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Abstract

Articulating what limits the length of trophic food chains has remained one of the most enduring
challenges in ecology. Mere counts of ecosystem species and transfers have not much illumined
the issue, in part because magnitudes of trophic transfers vary by orders of magnitude in power-
law fashion. We address this issue by creating a suite of measures that extend the basic indexes
usually obtained by counting taxa and transfers so as to apply to networks wherein magnitudes
vary by orders of magnitude. Application of the extended measures to data on ecosystem trophic
networks reveals that the actual complexity of ecosystem webs is far less than usually imagined,
because most ecosystem networks consist of a multitude of weak connections dominated by a rel-
atively few strong flows. Although quantitative ecosystem networks may consist of hundreds of
nodes and thousands of transfers, they nevertheless behave similarly to simpler representations of
systems with fewer than 14 nodes or 40 flows. Both theory and empirical data point to an upper
bound on the number of effective trophic levels at about 3–4 links. We suggest that several
whole-system processes may be at play in generating these ecosystem limits and regularities.
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AN ENDURING QUESTION IN ECOLOGY: WHAT

LIMITS FOOD CHAIN LENGTH?

One of the most important, unanswered questions in ecology
remains, ‘What limits the number of trophic levels in an eco-
system?’ (May 1999). Empirical and applied studies of trophic
cascades (Terborgh & Estes 2010; Estes et al. 2011; Carpenter
et al. 1985) reveal that ecosystems often comprised effectively
just a few trophic levels–e.g. producers, herbivores and preda-
tors–even though complete food webs reveal a much more
tangled network of trophic interactions among species. At
first glance, a deceptively simple answer might seem to suf-
fice–the necessary thermodynamic losses that accompany each
trophic transfer do not allow for an indefinite number of
transfers. While this statement is surely true, it is hardly the
final word. Pimm & Lawton (1977), e.g. suggested a limit to
the number of observed trophic transfers at about 5, but
noted that, even beyond this number of transfers, there
appears to be sufficient energy and material to build further
levels. Indeed, some food chains can reach considerably
longer lengths (see Table 3.3 in Moore & de Ruiter 2012).
Hastings & Conrad (1979) suggested an evolutionary argu-
ment: carnivores that attack other carnivores can also likely
consume herbivores. Evolution of body size at low trophic
levels can also influence food chain length (Ayal & Groner

2009); some herbivores (megaherbivores) evolve to sizes
whereby they largely escape predation, thus truncating the
food chain. Also, if consumers are likely to feed across tro-
phic levels, food chain length is reduced.
Pimm & Lawton (1977) concluded that limits to the number

of trophic levels arise from dynamical considerations–and in
particular by the ability of ecosystems to recover after pertur-
bations–rather than from thermodynamics. Their conclusions
are sensitive to assumptions about local density dependence
(Sterner et al. 1997), but more generally dynamical constraints
could encompass a broad range of spatial and temporal pro-
cesses, such as colonisation-extinction dynamics, disturbance
and the effects of coupling heterogeneous habitats or detrital
and producer pathways by mobile consumers (Rooney et al.
2006). These processes could lead to a limitation on the num-
ber of trophic levels reflecting ecosystem size and variability
(Post 2002; Holt et al. 2010; McHugh et al. 2010; Calcagno
et al. 2011; Takimoto et al. 2012.)
It is still true, however, that for almost any food web,

any ecologist can identify feeding pathways longer than
three. Analyses of unweighted trophic interactions reveal no
obvious limit to trophic pathway length (Whipple & Patten
1993). Many lengthy feeding pathways have been docu-
mented, particularly in aquatic ecosystems (e.g. Fig. 7.2 in
Holt 1993). Baird & Ulanowicz (1989), e.g. enumerated
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pathways of length 8 in the Chesapeake ecosystem, while
the recent compilation by Moore & de Ruiter (2012) reveals
some food chains of length 9. In fact, Bondavalli & Ula-
nowicz (1999) have identified feeding pathways as long as
12 in the Florida Bay ecosystem. However, many consumers
above the second trophic level are omnivorous and cannot
be assigned uniquely to a given trophic level (Cousins 1985).
Usually, a predator receiving resources at some high level
draws most of its sustenance from lower levels (Ulanowicz
& Kemp 1979; Ulanowicz 1995a). In effect, rarefied feeding
at high levels is massively subsidised by consumption at
lower ones. When Baird & Ulanowicz (1989) summed up
the amounts being transferred between trophic levels, they
discovered that only miniscule resources make it beyond the
fifth level. Connection webs can mask tremendous heteroge-
neity in the magnitudes of flows across different pathways.
We suggest that characterising and understanding the lim-

its to trophic levels in ecosystems require one to quantify
the magnitudes and asymmetries among flows (see also Raf-
faelli 2002; Williams & Martinez 2004; Benke 2011). We
will build on a formal approach pioneered by Bersier et al.
(2002) to define a set of network measures that can be
applied either to quantified or to qualitative ecosystem net-
works. We demonstrate how these measures are interrelated,
and suggest that all trophic networks can be characterised
by two virtual dimensions–a width, which we suggest typifies
the effective number of parallel pathways in the structure,
and a depth, which reflects the effective number of transfers
any element experiences during its passage through the eco-
system and is a measure of the effective number of trophic
levels in the system. Using this approach, we will show that
complex webs often have relatively short effective food chain
lengths, and also that the ratio of width to depth for each
network varies surprisingly little among ecosystems. We con-
clude with a phenomenological perspective on the factors
that may lead to limits on these structural features of flow
networks, including the number of trophic levels.

