 000 . (.000)
X3 2000 (:000)
X4 000 (:000)
Xs 000 (.000)

Outflow Y, partitioned among compartments X;

X1 83.951 {8055.764)
X2 92.469 . (8550570}
X3 ) 3.426 (620.549)
X4 2.846 {931.387)
XS5 1327.794 (1763035.000)

Outflow Y, partitioned among compartments X,

X1 - L 43441 . (121315) ,
X2 D ga60 (708.929) SN
X3 47415 © (2248.191)

X4 1.463 (245.954)

Xs : 682328 - (465571.111)

Outflow Y, partitioned among compartments X,

X1 .. 4827 (26.641)
X2 . s13 (8.878)
X3 . ST 5306 (28.155) 2
X4 . 9.491 : (90.073)
Xs 76357. (5830.469)

Outflow Y, .pa:tiﬁoned among compartments X;

X1 94.392 (10184.020)
X2 15057 (2504.263)
X3 3.852 {784.492)
X4 3.200 (1177.450)

Xs 1492921 (2228813.000)
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amultitnde of feeding pathways of different lengths that can be traced back from the animal ofinterest

to the primary producers. As Cousins (1985) observes, "A hawk feeds at five trophic levels”

One strength of network analysis techniques is that they offer the investigator a systematic and
mechanical way of keeping track of the myriad of feeding pathways upon which any given population
within the network depends. Thus, it might have happened that the hawk in Cousin’s network of feeding
relationships received its sustenance along some 75 or more separate pathways leading back to the
plants. If necessary, thosc pathways could be enumerated using the backtracking methods presented
in the next section. However, if one also has a weighted network description of the ecosystem, then
the simpler input/output methods portrayed earlier will suffice to determine how much of the flow
reaching the hawk arrives after traversing pathways of different integer lengths. Suppose that an
analysis reveals that 5% of the hawk’s diet is plants, 35% arrives after two feeding transfers, 40% after
3,15% after 4 and 5% after 5 exchanges. Then the hawk functions on the average tmphié level38 (=
05x2 + 35x3 + 40x4 + 15x5 + .05 x 6). A unique number has been assigned to the trophic
status of the hawk. This value can be compared with the corresponding trophic positions of other
members of the community for purposes of ranking. More interestingly, any change in this value as the
external conditions or community composition change could be used 1o help assess how well the hawk
is adapting to the new conditions. (A lowered trophic status has been hypothesized to be indicative of
stress on the population in question.).

Giventhe partitioning of flows over pathways of various lengths, one could estimate the average trophic
status for each compartment in the network. Also this information is useful in constructing a picture
of the trophic status‘of the entire community. Lindeman (1942), for example, envisioned a trophic
pyramid, or oonmtenaﬁc;n of trophic relations wherein the amounts transferred to each higher level
would becomé progressively smaller. The same matrix methods we used to portray the predator’s diet,
- makes it bossib!c to apportion the activity of, say, the hawk to a series of abstract trophic levels 2 thm
6in such away that the matter and energy of the systemis conserved. The resulting hypothetical trophic
chain would yield a profile of the efficiencies of trophic transfer that could serve as a diagnostic of how
well the community is functioning. For example, well-developed communities could be expected to
have longer trophic chains with more material and energy reaching the higher levels. Stressed
communities, on the other hand, are hypothesized to possess short, but intense chains of transfers.

The pivotal question remains how to calculate the trophic apportionments. A basic method for doing
this was described in Ulanowicz & Kemp (1979) and is sketched below:
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Recali that the elements of the input structure matrix, g% represent the fraction of the total input to
that flows directly from i. The utility of the matrix G is that its successive powers quantify how much
flows from i to j along all pathways of length equal to the power to which G’ is raised. For example, the
ijth element of [G’}3 {the matrix G’ multiplied twice by itself) is precisely the fraction of total input to
j which flowed from i along all pathways of length 3 connecting i to j. Hence, if one begins with a
knowledge of how much each population acts as a primary producer, one can use the powers of G’ 10
see how that primary production reaches the organisms at higher trophic levels after each succeeding

transfer.

If z; represents the external input to compartment { and T; the total flow through {, then the quotient
zi/ T; will be taken to quantify the degree to which i actsas a primary producer {or supplier) of medium
to the network. Consider a row vector with elements L; =z; /7; . It follows that the product LG® will
also be a row vector whose elements describe how much arrives at each node after exactly one internal
transfer, that is, how much each population feeds at the second trophic level. In general, L{GT™ will
be arow vector giving the fraction of its total consumption which each population receives at the mth
trophic level

If the feeding network contains no directed cycles (a simple cycle is observed when the initial and
terminal nodes of a sequence of arcs are identical, but none of the intermediate nodes are repeated),
the sequence of row vectors just described will truncate (yield a row vector of all zeros) after at most
n-1 steps, where n2 is the number of nodes in the feeding web. It then becomes possible to construct an
n x n matrix L whose ith row is identical to L{G'"L. This matrix is called the Lindeman trophic
transformation matrix. The ith row of L describes how much of the feeding activity of each population

- takes place at the ith trophic level. It usually happens that only the first m rows (it < n) are non-zero,

hence the aggregation of  species into m levels. The jth column of L shows the fractions of the total
feeding activity of population j that occur at each trophic level In a network without cycles these

 columns will always sum to unity, indicating that all activity has been accounted for.

