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Abstract: In 1872 Ludwig von Boltzmann derived a statistical formula to represent the 

entropy (an apophasis) of a highly simplistic system. In 1948 Claude Shannon 

independently formulated the same expression to capture the positivist essence of 

information. Such contradictory thrusts engendered decades of ambiguity concerning 

exactly what is conveyed by the expression. Resolution of widespread confusion is 

possible by invoking the third law of thermodynamics, which requires that entropy be 

treated in a relativistic fashion. Doing so parses the Boltzmann expression into separate 

terms that segregate apophatic entropy from positivist information. Possibly more 

importantly, the decomposition itself portrays a dialectic-like agonism between constraint 

and disorder that may provide a more appropriate description of the behavior of living 

systems than is possible using conventional dynamics. By quantifying the apophatic side of 

evolution, the Shannon approach to information achieves what no other treatment of the 

subject affords: It opens the window on a more encompassing perception of reality. 

Keywords: apophasis; constraint; entropy; flexibility; hegelian dialectic; information; 

meaning; positivism; probability; sustainability 

 

1. A World with Absences 

The most important thing about information theory is not information. In today’s “Age of 

Information”, as the centennial of the birth of 1960s media guru, Marshall McLuhan [1] is being 

celebrated, his ideas are enjoying a revival. One of McLuhan’s most famous tenets was that truly novel 

discoveries usually induce numbness in society. In such a benumbed state the usual response is to 
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interpret that which is new in terms of that which is old and familiar—pouring new wine into old 

wineskins, so to speak. His favorite example concerned the corporation, International Business 

Machines (IBM), which early in its existence saw itself as designing and manufacturing machines to 

facilitate business. The leadership of IBM long remained numb to the actual nature of its activity, and 

it wasn’t until they perceived that their focus was not building machines but processing information 

that the enterprise grew to mega proportions. 

The same numbness can still be seen in conventional evolutionary theory. In 1859 Charles Darwin 

published his understanding of the process of evolution. The notion of process, however, was totally 

foreign to the existing neoplatonic framework of science, so that those who subsequently interpreted 

Darwin tried to force process into a Platonic mold. The result has been the grievous minimalism now 

known as Neo-Darwinism.  

The encounter of science with information seems to have elicited the same numbness that McLuhan 

had suggested. For three centuries now science could be described as almost an entirely positivistic 

and apodictic venture. No surprise, then, that science should focus entirely on the positivist role of 

information in how matters transpire. But, in a somewhat ironic reversal of McLuhan’s IBM example, 

some are slowly beginning to realize that a possibly more significant discovery may be the new 

capability to quantify the absence of information, or “not information”.  

To assess the importance of the apophatic, or that which is missing, it helps to reframe how Ludwig 

von Boltzmann [2] treated the subject. Boltzmann described a system of rarefied, non-interacting 

particles in probabilistic fashion. Probability theory quantifies the degree to which state i is present by 

a measure, pi. Conventionally, this value is normalized to fall between zero and one by dividing the 

number of times that i has occurred by the total number of observations. Under this “frequentist” 

convention, the probability of i not occurring becomes (1 − pi). Boltzmann’s genius, however, was in 

abjuring this conventional measure of non-occurrence in favor of the negative of the logarithm of pi.  

(It should be noted that −log(pi) and (1 − pi) vary in uniform fashion, i.e., a one-to-one relationship 

between the two functions exists). His choice imposed a strong asymmetry upon matters. 

Conventionally, calculating the average nonbeing in the system using (1 − pi) results in the 

symmetrical parabolic function (pi − pi
2). If, however, one calculates average absence using 

Boltzmann’s measure, the result, 

( )i

i

i ppH log∑−=  (1)  

becomes skewed towards smaller pi (or larger [1 − pi]), i.e., towards nonbeing. His H function suited 

well the phenomenology of the second law of thermodynamics and ex-post-facto accorded with the 

notion of a universe in which vacuous space is constantly increasing. 

2. Confounding Entropy with Information 

Claude E. Shannon [3] independently noted that −log(pi) also was a suitable measure of the degree 

of surprise an observer would experience upon an encounter with state i. If pi ≈ 1, there is little 

surprise; however, if pi is very near zero one experiences major surprise when i occurs. To observe i 

when pi is small was said to provide much information. It followed from this reasoning that the 

average surprisal, which is formally identical to Boltzmann’s H function, should provide a convenient 
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gauge of the total information inherent in the system. Thus it came to pass that the positivist notion of 

information was confounded with Boltzmann’s apophatic measure, H. To make matters worse, John 

von Neumann suggested (as a joke) to Shannon that he call his function “entropy” following the 

connection that Boltzmann had drawn with the second law. Sadly, Shannon took the suggestion 

seriously [4]. 