IDENTIFYING CONSISTENT, WEIGHTED FOOD WEB

METRICS

To build towards an understanding of weighted food web
metrics, it is useful to begin with simpler, unweighted metrics.
For any food web we can make simple counts of the number
of nodes N and of the number of flows F connecting nodes to
each other and to the external environment. From these quan-
tities, the average number of flows into or out of each node,
the link-density C, is defined as F/N (flows per node). We sug-
gest that C serves as a measure of the width of the network
(see below). A measure of the depth of the network is the
number of nodes divided by the width, and is given by
R = N/C. These unweighted measures can be assessed for any
food web.
To make more intuitive the characterisation of C as a mea-

sure of width and R of depth, consider the pedagogical exam-
ple in Fig. 1, which depicts an idealised, closed unweighted
network. This idealised ensemble has 6 nodes (N ) and 12
flows (F ), and therefore a width of C ( = F/N = 2) parallel
pathways and a trophic depth of R ( = N/C = 3) levels. In this

example, each node is connected to all those at the next
higher level by flows of a quantity (e.g. energy, mass), and
there are return flows from each node in the highest trophic
level to every node at the lowest level. For simplicity, all flows
are assumed equal in magnitude. The upward flows might rep-
resent the flow of, say, nitrogen up a food chain, while the
downward returns consist of the same element flowing from
the top predator to the detritus pool at the bottom. C is the
number of nodes at each trophic level, but since adjacent lev-
els are fully connected, it is also the link-density (Pimm et al.
1991), or the average of the number of inputs or outputs per
node. In general, nodes per trophic level and link-density are
not equal, and we use C strictly to denote the latter (i.e. F/
N ). The quantity R ( = N/C ) is the number of trophic levels
for this network, or what, more generally, might be called the
number of effective ‘system roles’ (Zorach & Ulanowicz
2003). R is a measure of how many distinct functions are
present in the network. In this example, network roles can be
identified with the separation into trophic levels, because
within any level, all nodes are equivalent (i.e. any pair of them
may be swapped without any change in topology or function).
The total number of nodes N equals RC (in the example, 6),
and the total number of flows F is NC = RC 2 (here F = 12).
Real networks are neither as simple nor as regular as this

idealised example: flow magnitudes may vary greatly, as can
the number of nodes at each level, and there can be complex
flow patterns. Accounting for strong flow asymmetries and
network heterogeneities should yield more robust quantitative
measures of food web structure (Bana�sek-Richter et al. 2004).
Bersier et al. (2002) made a general suggestion that one can
identify continuous metrics that correspond to the discrete
metrics of qualitative food web analyses. Along those lines
Zorach & Ulanowicz (2003) set about to identify for quantita-
tive flow webs a set of continuous metrics f, r, c and n that
match one-for-one the integer values F, R, C and N, and that
are interrelated in a parallel fashion (i.e. n = rc and
f = nc = rc2 ). These corresponding metrics quantify the

C = 2

R = 3

Figure 1 An idealised, closed flow network. There are three trophic levels

(roles, R), with two nodes per level. A flow issues from every lower node

to each node at the next higher level, and flows connect each top node to

each bottom node. Connectivity (C ) is 2. All flows are equal. The

number of nodes N is RC, and the total number of flows F is NC.
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effective number of flows, roles, link-density and nodes,
respectively, for networks that may exhibit wide variations in
flow magnitudes. An important requirement on any suggested
formulae for f, r, c, and n is that, when they are applied to
simplified, equally weighted and uniformly connected idealised
networks (e.g. that shown in Fig. 1), the formula must gener-
ate the correct values of F, R, C and N. We will use the exam-
ple of Fig. 1 to illustrate that this holds.
The measure for the effective number of flows, f, should

reflect the fact that not all flows are equally weighted. In par-
ticular, the effective number of flows should correspond
roughly to the number of large transfers. Here, a useful mea-
sure is analogous to a very familiar one used in ecology to
estimate the effective number of species, taking into account
variation in their abundance–namely, the Shannon diversity
index, H ¼Pk pk lnð1=pkÞ, where pk is the relative abundance
of species k (density or other measure such as biomass or
energy; the subscript k goes from 1 to S, where S is the num-
ber of species). The effective number of species is then
s = eH, which can be rewritten as

Q
k ð1=pkÞpk .