The concept of trophiclevelis b&st confined to living, feeding organisms, so that the creation of L will
involve only the living species. It is for this reason that in the standard data format used in this book
the living members of the community should appear first in the compartment list. This dllows the
trophic aggrcgaﬁon routine in NETWRK to operate initially only on the living food web. Pimm (1982)
relates how directed cycles are rare among the livings members of an ecosystem and are usually of very
small magnitude if they do occur. Hence, in the event that an ecosystem network does possess a few
small cycles in the food web, these usually can be removed (see the section on cycle identification
below) without significantly impacting the subsequent trophic analysis.
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welfare is how much this capital actually circulates. Hannon (1973) suggests that ecosystems bear more
resemblance in this regard to economic communities than to physical systems. The activity of a system
is often the matter of most immediate concern, as evidenced by the intense interest insuch activity as

the gross national product.

Hannon suggested that the aggregate of ail the transfers, otherwise known as the total system
throughflow or throughput, should be the primary measure of system size. The equations used to
calculate T"depict it as the sum of all internal and exogenous inputs 10 sysiem components, or the sum
of all outputs (endogenous flows, exports, and respirations) of all the compartments. There remains
some disagreement on exactly how to calculate T (Hannon 1973, Finn 1976). The most inclusive sum
(of all external and internal flows) is now gaining favor, i.¢., the sum of both of the input and output
representations of T described earlier. This all-inclusive form of the total system throughflow is the

same whether viewed from the input or the output perspective and remains well-defined, even if the
system is not in balance. We therefore recommend its use as calculated in the programs NETWRK,
ECOSYS and ENVIRON.

The non-inclusive value for Tfor the Cone Spring network is 30,626 keal/m%yr. The all-inclusive value
for total system throughput is 42,445 keal/m%yr.

It should be noted that T increases with the number of subdivisions into which the systclﬁ is divided
and is therefore dependent upon the degrec and manner of aggregation decided upon by the
investigator. A special case occurs when compartments are aggregated by the program AGG which
poolscompartmentsspecifiedbythe reseacher. When two or more compartmentsarepooled, the ﬂovés

; between the previously separated compartments are modelled as loops leaving and re-entering the
" new pooled oompartmcnt. Under these circumstances (with "self loops”) T remains the same when
 compartments are aggregated (sec Warwick and Radford 1989, this volume, for examples).

Finn Cycling Index

Ofthe activity represented by T, some reprécnts medium flowing through the system, whereas the .
r&stot‘thcacuvuyoonsmts of medium being cyclcd within the commumty Asdiscussed in the ptcvmus‘ o

section, the exact proportions of these two componeats is eoologmlly significant. Odum (1969), for ‘
example, cites an increased amount of cycling as an important attribute of more mature ecosystems.
(There are indications [Ulanowicz 1985, Schneider 1988], that the immediate response of a system to

. acutrophying stress is to increase its proportion of internal cycling. This is interpreted as a sign of a

healthy systcrﬂ coping with stress.} Most agree that the proportion of recycle ina networkis asignificant
component of its overall status.
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The reader will recall that the diagonal elemenis of the total flow describe exactly the amount of flow
which leaves compartment § and eventually makes its way back to i. That is, it represents how much of
the throughput of f is engaged in cycling. It follows that the sum of the diagonal elements quantifies

the total amount of system activity devoted to cycling as:

o
Toe =X 2% =% 2% (1)
; P

where Tgx is that part of Twhich represents cycled flow. Accordingly, the fraction which this amount
comprises of the total system throughput is calied the Finn cycling index, CI, where

CI = ToelT. (16)

In Cone Spring Tge = 2816 km]lmzlyr. giving a Finn cycling index of 0.0663.

Average Path Length

The cycling index gives the investigator an idea of how retentive a system is. There is another measure
of system retention called the average path length, which combines the attribute of recycle with that
of trophic length. The average path length (APL), as its names implies, is the average number of
transfers an arbitrary quantum of medium will experience on its trip through (and around) the network.
H Zis the sum of all the exogenous inputs from other systemns, then T- Zis the amount of flow occurring
after the medium has entered the system. It follows that APL = (T - Z) / Z will yield the average
number of times this input is transferred by the system. In Cone Spring this quantity comes t0 2.59.
One would expect APL to rise under normal succession and to decrease in the face of stress.

_TOTAL SYSTEM PROPERTIES: MEASURES OF STRUCTURE -

. Thie measures examined in this section characterize the structural self-organization of an ecosyster.
R By structural 6rganimtion is meant the way in which the different compartments are interconnected.
These interconnections are determined by who is eating what. To be more precise, a compartment can
be treated as a source or as a consumer of resoirces. The structural organimﬁonofaueoosjstcnﬁis
detcrmmed by the way in which the consumers make use of the other compartments as tuourws.'l‘hc,
set of sources used by a consumer is its resource niche. Characterizing the resource niche of the
compartments describes the structural self-organization of an ecosystem.

A description of the resource niche must characterize each of the individual sources and the total se’

of sources used by the consumers. The individual sources are characterized by the quantity and quality




The entire ecosystem is generally larger than just the living componeants, and most networks of
ecosystems flows include one or more abiotic compartments such as detritus or inorganic nutrient
pools. [t is through these non-living clements that the preponderance of material or energy cycling in
the ecosystem occurs. Although the method of trophic partitioning does not involve the abiotic
clements, the trophic aggregation would be incomplete if it did not in some way incorporate the
recycled quantities. Following an assumption commoaly made during the course of the IBP program,
Ulanowicz (1989} assigns all the non-living components a trophic status of one. This has the effect of
equating herbivory and detritivory in the trophic sense (all of which appeals to the intuition, because
it is sometimes difficult to separate living from dead plant tissue). To complete the mass bafance, the
Lindeman transformation matrix can be expanded by d (the number of non-living members in the
community) rows and columns that are all zeros except for the terminal d x d submatrix,which would

contain a single one somewhere in each columa (usually in the last entry).

The expanded Lindeman transformation matrix is then used to complete the trophic analysis. In the
Cone Spring example, there are 4 living populations, as shown in Figure 2.2a. The corresponding
Lindeman transformation matrix Iooks like the following:

Effective

Trophic level Plants Bacteria Detritivores  Carnivores
1 1 0 0 0

2 0 1 0.969 0

3 0 0 0.031 0.969

4 0 0 0 0.031

{Here the number of trophic levels just happens to equal the number of living species.) To find the
effective trophic level of each of the species, one simply multiplies all the members in each row of the
Lindeman matrix by the number of that row and then adds down the column. As a result, one finds
that the plants are at level 1.0, the bacteria at 2.0, the detritivores at 2.03 and the carnivores at 3.03.
The detritus has been assigned to level 1. ' '

The trophic "aggregation” of the Cone Spring network (keeping the autotrophs and the detritus
scparated for the time being) is depicted in Figure 2.6. The trophic levels are designated by Roman
numerals to avoid confusion with the species designations. The exports and respirations of the troplnc
" levelsare calculated by prcmulﬂp!ymg the actual losses by the Lindeman matrix, i.e,Leand Lr, where
eand r are the column vectors of exports and respirations, respectively. (These results are called the

canonical exports and canonical respirations in the output from NETWRK.) In the Cone Spring
example there are no exports from levels I and IV.



EE

40

To calculate the interlevel transfers and recycles one employs the transformed flow matrix, LFLT in
ways that need not be detailed here (Ulanowicz, 1989). The focal structure in Figure 2.6 is the "grazing
clain." or the transfers from each level to the next higher up. (The Cone Spring network is peculiar in
that it evinces no herbivorous grazing. The usual circumstance is for a network to possess an
uninterrupted grazing chain.) In general each level returns 2 certain amount to the detrital pool, much
of which is fed back into the grazing chain as detritivory {the 7514 kcalfmzlyr shown flowing from D to
level IL) The exogenous inputs to, exports and respirations from, and circulation within the detrital

pool (none) all appear separately on Figure 2.6.

300 255
11180 ) 433 11.6
_— 514 il ] v
2000 - 1 L
5030 254 6.4
8850 : 53
168 )
635 1963 _ 7%
» D
+ 860

3110

Fig 2.6. The trophic aggregation of the Cone Spring network with the autotrophs and detritus
separated. The trophic levels are designed by Roman numcrals, D represents the detritus
_pool.

If the detrital pool is merged with the autotrophs, one sees the classical trophic pyramxd as portrayed
: in Figure 2.7. Hcrc the interlevel transfers form 2 “Lindeman spine” of ever dea'camng flows falling
| from 13,778 units into trophiclevel I toa scant 116 into trophiclevel IV. The uniform decrease allows
" one to calculate thc trophic efficiency of each level as the amount it transfers to the next hlghcr level
. divided by the amount it received from the one belowit. In Cone Sprmg these efficiencies are uniformly
-decreasing. Experience with a variety of eooldgial networks shows that there is a tendency for trophic
) : ‘efficiencies to decrease at higher levels. The trend is not without cxccpuons, however, and it appears
o7 that each exception can be traced back through the Lindeman ttansformatton matrix to an mtetcstmg
. ’peamang-ofthenc:workbemganﬂmd(saud&wnma 1989). - S BT

Despite the obvious complexity of most observed foodwebs, it is apparent that network analysis can
be employed to reveal an underlying canonical trophic structure that is useful for interpreting how a
particular ecosystem is functioning.
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Fig 2.7. The trophic aggregation of the Cone Springs network with the autotrophs merged with the
detrital pool (I + D). ~

CYCLE ANALYSIS

Positive feedback is a critical phenomenon in determining overall system structure. Positive feedback B ' -
occurs in ecosystems when flows cycle among compartments. Compartments engaged in positive ' *
cydingwillhawieanincreaseinoutput relative to those compartments which do not. This couldresult .
in a strong competitive advantage over non cycling compartments during growth phases. As well, *
positive feedback may also be a stabilizing factor in systems with a time lag. Cycles in ccosystems are

an important factor contributing to their autonomous behaviour (Ulanowicz 1983, 1986a).
Furthermore, it has been argued (Kay 1984) that the organization of flow in eoosystcms rcﬂects a
tendency to degrade the exergy content of thcﬂowmgcnergywhileconscmngmatena]s ﬂowmg wuhm )
the system. Exergy degradation is related to stra:ght-thmugh flows, while matcnal oouservauon is
relatcd to the cydles in the ecosystem. These are reasons for studying the qclmg in ecosystcm ﬂows_
and in particular’ for separating the flow network into two componcntS' the cyclcs and thc_
stra:ght-through ﬂows. - . T

The process of separating cycles from stra.lght-tb:ough flows has two distinct aspects.Thc first mvolves .
ldcnufylng which components are eonnected togcther to form a qde. Tlns isa straxghtforward
topological problem whose solution ¢ n be ! ie € secor

aspectinvolves pamuonmg the flows: among compartmcnts mto thosc asoaated wn.h cycles and those
associated with straight-through flows. Thisis aproblean which has not been dealt with extensivély aﬁd‘ _
which still requires further investigation. -
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What follows is a brief description of the process of identifying cycies. More detailed descriptions can
be found in Ulanowicz (1983, 1986a). The description of how NETWRK accomplishes this task can
be found in Ulanowicz & Kay (1986). The flows between various pairs of compartments are defined

by non-zero entries in the exchange matrix.

Topological Cycles and their Enumeration

The identification of the structure of the cycle, that is, what is topologically connected to what to make
up the cycle, begins with a depth-first search (See Ch. 6 of Horowitz & Sahni 1984). The purposc of
thé search is to identify the cycle arcs. Cycle arcs are connections between compartments whose
direction is from a higher compartment number to alower compartmental number. In the Cone Spring
example the arc from detritus to bacteria (from 5 to 3) is a cycle arc. ¥ one searches for cycles starting
only from those compartments which have cycle arcs into them, one is assured of finding all the cycles.
This significantly cuts down on the time for searching out and enumerating all the cycles.