This formula for the effective number of species thus is of
the form

g ¼
YK
k¼1

G
pk
k ð1Þ

which is a weighted geometric mean of Gk, with weights pk. If
the pk are all equal (1/K ) this equation gives the standard
geometric mean. The total number of items is K, and Gk is a
measure of a quantity of interest pertaining to item k; the
weighted geometric mean of Gk gives the effective value (g) of
the quantity of interest as weighted over all items. For the
effective number of species s, Gk = 1/pk, which would be the
number of species if the total abundance were partitioned
among species into amounts all equal to the abundance of
species k. The geometric mean of Gk is taken over all species
after weighting according to each species’ relative densities.

Using a weighted geometric mean de-emphasises rare species
(with high Gk) so that this diversity measure is affected more
by common species. All of our effective network measures fol-
low the form of eqn 1, where the index k will pertain to each
flow. Because the convention is to denote flows by both ori-
gin, i, and destination, j, the single subscript k will be hence-
forth replaced by the indices (i, j ). Thus, Gij will be the
function of the flows that represents the network quantity of
interest (e.g. link-density or number of roles), and the weigh-
tings pij will be the fraction of the total flow represented by
the flow from node i to node j.
As a measure of the effective number of flows, f, the Shan-

non index can be applied to flows exactly as it is applied to
species’ abundances. Consider the partial network in Fig. 2a,
with three equal flows, each accounting for 1/3 of the total.
Destination j is left unspecified. Substituting the value 1/3 for
each pij yields H = ln(3) and thus f = eH = 3, identical to the
number of arrows. Now consider the configuration in Fig. 2b.
It also has three output flows, but the largest accounts for
99.5% of the total. H now equals 0.0340, and the effective
number of flows is f = eH = 1.035, reflecting the fact that the
output is basically just the single large flow. In general, simple
topological counts overestimate the number of effective link-
ages between nodes.
Fig. 2 depicts only a single node of a flow network. To cha-

racterise a complete flow network and build towards our gen-
eralised network metrics, we start by labelling the N nodes
from 1 to N. The magnitude of the flow from node i to j is
denoted by Tij. The total flow in the entire network is denoted
T.. (a dot in the place of a subscript indicates summation over
that index, from 1 to N ), which we use to normalise all flows.
An appropriate estimator of a flow’s importance ( pij) is the
fraction of the overall flow comprised by that flow, which is
tij = Tij/T. For the effective number of flows, as in the Shan-
non diversity index, Gij is just the reciprocal of the weightings,
or 1/tij, and so the effective number of flows in the network
becomes

f ¼
Y
i; j

1=tij
� �tij ; ð2Þ

where the product in eqn 2 is over all combinations i, j = 1, N
for which tij > 0. To see that this give a sensible result, note
that for the pedagogical example of Fig. 1, tij = 1/12 for all
i, j, so f = F = 12.
To gauge link-density c, we first define the total outflow from

node i as ti. (sum of tij over all j ) and the total inflow to node j
as t.j (sum of tij over all i ). Link-density can be defined as
either a measure of the average number of input flows per
node, or the average number of output flows per node (or a
measure that combines both). For outflows, a measure of the
number of output links from node i is the its total outflow ti .
divided by an individual outflow tij . This quotient can be used
as Gij in eqn 1 to yield an effective value of link-density using
all nodes and flows. Using the same logic, the appropriate
function for Gij for inflows becomes t.j/tij . In general, these two
estimates of Gij are not equal, and so to account for both
inputs and outputs, we suggest that one take the standard geo-
metric mean of these two quantities (the square root of the

(b) 1

995

4

(a) 300

300

300

Figure 2 Two nodes, each with three outflow edges of (a) equal magnitude

and (b) highly disparate magnitudes. The quantity f (effective number of

flows, see text) varies from 3 in the homogeneous case (a) to ~ 1 in the

highly skewed configuration (b).
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product). The appropriate Gij for link-density we propose is
thus

ffiffiffiffiffiffiffiffi
ti:t:j

p
=tij, and our weighted measure of the link-density

accordingly becomes

c ¼
Y
i; j

ffiffiffiffiffiffiffiffi
ti:t:j

p
tij

 !tij
: ð3Þ

Applying this metric to the pedagogical example of Fig. 1,
note that c = C = 2.
With weighted metrics for flows and link-density now in

hand, we can define the remaining metrics by analogy with
their unweighted counterparts. In unweighted networks,
F = NC and N = RC, so we suggest that the effective num-
ber of nodes, n, is f/c, and the effective number of roles, r is
n/c or f/c2. As a result,

r ¼
Y
i; j

tij
ti:t:j

� �tij
ð4Þ

Note that in the example of Fig. 1, these metrics match their
intuitive, unweighted counterparts: r = R = 3 and
n = N = 6.
It is useful to reflect on potential interpretations of the met-