Thenextstepisabacktracking search. Theidea of backtracking search is to start with one compértment
and see if it is connected to the next higher mumbered compartment (ic., is3 connected to 47) Ifitis
connected, thenwe see if this next compartment (4) is connected to the lowest fiumbered compartment o
not already visited whose number is as least as great s the starting compartment number (e, is4
connected to 57). The process continues until the starting compartment is reached or untd we ﬁnd a
compartment which is not connected to any compartment whose number is lughcr thanthcstarnng :
compartment number and which has not been visited. In the formcrmseal:stofthcwsztcd‘

compa:hncntsconsumtsammplccycle.lnthclaucr mscwcbad:up oncoomparunentmourhstand'_f" -

seclfnlseonnected to the second ncxtlowwtnumbcred compamnem not alrwdyvisited (e 153.,,
conneaedtos. g:vcnthats uoomcaedto4 and4xsnot conncctedto anycompamnéntwhosennmbcr ‘
ssgreaxerthanS,norto3)andsoon. R '

“This is an algorithm which is best described by pictures rather than words. The idea is to treat cach
compartmentasadot.'l‘hcdotsarenumbaed.Compartmcmszand;arcconnectedlfthcijthelcmcnt
E ofthce.xd:zngemm:snon—uro.Onemcstoﬁndapath.alongthcaraconnccungthcdo&,whlch;

_;'fmmanydotyonmayonlytrytofoﬂowapathathcrtothclowwtnumbucddo Aw'ﬁbsen :

Forthe ConcSpringcmmplc t.herc are$ single cycles (See Figure 2.8). qu the Crystal Rivcr ccosystcm
 of 17 compartments (see Ulanowicz 1986a) there are 119 cycles. The number of possible cycles goes




E

' ldennfymg the amml arcin ead1 cyde. In each qde, thcrc is one arc whxch has thc smallat ﬂow
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up as approximately the factorial of the number of compartments. Luckily, most ecosystems are very

sparse, that is, very few of all possible connections are actually made.

' Fig 28. The five snnple, directed qdw ot' encrgy ﬂcw in thc Cone Spnng nctwork wc:ghtcd?w

accordmg to circuit eomplcuon probabiln;m.
“ P ) . i '\. =
;’ - i .

Functlonal Cyclos and their Removal

Onoe the structure ot' thc qdw has becn 1dent|ﬁed, thc nextstep is to scparate the ﬂow network mto' r

through it. If this arcis removed and the value of thc flow through it is subtracted from the flowi in ea
of the other arcs in the cycle, then the qrdc is cﬁ'wuvely removed from the flow network. Thcrc is nc :
other arcin the cycle whose flow rate could be set to zero (thus breaking the cycle) without: some flows

in some cycle arcs becoming negative. Thus, the critical arc is the cycle are with the smallest flow
through it.
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[t is most likely that an arc is part of more than one cycle. The collection of all the cycles which share
the same critical arc is called a nexus. When a critical arc is removed from the network, all the cycles
in the nexus are broken. The portion of the flow through the critical arc which is subtracted from each
of the arcs in each of the cycles, is determined by calculating the circuit probabitities. This is done by
multiplying the g7 for each cycle arc to obtain a weight for the whole cycle. The weight for each cycle
is then summed for all the cycles in the nexus to give the nexus weight. The portion of the flow through
the critical arc which is subtracted from each arc of a particular cycle is that cycle’s weight divided by

the nexus weight.

The process of removing the cycles from the network begins by finding the smallest critical arc and its
nexus. The cycles in the nexus afc then eliminated. This is done by subtracting the appropriate amount
from each entry in the exchange matrix associated with a cycle arc from the nexus. Once a nexus has
been eliminated, the updated exchange matrix is again searched for the smallest critical arc. This arc’s
nexus is then removed and so on until all the cycles have been eliminated. The exchange matrix which
remains at the end of this process represents the network of straight-through flows. The matrix which
represents the cycles is found by subtracting the straight-through flow exchange matrix from the whole
network exchange matrix,

Issues for Furtl;er Resarch

The algorithm used in this process is not as robust as one might like. If the compartments are numbered
diffcrcntly, the resulting cycles might be slightly different. Where the value of the smallest critical arc
is shared by more than one arc, the order in whlch these arcs are removed is arbm'ary (The ordct in
which arcs are removed affects the overall pa.tuuomng of cycles and straight-through flow.). Thereis -
a problcm whena qclc has more than onearc with the value of the critical arc (multiple critical arcs). .
It is not clear if these problems can be resolved in 4 satisfactory way. However, Ulanomcz and Kay™™
have mnannmbcr_ot‘ networks through the algorithm and found that these problems affect avery small
pi:roentagc of the cycles.

How one decides on a critical arcand thc pamuomng of its flow is a subject of debate. By subtracting
the total value ofthe smﬂmmomm assummgﬁlata!l the ﬂowthroughmspartofacyclcand none"
contributes to stra;ght—through ﬂow Using the circuit probabilities to assign the flow to the various -
cyclesina nexusis only one'of several possible schcmcs. However, the schemes uscd mthc partitioning
algorithm are the most mtmtlvcly satisfying ones proposed so far. )




45

Finally, partitioning the network into two components {(cycles and straight-through flows) is a
reductionist analysis which assumes superposition. It could be argued that the synergistic effects in the
network make itirreducible. Exercises, such as this book, which test the analytical techniques suggested

in this chapter on a broad spectrum of ecosystems, will ultimately determine the utility of this analysis.

TOTAL SYSTEM PROPERTIES: MEASURES OF FLOW

The order in which analyses are being discussed reflects an increase in the degree to which the
associated variables characterize the tofal system. This progression culminates now in the
consideration of how to quantify attributes of the whole system. That is, how might one encapsulate a
~ property of all of the bilateral relationships into a single number? Such a number would resemble a
state variable in thermodynamics. It would describe the overall status of the system, but not always its
exact configuration. Many configurations can give rise to the same value of the system attribute. Thus,
one should not expect whole system properties to specify exactly what is occurring at, say, the
predator-prey level. The prediction capability of a whole-system index as to what is occurring at finer
scales is minimal at best.

‘What is gained, howevey, is the potential for weaving several of these global variables into a coherent
picture of ecosystem dynamics at the macroscopic level, the possible discovery of a new
phenomenological principle that describes ecodynamics in the same sense that the laws of
thermodynamtics describe the evolution of macroscopic physical systems. Of course, it may eventually
turn out that some of the variables to be described will turn out to be epiphenomenological, and do
not quantify truly emergent properties of ecosystems. Such possibility notwithstanding, the verdict on

this issue is still far from being written, and exf;erimcmation with these quantities is today one of the
most exciting and potcnually fruitful endeavors in alt of scicace. Given the tools presented here, the .

~ readeri is invited to apply these xdcas to his/her coosystcm of interest and to join in the excitement of
the scarch_

Total System Throughflow

One of the first qucsuons one might sk aboutan ecoqstem ishowbigitis. Sizeis gcnerally reckoned
in terms of how much material or cncrgyanobjcctpossesmThus, one could begin by calculating the
total system biomass, or the total energy content of 2l thc coosystem parts.

While these values are certainly germane to the concept of system size, they are by no means its
exclusive determinants. For example, it is of distinct secondary interest to an economist how much

money resides within a particular economic community. What appears to matter more to the general

N7

v
it




48

of resources extracted from them. The set of sources is characterized by the relative sustenance
provided by each source to each consumer. The use of the set of sources, from the perspective of the

whole ecosystem, must also be characterized.

Mathematically, the flows in the ecosystem can be represented as follows: If Fis the matrix of resource
flow between compartments, the total output from a compartment {outj) is given by:
n

oufj =3 fi a7n
i=1

Similarly, the total input to a compartment (iry) is given by:

n

ing =3 fii . (18)
j=1

Then the proportion of the total outputs from all compartments which flows from i is given by:
n

Pi[Xs] = outi [ % outj (19)
j=I

and the propomon of the total flow into oomparunent j which comes from compartment i is given by'
BiXs 1 Xg) = fijling . : (20)
Similarly, the proportion of the totat inputs to all compartments which flow into £ is given by:
- R u V " -
P{Xc) = im I Iing - : : : (21)

X;lsassoaatedmthoulputﬁ'omaoompanmcnt(‘m.:taasasasouroc)andPa[X;]mnbctakenas:.

the probability of aquantum of resource coming from compartment {, Similarly Xcis assoaatedthh R

input toacon_:partmcnt(i.c.actsasaoonsumcr) and Pi[Xc]canbe ml;cnasthcprobabﬂxtyofa quantum' .
of resource flowing into compartment i. The probability distribution Pi[X] describes the

\ compartmenﬁmthesystcmassourws and the probahlhtydlstﬁbuuon P;[Xc] describes oompartmcnts
as consumers. o

It should be noted that only flois into fiving compartments are considered. It s not sensible 6 Gk
about the resource needs of a non-living compartment. Nou—living oompartmcnt-s'act as sources and )
sinks in ecosystems but not as consumers. These definitions also apply to the gcneral non-steady state
situation.
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Measures of resource niche and structural organization (S & D)

Using these definitions and the information theory measures described in the appendix of this chapter,

two measures of resource niche and structural organization can be defined:

D = H[{Xs]or-x Pi[Xs]log Pi[X{] (22)
i=1
and
S = H{Xs/ Xc] (23)
or
n n
S =-3IPi[Xd] = Pj(Xs/ Xa]log Pj{Xs/ Xal; 24
i=1 j=1

where 0 <§S <D < logn.

D measures the diversity with which oompartmentsiarc used as sources by other living compartments.
As the utilization of compartments as sources becomes more evenly distributed over all the
compartments acting as sources, D increases. D, inasense, indicates the degree to which the potenﬁally
available sources of resources are utilized in the particular ecosystem being examined,

S measures the diversity of sources utﬂi;ed by each living compartment, averaged over all living,
-consuming compartments. When § is large, the living compartments are on average generalists, that
is they use many sources of food evenly. When S is small, the compartments are on average specialists,
They have a small number of sources, one ofwhich is used heavily. In effect, § measures the average
amount of choice in picking sources excrased by cach living compa:tment during the tune the
~ecosystem is observed. This is equivalent to measutmg the average resource niche breadth. Note that

-this interpretation s particularly meaningful when the compartments correspond to individual species. <. -

If the flow ratce do reflect the proportion of available resource coming from each source, then §
measures the average relative ambunt of sustenance provided to each living compartment by acﬁ
source. That is, in an inverse sense, S mdxates the: average dependenoe of any one living oompartment
on the available sources. (The larger S, the less the compartmeats depend on any ane souroe,) s

measures the diversity of eootoglcal mtcracuon between the compartments whxch occurs through hthe
food web.




[n summary, D measures the diversity with which the compartment’s outputs contribute 1o the total
resource flows in the system. S measures the average resource niche breadth and, hence, indicates how
specialized the compartments are. Together, § and D characterize the resource niche, that is how

sources are being utilized by the compartments.