ric r. As mentioned above, the term ‘role’ is a measure of how
many distinct functions (i.e. groups or clusters of nodes that
mostly share nodes to which they are linked by input and out-
put flows) are present in the network. In this sense, r measures
the number of effective trophic levels in that ecosystem; it is
also the average number of flows through which an aliquot of
medium passes before leaving the system or being recycled.
More accurately, the effective number of trophic levels should
be r – 1, because non-living pools of energy or material play
an identifiable role in any ecosystem, but the convention is to
exclude such pools when counting trophic levels (Williams &
Martinez 2004). In eqn 4, r is taken as the weighted mean of
Gij = tij/(ti.t.j). If a unit of flow is chosen randomly, tij is the
probability that it goes from node i to node j, ti. is the proba-
bility that it is in a flow out of node i, and t.j is the probabil-
ity that it is in a flow into node j. The quantity Gij is the ratio
of the first of these probabilities – which is a joint probability,
to the product of the other two (i.e. its marginal probabilities).
If all flows were independent, Gij would always be 1, making
r = 1. In such a case, where a randomly chosen unit of flow
came from provides no clue as to where it is flowing. At the
other extreme, where a flow originates might fully determine its
destination (e.g. because each node would have at most one
input and one output), in which case tij = ti . = t.j , so that
r = f. The measure r, therefore, gauges the overall departure of
the system from independence among flows, or the amount of
trophic structure inherent in the network.
The link-density in eqn 3 is high if each flow tends to be a

small fraction of its source node’s output and recipient node’s
input, which is the case if most nodes tend to have many
inputs and outputs. Eqn 3 thus provides a measure of the
average number of different pathways an aliquot of medium
can take through the system.

Since f = rc2, for networks with the same effective number
of flows, a high r implies a low c and vice versa. Insofar as
structure is quantified by r, the fraction of f attributed to or-
ganised structure can be defined as a = ln(r )/ ln( f ), where 0
≤ a ≤ 1 for all real networks. When a is near zero, connec-
tions among nodes are nearly random (in the sense noted
above that knowledge of where an input flow comes from
gives no knowledge as to where it is going); as a approaches
1, the network resembles a set of closed, isolated cycles of
same-magnitude flows.
Finally, we note that r = f a, an expression that compactly

relates the number of trophic levels to both the number of
effective flows and to our scaled measure of organisation.

A CONSTRAINED ‘WINDOW OF VITALITY’

We have now developed a set of measures f, n, c and r (viz.,
the effective number of flows, effective number of nodes,
effective link density, and effective trophic depth of a flow
network) that take into account quantitative heterogeneities in
flow magnitudes, and which generalise the integer indices F,
N, C and R as obtained from box and arrow counts in con-
nectivity webs. We have further shown how these measures
are interrelated. As an illustration of the potential utility of
these measures, we now employ them as phenomenological
tools for characterising patterns in ecosystem networks. We
will then suggest some directions of potential explanations for
the patterns we observe.
The data on network flows comprise a collection of 46

quantified networks of trophic flows, estimated for a range of
marine, estuarine, freshwater and terrestrial ecosystems (the
networks are compiled and publicly accessible at http://www.
cbl.umces.edu/~ulan/ntwk/EcoLets.htm). We begin by plotting
c vs. r for these systems (Fig. 3). While r and c theoretically
can assume any value in the positive quadrant, actual ecosys-
tems appear to occupy only a small subspace of this quadrant
(see also Ulanowicz 2002; Zorach & Ulanowicz 2003; Sol�e &
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Figure 3 Effective trophic depths and link-densities of 46 ecosystem

trophic networks. Dashed line refers to the limits of the ‘window of

vitality’ as explained in the text.
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Valverde 2004). Roughly, most ecosystems in this sample have
values of r < 4.5 and c < 3.0 (dashed line). Ulanowicz (1997a)
called this region the ‘window of vitality’, and we will use this
phrase to describe the observed bounds on ecosystem proper-
ties.
Explaining why real ecosystems are confined to such a small

region of parameter space requires identifying factors that
might contribute to upper and lower limits on r and c. The
minimal values of c and r are easy to identify and explain.
The lower limit on c should be unity, because c < 1 would
imply that the corresponding network is not connected. A
connected network has at least one pathway between every
pair of nodes: c < 1 might arise if one pools data from spa-
tially disjoint ecosystems. Similarly, one expects that r ≥ 2,
because all ecosystems contain at least one pair of ‘comple-
mentary coupled processes’, such as autotrophy-heterotrophy
or oxidation–reduction (Fiscus 2001). These are absolute min-
ima. As we shall see presently, the r and c for real networks
might not approach these extremes.
Delimiting what sets upper bounds on link-density and tro-

phic level is more challenging. Some insights come from gen-
eral systems theory applied to ecological networks. The basic
insight is that too high a proliferation of links can lead to
instability. Regarding link-density, Kauffman (1991) observed
that networks with fewer than two connections per node were
almost always persistent, whereas those with more than three
per node proved ephemeral. Pimm (1982); [p89] suggested a
putative upper limit to stable networks of three links per
node, and Wagensberg et al. (1990) cited the limit of 3 links
per node as a ‘magic number’. May (1972) had provided a
heuristic criterion for the stability of randomly assembled
food webs, based on Wigner’s (1958) semicircle criterion for
the stability of randomly assembled linear dynamical systems.
Ulanowicz (2002) used this May-Wigner heuristic criterion as
a dimensional template (independently of May’s dynamical
assumptions) to formulate a phenomenological upper bound

on c of e(3/e) (�3) links per node. Higher values for link-den-
sity might require special structural attributes of webs, such as
nestedness, or coupling between fast and slow components of
ecosystems (McCann 2011). Allesina & Tang (2012) have
demonstrated that with correlated interaction coefficients and
a wealth of predator–prey interactions, the maximal c permit-
ting ecosystem stability could exceed the above value. Our
overall conclusion that the weighted index c should be low
broadly matches the expectation that system persistence may
depend upon many interactions being weak, rather than
strong, as has been noted by McCann et al. (1998) and
others.

THE LIMIT ON TROPHIC DEPTH

Only the right-hand side of the region of persistence remains
to be elucidated–the upper limit on r – which caps the number
of effective trophic levels and resembles a mean food chain
length (Moore & de Ruiter 2012). As noted above, one rarely
encounters individual species feeding on average well above
trophic level 5, and the calculated r for observed networks
usually falls below 5. Beyond these observations, what empiri-
cal evidence might help define the upper limit on r more clo-
sely?
It turns out that the degree of organisation, a, for the 46

networks exhibits a significant cluster around a � 0.4 (Ula-
nowicz 2009a). Robert Christian (personal communication)
noticed that all outliers away from this cluster (nearly all in
the direction of larger a) are very simplified networks with
few components (N < 13). Furthermore, Bersier & Sugihara
(1997) independently observed that communities with fewer
than 12 members behaved qualitatively differently than more
fully articulated ones. When networks with N < 13 are
excluded, the clustering becomes more pronounced (see Fig. 4,
where systems appear normally distributed within a modest
range of a, from about 0.3 to 0.5).
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Figure 4 The cumulative distribution of the degrees of organisation (a) for

the 16 ecosystem flow networks among the networks in Figure 3 with

N ≥ 13 compartments (using a scale for which a Gaussian distribution

gives a straight line).
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Figure 5 Link-density (c) vs. trophic depth (r) for 16 ecosystem trophic

networks having N ≥ 13. The bold solid curve indicates all networks with

a = 0.401; the dashed box approximates the ‘window of vitality’. The lighter

parallel curves indicate one standard deviation in a above and below the

mean (0.36 and 0.44) and yield values for rmax of 3.4 and 5.8 respectively.
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We note that the clustering in Fig. 4 seems to be around a
particular attractor point, call it a = A. By ‘attractor point’
we simply mean that for a given set X of possibilities for a
variable x, one hypothesises that there are processes that tend
to guide the system over time towards a smaller contained
subset, Y. In the Discussion, we will examine some possible
processes that could generate such an attractor, but for now
we take the observation of bounded variation in a as an
empirical observation, and draw consequences out of that
observation.
In Box A, we argue that the clustering of a represents an

empirical constraint between r and c, such that the upper
bound on c (cx � 3) implies as well an upper limit on r of rx
� 4.38, implying that the effective trophic levels of real eco-
systems rarely, if ever, exceed about 3.4 transfers (rx - 1).
The clustering of a similarly suggests a relationship

between the minimum c and the minimum r. Given a mini-
mum r of 2 and assuming that a is fixed at its mean value
0.401 (as in Box A) gives a minimum c of 1.68 (which is
greater than the topological minimum of c = 1 for a con-
nected graph). Therefore, it appears that link-densities in real
ecosystems with at least a moderate number of compartments
(i.e. ≥ 13) are rarely less than about 1.7, and for moderately
diverse ecosystems we could tentatively raise the floor of the

‘window of vitality’ to this value, consistent with the points
in Fig. 5.
Although numerous trophic pathways of considerable length

(> 5) may be identified in individual trophic networks, our
results indicate that there rarely are much more than 3–4 effec-
tive trophic roles in any ecosystem. The available data thus
support the assertions of Hastings & Conrad (1979) and Roo-
ney et al. (2006) that trophic cascade analysis based on three to
four trophic levels usually suffices for ecosystem management.

LIMITS TO OVERALL ECOSYSTEM COMPLEXITY

The foregoing results confirm the common experience among
system ecologists that by parsing ecosystems to finer and finer
resolution (e.g. with each of thousands of biological species
occupying its own node), one does not thereby increase the
number of trophic roles–although the topological complexity
of highly resolved ecosystem networks may increase apprecia-
bly, the weighted complexity does not keep pace. In practical
terms, as one resolves the network into a larger number of
components, the resulting configurations become ever sparser
and remain dominated by a relatively few large exchanges.
Because the upper-right corner of the window of vitality

represents the approximate bound on complexity that persis-

Box A Linked Limits on r and c

It was observed in Fig. 4 that the value of a is roughly constant (a � A = 0.4) across a wide range of ecosystems. The degree
of organisation, a, in its turn is defined in terms of r and c:

a ¼ ln rð Þ
ln fð Þ ¼

ln rð Þ
ln rð Þ þ 2 ln cð Þ ; ðA1Þ

so that solving for c yields

c ¼ rð1�aÞ=ð2aÞ: ðA2Þ

Eqn A2 relates three fundamental attributes of an ecosystem network: link-density, effective trophic level and the overall degree of
organisation in the network. So if there is rough constancy in the quantity a, there is an emergent relationship between r and c.
Eqn A2 shows that, given that a is assumed essentially be a constant (call it A), the quantity c increases monotonically with