The structural organization of an ecosystem reflects the food consumption patters of the species which
make up the compartments. The pressures which shape structural organization {e. g. positive feedback)
act to modify the patterns of source utilization by the individual compacimsats. These patterns can be
monitored using S. These pressures will also affect the overall utilization of sources in the ecosystem.
This can be monitored byD".' Thus, the structural self-organization of the ecosystem can be monitored
using D and S.

Applications of S& D

Following are some examples to illustrate the utility of S and D. Figure 2.9 shows three hypothetical
examples. The compartments labelled X are the compartments as sources and those labelled Y are
the same compartments as consumers. Assume that the same amount of resource flows through each
link. In system (a), cach compartment is as specialized as possible (S = 0) and there is no diversity of
source use (D = Q). In system (b), the compartments are still specialized, but the use of sources is as
diversified as possible (D = log 3). In system (c), the sources are used as evenly as possible (D = log
3) and the one consuming compartment is a generalist, eating from each source equally (S = log 3).

For the Cone Spring mmplc,s 00419and D = 0.2409 These values alonedonot provide us with
much information. § and D are usct'ul for relative compansons of sunilar systcms. 'Ihcy are not
pamwlarlyuscﬂﬂasabsolute measures ofasystemsmtcmlso]auonfromotherstaxcs. When

eompanngvaluaofSandD:tshouldbcremembcrcdthaxthcyarcloganthmlcfuncuons,smaﬂ_,_,4._ -

changs mva.luc reﬂect large changes in the distribution of flows in the System.

\

Two examples explorcd later inthis book, showthcuﬁhzyofSandD One is a warm core nngsystem

{(Ducklowez al. 1989). Tablc2.7shov.sthcvaluesofSandeorspnng, summcrand&ll.'lhcdivemty
(D)mthwhmhthcavailablcsourmarcusedremmnsconstant.Howcvet,Schangaqmtcdramaumﬂy' e

(reml]mg that § andD are loganihmxé) Imtlally the avcrage resource miche is somcwhat divc:sé.zln ;
summer the resource niche breadth becomes qmtc broad (generalists) but by fall has become quite
narrow (specialized). That D remains fairly constant means that the change in resource niche breadth

does not reflect a change by consumers to a single source.



51

Table 2.7. Temporal variation of D and 5.

MAY AUG OoCT

D 12 12
S 0.75 10

e
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D=1g3
§=0
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@
D=ilog3
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Fig 2.9. Three hypothetical examples of flow organization to illustate the utility of S and D.

Ancmmple fromanupwcl]mg (F'cldctal 1989) msbown lnFigu:c 2.10. In this example, S and D
increase together during the initial stag of st su on after thc bloom pcaks “This reflects th
increased availability of resources. As the system 2 moves from,‘ythc bcgummg of the final stage of
succession to its culmination, S falls off rapidly as the food web is dominated by specialists while D
increases shghtly As the system dies out § continues to fall off sharply while D declines gradually.
Further examples and discussion of the use of S and D can be found in Kay (1984).
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Fig 2.10. The change in S and D with time of a plankton system after an upwelling event.

As an ecosystem develops (i.c.,, during succession) it has been arpued that species will become
specialists, Specialization is linked to a more efficient use of the available resources. It would be
expected that S would decrease, ie., the resource niche would narrow with ecosystem development.
It would be expected that, on the average, the sources in an ecosystem would be used more evenly,
since this would normally result in a more total use of the available resources. Hence, it would be
expected that D would increase with development. The upwelling system (Ficld ef al. 1989) is an
example of this behaviour.

The problem of aggrcgaﬁoﬁ in ecosystem modelling has been troublesome for 2 long time. There is
always a trade-off in the aggregation of species into compartments. The more aggregated the system
is, the less it tells you about the real system and the smaller the amount of empirical information
required. In some situations, it is desirable to compare flow nctworks of different ecosystéms.'Ihis is
only possx'b!c if the ecosystems are compamncnmhzcd in the same way. One issucis howto aggregate

s compamnemsmthoutlosmgthemcnoeoftheﬂownetworkitmmggwcdthatSandDoouldbc e
- used in this context as optimizing fanctions. One would aggregate compartments in a way which

minimized the changes in §'and D. In this way the degree of ooméc&vitj within the flow network would
be preserved.

Asoendency and Re!ated Measures

The foregoing mdlws S and Dare mtcndcd by thclr originator (Kay 1984) to quanufy the topologml 5
attributés of ccosystem networks. They represent a continuation of the efforts of Rutledgeetal. (1976)
to use information theory to measure attributes of network structure. Ulanowicz (1980) had also
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recogrized the strength of the Rutledge approach for attaching a number to intensive attributes of
ecosystems networks, Ulanowicz argued that ecosystem networks also have extensive properties, and
that a full quantitative description of the successional process must include both extensive and intensive

factors.

Accordingly, Ulanowicz took the average mutual information of a flow netwerk and scaled this
property by the popular ineasure of system activity - the total system throughflow T. The resultant

product was called the network ascendency and defined as:

n n
A=T3 s@i/DiglGTITT. (25)
i=1j=1

The reader will notice that A is the product of size (T with the dimensions of flow of medium) times
*organization" (the summed terms with the dimensions of information, ¢.g., bits).

That the average mutual information is related to organization follows from the notion that within an
organized network there exists less ambiguity about the pathways over which medium flows. That is,
an organized network is well articulated. An example of increasing network articulation is given in
Figure 2.11. All three hypothetical configurations have identical total system throughputs of 96 usits.
Figure 2.11a is wholly unarticulated. At any of the four nodes there is maximal uncertainty about where
a quantum will next flow. In Figure 2.11b there is only half as much uncertainty, for only a single choice
between two recipients is necessary. Configuration b is better articulated than 2. Finally, Figure 2.11c
is maximally articulated. If a quantum is at any node, there is no uncertainty about where it will flow
next.