r, and whenever 1/3 < A < 1, that rate of increase in c decreases with increasing r. Furthermore, any attractor point a = A will
be represented by a monotonic curve in the plane defined by possible combinations of r and c. (More generally, if persistent
ecosystems match a range of values for a, then this would define a corresponding band of values for the interrelationships of r
and c.) Thus, it is that the arc of eqn A2 as it traverses the window of vitality might be termed an attractor of ‘balanced devel-
opment’ (Fig. 5). Presumably, sparser ecosystems (with fewer components, connections and trophic levels) would lie on the
curve closer to the left end of the window, and the system would progress along the attractor curve as the system becomes more
complex (both r and c increase), approaching the right end in the limit, which becomes the simultaneous limit to both network
breadth and depth.
The average a for the 16 systems of Fig. 4 is A = 0.401. The exponent in eqn A2 thus becomes 0.75. In Fig. 5, the attractor line enters

the window of vitality at the point r = 2 and c = 1.68 along the left boundary and intersects the upper limit on c (cx = 3.0) at a corre-
sponding value of r (call it rx = 4.38), which represents the maximal number of roles feasible for persistent systems. Accordingly, the upper
limit on trophic level would be about one less than this, or 3.4, a value that remains well below Pimm & Lawton’s (1977) ad-hoc upper
limit of 5. If instead of the average a we use values one standard deviation above and below the mean for the networks shown in Fig. 4
(about 0.36 and 0.44), the maximal value of r (for c � 3) would range from about 3.4 and 5.8, the latter of which exceeds most observed
food chain lengths.
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tent ecosystem networks appear to reveal, it deserves further
consideration. One may designate this point as Ω = (rx, cx).
We recall that the effective number of (virtual) nodes is
n = cr. It follows, therefore, that the maximum n is
nx = cxrx = 13.23. Similarly, one may calculate the corre-
sponding maximum number of effective flows as
fx = nxcx = 39.9. In rough numbers, the most complex eco-
system networks in nature out of the set we have examined
rarely have more than a dozen major players and some 40
dominant flows.
At first encounter, such low limits for nx and fx seem

absurd. After all, local communities comprise many thousands
of microbial and eukaryotic species, each in principle repre-
sented by its own node. But ecosystems tend to be dominated
by only a few nodes. Borrett (2013), e.g. reported that 4 or
fewer nodes accounted for over 50% of the throughflow in
each of a collection of 45 trophic networks. That high-dimen-
sional systems should be equivalent to ones having but few
effective nodes and flows is indicative, we suggest, of the high
degree of functional redundancy in ecosystem networks. It
appears that ecosystems are governed at most by a dozen or
so nodes and a score or two of individual transfers.
Several of the data points in Fig. 5 lie a bit outside the

suggested limits. This may of course reflect the inherent
noise of ecological data, arising in part from temporal varia-
tion in the exogenous environment, or from inherent stochas-
ticities in population and community processes, or from
variability in ecosystem structure itself. Finally, there is the
measurement problem. Practitioners who empirically estimate
ecosystem networks are usually pleased to obtain values for
trophic flows that are within 25% of the actual values (and
even the qualitative connectance webs may be incomplete,
such that not all nodes and flows will be measured). Another
reason is that some of the logic leading to the suggested lim-
its may need to be modified. For instance, ecosystems, as
noted above, may have special structural features that allow
them to surpass the threshold on link-density (Allesina &
Tang 2012), or species may have strong direct density depen-
dence that can permit long food chains to persist stably
(Sterner et al. 1997).
However, it is useful to take the patterns at face value and

scrutinise the outliers for unusual features. The only ecosys-
tem lying to the right of rx is the Charca de Maspalomas (Al-
munia et al. 1999). This system builds to an annual eutrophic
catastrophe and recovers thereafter–a phenomenon the investi-
gators termed ‘pulse eutrophication’. Usually disturbances are
thought to constrain food chain length, but this system sug-
gests that, at times, longer chains can be sustained in systems
with high temporal variability. In some circumstances,
resource pulses can permit species to persist in environments
where otherwise they would go extinct (Holt 2008; Hastings
2012), and such mechanisms could potentially help sustain
longer food chains.
The system with highest c is the St. Marks Estuary (Baird

et al. 1998). None of the factors that contribute to c (eqn 3)
for this system is unusually large, but the aggregate c of this
habitat does significantly exceed those of the other 15 systems.
Further inquiry reveals that Baird et al. had estimated sepa-
rate spatially and temporally articulated networks for their

system, and these were then condensed into a single annual
composite flow network that was used here. It appears that
the system never exhibited redundancies in any of the separate
networks that were comparable to those that appeared in the
composite as the result of aggregation.
Our scrutiny of these two outliers suggests that the limits

we have established might serve as useful diagnostic tools to
highlight either interesting ecological problems or potential
methodological issues. Further analytic developments of the
network metrics we have presented here will need to encom-
pass temporal and spatial heterogeneities, aggregation across
scales, and the vicissitudes of sampling, and should be applied
to a wide range of ecosystems from many different biomes. It
also would be instructive to consider how these metrics might
be systematically influenced by productivity (Arim et al.
2007), ecosystem size and stability (Sabo et al. 2010) and
meta-community dynamics (Calcagno et al. 2011), and to
assess as well the use of stable isotope techniques to characte-
rise efficiently empirical estimates of r in ecosystem analyses
(Hagy 2002; Vander Zanden & Fetzer 2007).

CLUSTERING OF THE DEGREE OF ORGANISATION, a

Our estimation of the maximum number of roles (viz., effec-
tive trophic levels) depended on the observation of clustering
in our measure of aggregate system organisation. Explana-
tions in general for observations of an empirical pattern of
clustering around a small number of values out of a larger
array of potential values, for any particular system attribute,
tend to follow three lines of thought:
(1) There could be historical contingencies, making the clus-
tering a sheer accident of how systems arose.
(2) There could be external constraints (boundary conditions)
that simply prevent a system from moving outside a given
subdomain.
(3) There can be processes that either move systems from
extremes towards intermediate values, or eliminate systems
with extreme values.

It is not clear to us what the first two of these might corre-
spond to for ecosystems, so we focus on the third possibility.
Consider a thought experiment: one imagines that initially a
number of ecosystems are arrayed somewhat uniformly across
the entire spectrum of values for the metric in question, and
then seeks forces that trim the tails of this distribution. These
tail-trimming forces could be internal or external. In the for-
mer, dynamical processes contained within each of the origi-
nal systems may arise which push their states towards
intermediate values. As an example of the latter, by analogy,
in evolutionary biology, stabilising selection within a popula-
tion culls extreme values of a trait, favouring intermediate val-
ues. The mechanics of such normalising selection are well
understood (Bell 2008). Analogues of selection at the commu-
nity and ecosystem level are much less well articulated, in part
because evolutionary biology and ecosystem ecology have
developed largely within separate conceptual domains (see,
however, Wicken & Ulanowicz 1988; Loehle & Pechmann
1988; Holt 1994; Levin 1999), but also because many ecolo-
gists and evolutionary biologists remain uncomfortable invok-
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ing analogues of selection at the community or ecosystem
level (exceptions include DeAngelis et al. 1986; Wilson &
Sober 1989; Swenson et al. 2000; Wright 2008.)
Nevertheless, a standard assumption in community ecology

is that, during community assembly, some configurations of
species interactions may prove infeasible (i.e. some of the set
of species placed together inevitably face extinction), or are
not likely to persist, even if feasible (e.g. unstable dynamics
lead to such extreme fluctuations in abundance that extinc-
tions occur). In either case, across an array of communities a
kind of differential mortality eliminates configurations of spe-
cies that are unstable and cannot co-exist locally. Ginzburg
et al. (2010) have argued that (phenomenological) allometric
relationships in life histories could likewise be the result of
population stability thresholds. Even when a system is inher-
ently persistent, it might exist in a spatial context of a multi-
plicity of other such systems, and the pattern of dominance
by some systems over others could change across the land-
scape. In a meta-community context of recurrent colonisation
and extinctions, communities that suffer catastrophic collapses
are less likely to emit colonising propagules that become
incorporated into new communities, and some alternative
states can come to predominate over others, in effect via a
higher scale competition among communities (Shurin et al.
2004).
Rather than pursue such mechanistically detailed scenarios,

we turn instead to a phenomenological examination of some
factors that could lead to clustering. In part, the clustering
reflects the limits on r and c noted above. For example, when
r is minimum (=2) and c is maximum (�3), the minimal value
of a becomes 0.238. One notes, however, from the definition
of a (= ln(r)/[ln(r) + 2ln(c)]), that a draws near to one as c
goes to 1 for any value of r. So what is preventing the quan-
tity a from approaching 1?
We reason that at small values of a, the increase of organi-

sation can become significant because of the almost countless
possibilities for further organisation. Beyond the cluster, how-
ever, the options for further organisation decrease markedly,
because the secondary and redundant transfers (which con-
tribute mostly to c) wane. The system becomes ‘brittle’ and
subject to catastrophe that would reduce a radically. We begin
to discern that the cluster is the result of countervailing ten-
dencies towards either disorganisation or organisation.
Regarding the first tendency, the second law of thermody-

namics operates at all levels to decrease a. Moreover, the vari-
ety of perturbations that can reduce a are legion–fires, floods,
drought, pollution, etc. So, it comes as no surprise that natu-
ral ecosystems have less organisation than might be logically
possible.
Less obvious is why systems with low a would exhibit a

strong inclination to increase in organisation, or be replaced
by other systems with a higher value. In this regard, we sug-
gest as a major player the phenomenon of ‘centripetality’ that
arises out of any autocatalytic dynamic, including those found
in community and ecosystem processes (Ulanowicz 1997b).
Kauffman (1995) demonstrated how, with a sufficiently large
collection of processes, there exists an overwhelming probabil-
ity for autocatalytic sets of processes to appear spontaneously.
Once an autocatalytic configuration has come into existence,