Asocndcncy was tailored to enmpsulatc Oumerous phcnomcnologlwl observations into a smglc‘

quantitative smtcment. Odum (1969) had listed 24 separate attributes of more "mature” °°°5Y$tems_ c s

Theése criteriacanbe grouped into four generic categories: () more speciation, (b) finer specialization,
(c) longcr retention and {(d) more cyclmg. All other things being equal, an improvement in any one of
thesc generic propcrucs of a network serves to increase its ascendency.

. Asocndcnq can'beoo’ me a quanﬁté’tivé tool in diagnosing ecosystem change at the level of the wholc S TR
- system. Maturing ecosystems should, on thc'avcrage, increase in ascendency. Early in system

development the rise in ascendency will be due mostly to an increase in aggregate activity, T, while
later on the continuing rise will mostly be caused by the finer articulation resuiting from competition
between parallel pathways. A decrease in ascendency is almost always indicative of a stress on the
system. A small class of perturbations,however, can actually setve to increase the overall ascendency.
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A sudden increase in exogenous inputs can actually increase the ascendency by disproportionately
raising the total throughflow T, while at the same time decreasing the mutual information factor. Such
aset of circumstances is usuatly called eutrophication and leaves its characteristic signature on the tise

in ascendency (Utanowicz 1986b).

6
2 {2
6 5 12 12
s .16 8 12
6 12
6 1 [ 1 3 6 1 1 3
6 12
6 12
P 12 3 12
4 s 4
@ ©)
6

Fig 2.11. Three artificial, closed networks having the same total system throughputs but differing in

- their degrees of articulation. (a) The maximally connected but minimally articulated

- configuration. (b) An intermediate Ievel of articulation. {¢) The maximally articulated
configuration.

: e e / L ‘_‘7__‘.7._‘ . e V] ‘-, . [ - . =
There must be lindits on the increasing ascendency, as no system can grow without bounds. To better

) narrate these limitsin quantitative terms, one may defirie five other scaled information indices for any

arbitrary network. One upper limit/to the mutual information of the network lS the entropy of flows
defined earlier. One may scale this entropy by T to define a quantity known as the Development
Capacity, ' -

. C=-Tx% (TifTMlog(T/T) . -~ (26)
T =] -

In Figure 2.11c the maximally articulated network became identically equal toits upper limit, C, That

was a hypothetical and unreal situation; however, and in any actual network there will always remain

‘a positive difference C - 4, which is referred to as the system’s overhead.
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Part of the overhead is generated by the exogenous transfers. It is possible to identify three separate
components attributable to the inputs, exports and dissipations, respectively. A fourth component
represents the residual uncertainty associated with the presence of multiple or parallel pathways among

the network components, and it is termed the redundancy.

Ifone excludes from the capacity and the ascendency those terms generated by the cxogcﬁous transfers,
one is left with what may be termed the internal capacity and the internal overhead. These measures
may be of interest if one is focusing on erdogenous system behavior. For algebraic reasons not
important here, the internal overhead (the difference between the internal capacity and the internal
ascendency) contains terms generated by the exports and respirations. These companents are called
the tribute and dissipation, respectively. They, along with the aforementioned redundancy, comprise
the internal overhead. =

“The value of the development capacity of the Cone Spring network, along with its four components is:

Development Capacity = 93172  kealbits m%Ar
Ascendency = 56,725 “
Overhead on Inputs = 2652 “
Overhead on Exports = 1920 "
Overhead on Respiration = 21364 *
‘Redundancy = 10511 .

The reader will notice that the ascendency and the four overhead terms all sum to give the capacity.
The corresponding decomposition of the internal capacity looks like:

Internal Capacity .~ = 71372  keal-bitsm¥yr

IntcmalAsocndcncy = 29332 .

Tribute o= 2971 -

Dissipation = 28,558 . .
_ Redundancy I = 10510 .. - “ . - .iu L L o,

Amore complcte exposmon of the meaning of the individual overhead terms and the algebraic details
involved in the dooomposmon of the capacity are all given in Ulanowicz (1986b).

Ascendency, S and D: '111e Dlﬂ‘etences

. Asocndency(A) S,andDareallmmnm of orgammuon.A is meant as a measure of total ecosystcm a
devclop_mcnt. S and D are meant as measures of structural organization. S measures the average (over
allcompa_mncnts) diversity of source use by each compartment and D) measures the diversity of outflow
use over the whole ecosystem. A is meant as an ecosystem level measure (asisD),andnotasa

oompartment 1cve1 measure (which § is). This is the reason Kay uses two measures while Ulanowicz
uses one.
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A, S, and D are related mathematically as follows. A is the product of the total throughput (T), and the

mutual information {f). Looking at equation 4 in the appendix, [ = D - §. Thus,

A =T (D). @n

It should be noted that § and D are logarithmic measures. A is the product of a linear function and 2
log function. Thus, 4 will be more sensitive to system changes which affect the value of T relative tc
those changes which affect S and D . Itis possible thatsignificant changes in § and D will not be reflected
by significant changes in A. However, changes in total throughput (7) are not measured by Sand D 25
they are with 4.

A, S, and D are meant to be used in different situations and are therefore different even though they
are mathematically related. Sec Mann et al. (1989) for arguments as to whea to use which of these
measures of ecosystem development.

CONCLUDING COMMENTS

In this chapter an overview of commonly used ecosystem petwork measures was provided. These
measures are all staticand provide a snapshot of the state of the ecosystem flow network. The measures
tell us about the compartments, their relationships and overall system status. All of the measures
describe only the flow in an ecosystem and not the driving forces behind the flows. The picture of how
an ecosystem food web functions will always be incomplete until both the flows and driving forces are
known and network thermodynamic models of the ecosystems can be built.