it will exert a selective pressure upon its constituent compo-
nents and processes that will favour the import of ever more
material and energy into its orbit (Ulanowicz 1997b). This
tendency to pull ever more resources into autocatalytic struc-
tures is aptly described as ‘centripetality’. Bertrand Russell
(1960) called this same centripetal pull ‘Chemical Imperial-
ism’, and he declared it to be the fundamental drive behind
all of evolution.
Centripetality among autocatalytic configurations in other-

wise disorganised (low a) systems would cause the catalytic
structures to grow at the expense of non-participating pro-
cesses (i.e. centripetality pulls resources away from non-partic-
ipants). The growing prominence of the autocatalytic
participants relative to other system elements contributes to an
increase in the value of a (Ulanowicz 2009b). In fact, the closer
a network is to a = 0, the larger becomes the proportion of
candidate processes available to engender autocatalysis.
Unlike the action of the second law, however, the effect of

centripetality is not uniform at all levels of a. At lower val-
ues of a, where autocatalytic cycles tend to be short, the
entry of a new component into the cycle is likely to speed
up the circulation. For example, the appearance of bacteria
is virtually certain to speed up recycling between autotrophs
and detritus. Likewise, the introduction of an herbivore
increases recycling under certain conditions (Loreau 2010;
p243). The case seems less clear for the enhancement of
cycling by carnivores. Carnivorous plants are known to
increase productivity and recycling in oligotrophic communi-
ties (Ulanowicz 1995b), but carnivores do not in general
seem to augment recycling. We have uncovered only one
example in which secondary carnivory magnifies recycling.
Hilderbrand et al. (1999) describe how the contribution of
brown bears (Ursus arctos) feeding on salmon enhances the
cycling of nitrogen in a terrestrial ecosystem. It also might
be noted that if top predators effectively limit the abundance
or activity of herbivores, this could reduce the total con-
sumption of plant production by herbivores, thereby shunt-
ing more primary production into detrital food chains,
which can be relatively short.
The diminishing influence of new higher levels on matter

and energy circulation surely reflects in part the fact that each
transfer is accompanied by losses, which diminishes the
strength of centripetality and works against the inclusion of
yet another compartment into the cycle. This is a form of the
classic assumption, noted above, that thermodynamics may
constrain food chain length. Moreover, a long cycle may
become vulnerable to the spontaneous appearance of shorter,
very rapidly recycling circuits near its base. The accompany-
ing centripetality of the newcomer would very rapidly bleed
the longer cycle of its sustenance. Thus, beyond a certain
point, progressively longer cycles become increasingly vulnera-
ble to replacement by newly emergent shorter ones, as hap-
pens frequently in eutrophication (Ulanowicz 1986). That the
point at which longer cycles become invasible might lie not
much beyond length three accords with suggestions by Has-
tings & Conrad (1979) and Rooney et al. (2006) that concate-
nations of trophic exchanges much longer than three
contribute little to the sustained functioning of ecosystems,
and the observation by Williams & Martinez (2004) (using a
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quite different approach) that mean flow-based trophic levels
of species are < 3, with maxima of about 4.5.
It is becoming clearer, we suggest, why trophic levels remain

within bounds. As Pimm & Lawton (1977) surmised, the con-
straints are surely not entirely due to thermodynamic losses.
We suggest that the topology of interacting trophic processes
plays a decisive role, as does the centripetality generated by
autocatalytic cycles. A fuller analysis of this hypothesis would
require the articulation of detailed processes, which goes
beyond the scope of what we have attempted to provide here.

MECHANISTIC THEORY VS. PHENOMENOLOGY

We have presented a set of interrelated metrics that permit
one to characterise compactly major features of ecosystem
flow networks, and shown that use of these metrics can reveal
intriguing patterns in ecosystem organisation. We then pre-
sented some ideas about why these patterns are found, which
although quantitative, are primarily phenomenological in nat-
ure, not mechanistic in detail. The conclusions drawn here rest
ultimately upon two phenomenological observations. The first
empirical formulation was inspired by work in population
ecology, namely May’s (1972) application of the Wigner semi-
circle rule to develop a criterion for dynamical stability in ran-
domly assembled networks. Ulanowicz (2002) used dimen-
sional arguments (independent of dynamical theory) to create
an analogous (phenomenological) index that conveniently
delimited the stability of weighted digraphs.
The second observation is straightforwardly empirical: the

degree of organisation (as measured by a) in known flow net-
works appears to cluster tightly around 40%. Such an attrac-
tor had not been anticipated, and its discovery provides future
grist for the theoretical mill, including further exploration of
autocatalysis (broadly conceived) as a generator of patterns in
ecosystem structure (DeAngelis et al. 1986). We suggest that
phenomenological observation both feeds and prunes theoreti-
cal constructs. Whole-system regularities alone, however, sel-
dom provide satisfactory explanations to ecologists, who
experience and try to explain nature first-hand at the level of
the organism, and then build up to more complex ecosystems
via population and community processes. Like the counter-
vailing tendencies in a Hegelian dialectic, population biology
and ecosystem phenomenology require one another to drive
forward the science of ecology.
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