The redlities of available data limit the utility of all the measures presented. The authors of this chapter

" found that the limit on the utility of these measures is the lack of data of the detail (level of aggregation,
. temporal and spatial refinement) necessary to make the measures useful for real world applications.

It is our hope that by making the measures more accessible to field ecologists, through computer

. software like those associated with this book, that further collection of the data needed for the
" application of the measures will be stimulated. Only if this happens will theoreticians be able to refine

thcmcasurgssoaéto givecnﬁmnmentalmanagc:sthétoolstheynmdtomonixorthchalthofour
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APPENDIX 2A
Review of Information Theory

Consider an experiment A, {1] which consists of observing which of N passible outcomes occurs.
Suppose that the probability of the ith outcome being observed is Pi{A]. Then the average uncertainty
an observer has about which event (i.e., which outcome of the experiment) will occur is given by:

7

H{A] = x-Pi[Al log Pi{a]; 0 < HiA] <logN (1)
i=1

H{A] also measures the information gained, on average, from observing which event occurs. It
increases as the number of possible events (N) increases. It also increases as the likelihoods of the
occurrences of the events become more similar, that is, as the differences between the PifA] decrease.
Maximum uncertainty occurs when each event appears equally likely (Pi{A] = 1/N). In this case H[A]
= log N. The uncertainty (H[A]) decreases as one or 2 few events become more likely (larger Pi{A])
relative to the aother events. The function H{A] is known as the Shannon Entropy. It has certain well
known properties such as Symmetry, Normality, Expansibility, Decisivity, Strong Additivity,
Recursivity, Maximality, and Sub-Additivity. (See Aczel & Daroczy, 1975.)

Now consider a second experiment B which consists of observing which of M passible outcomes occurs.
The probability of the jth outcome is Pj{B]. The possibility of experiment A influencing experiment B,
or B influencing A, can be explored using the conditional probabilities Pi{A/B;], Pi[B/Ai] (2]. These
indicate the probability of an outcome of one experiment occurring given that the outcome of the other
experiment is known. Let us assume that the probability distributions are complete. Then the
observer’s average uncertainty about éxperiment B, given that he alrcady knows the cutcome of A is: .

H{B/A} = E -Pi{A] E Pi[B/A{ log Pj[B/Aj]; 0 < H[B/A] sHIBI @

i=]1 j=1

This is the Conditional Entmpy. It also measures the average mformatlon the observer gains from
obscmngevensthxvenhcak&dyknowswh:dlcvcntAocamed_ The inequality states that the
-observer’s maximum oondmoual unccrtamtyabout Bisthesame asthe unocnamty (Shannon cnu-opy)
he would have if he had no a priori information. The minimum conditional uncertainty (H{B/A] = 0)
occurs when the outcome of A completely predicts the outcome of B.
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The composite cvent A + B has a camplete probability distribution associated with it, such that the
probability of ai and bj being the outcome of the two experiments is P4[A+B] = PiBrAIIPI{A] =
Pi[ A/B;IP;[B). The observer’s average Uncertainty About The Composite Event is given by (1).

H{AB] = = 3 -Pi{A] P(B/AT] log(P{A) Pi{BIAW).
i=Ii=1

Using (1) and (2) it c2r be shown that:
H{A,B] = H[A]. + H{BfA]; 0 <H[A,B] <H[A] + H[B] (3)

The inequality states that the maximum average uncertainty about the composite event occurs when
the outcomes of experiment A and B are independent. Note that Bayes Theorem implies that H{A,B]

is symmetric, that is H[A,B] = H{B,A].
The Mutual Information is defined as:

T[A.B] = HIA] + H[B] - HIAB]

This is symmetric. Using equation (3) and inequality (2) leads to:

- IiA,B] = H[B] - H[B/A}; 0 <I[A,B] <H[B] @

I A B] measures the reduction in the observer’s average tinocrminty about event B due to his knowing
which event A occurred {or vice versa). In other words it measures the average information gained
about the outcome of experiment B from performing experiment A. It is 2 maximum when H[B/A] =
0, that is the outcome of A completely predicts the outcome of B. It is a minimum when H[B/A] =
H{B], the outcome of A tells the observer nothing about the outcome of B. Itis not an entropy measure*
in the strict mathematical sense. It increases as the average conditional uncertainty decreases.

The final measure to be discussed is called the reduadancy. The redundancy (R) is defined as:

R=

T maiag)) . RT9=R= e B
(maxl[A,B] = the maximum value I[A,B] can take on for the given experiments A and B)

The redundancy is a measure of howuseful it is to perform experiment A if the experimenter’s objective
is to decrease his uncertainty about experiment B. Performing experiment A is said to be redundant
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if it does not provide any additional information about expeniment B. {n this case the redundancy is a
maximum and {{AB] = 0. In the other extreme the redundancy is a minimum when pecforming
experiment A gives maximum information, that is tells the experimenter the outcome, a priori, of
experiment B. Performing experiment A is not redundant relative to determining the outcome of B
and I{A,B] = maxI[A,B] = H(B].

Some confusion has occurred over this measure. This is due to incorrectly interpreting R as a measure
of the redundancy of performing experiment B after having performed experiment A. The reason for
this interpretation, even though it is incorrect mathematically, is that it seems reasonable given the
English language use of the word redundancy. However, the name “redundancy” for R makes English
language sense in the context of network structures. For further reading Yaglom & Yaglom (1960) is

recommended.

Endnote

{1} Experiment and event are used interchangeably.
{2] Pi{A/B;] = probability that outcome A; occurs given that Bj has occurred.