Confusion about H stems from the fact that the measure embodies aspects of mutually-exclusive 

attributes. Ernst von Weizsäcker [5] noted this mutual exclusivity of what he labeled “novelty” and 

“confirmation” and concluded that “meaningful information … does not lend itself as being quantified 

by one single mathematical expression” [6]. While Weizsäcker’s observation may be correct, it does 

not preclude the possibility that complementarity of the two notions might be apprehended by two 

separate but related terms. Toward this end, it becomes necessary to segregate the opposing notions 

within H. A clue to how this might be accomplished comes from noting that the surprise 

accompanying the observation of i when pi is small can be assessed only post-facto. In reality, one is 

comparing the apriori probability pi with the aposteriori probability of unity. It is the change in 

probability apriori vs. aposteriori that assigns a magnitude of information to the observation. This 

relational necessity led Tribus and McIrvine [7] to define information as anything that causes a change 

in probability assignment. 

Tribus’ definition also identifies how information is related to the underlying probability theory. 

Information deals with the changes in probabilities in the same sense that Newtonian derivatives are 

related to common algebraic variables. Information is identified not with a probability distribution  

pre-se, but always relative to another distribution. It follows that it is erroneous to identify H with the 

information inherent in probability distribution pi. It is possible to speak of information in apodictic 

fashion only insofar as a given distribution pi relates to some other distribution, pi.  

It immediately follows that the obverse criticism pertains to Boltzmann’s use of H as a general 

measure of entropy. H is not an appropriate measure of entropy, because the third law of 

thermodynamics states that entropy can be measured only in relation to some reference state. Although 

the convention in thermodynamics is to set the reference point as zero degrees Kelvin, more generally 

the requirement is that some reference state be specified. That Boltzmann may not have been aware of 

the relativistic nature of entropy is understandable, given as how it was formulated only later by  

Nernst [8]. Whether von Neumann’s joke to Shannon can be as readily forgiven remains, however, 

subject to debate [4].  

3. Parsing What Is from What is Not 

It is clear that both information and entropy are relativistic and must always be treated in the 

context of changing probabilities. Unfortunately, Shannon’s “entropy” is identical neither to the 

common sense of information nor to the thermodynamic sense of entropy. The saving grace of 

Shannon’s formulation, however, is that it is built upon solid axiomatic foundations, such as 

extensivity, additivity and isotropy [3,9]. These mathematical conveniences allow one to parse the 

Boltzmann/Shannon formula into two independent terms that quantify the relationship of a distributed 

variable a with the distribution of any other variable b as, 
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H = A + Ф (2)  

where, 
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Here the Boltzmann/Shannon measure, H, is applied to the joint probability distribution, p(ai,bj) (the 

distribution of co-occurrences of all possible pairs ai and bj).  

One notes that if ai and bj are completely independent of each other, then p(ai,bj) = p(ai)p(bj), A = 0 

and Ф = H. This is precisely the context (a perfect gas of non-interacting particles) in which 

Boltzmann developed the measure. If, however, ai and bj exert any constraints upon each other 

whatsoever, then p(ai,bj) ≠ p(ai)p(bj), and it is possible to prove that 0 < A, Ф < H. In other words, A 

measures the degree of mutual constraint that ai and bj exert upon each other (Weizsäcker’s 

“confirmation”). In communication theory, A is assumed to gauge the amount of information that ai 

reveals about bj and vice-versa. It is called the average mutual information between the distributions ai 

and bj. By contrast, Ф is said to represent the conditional entropy between the same distributions.  

The particular boundary conditions that Boltzmann chose forced H = Ф. One should note, however, 

that this equality does not hold for systems of interacting elements [10], so that Ф becomes a more 

appropriate general measure of entropy. That is, it is more appropriate to call Ф the entropy of a in 

relation to b. H, then, is more indicative of the overall capacity [11] of a system for either constraint or 

freedom between a and b. 

4. A Clearer Image of Information 

An appreciation for the relativistic nature of information and its measurement resolves several 

conundrums regarding information and “meaning” [12]. Shannon’s colleague, Warren Weaver [13] 

noted as how “two messages, one heavily loaded with meaning, and the other pure nonsense, can be 

equivalent as regards information”. (Weaver accepted the Shannon formula as a full and complete 

definition of information.) Along the same lines, if one applies the Shannon formula to the grey scale 

of pixels on a television screen, the value of H is maximal when there is no signal to the set (“snow”) 

and no correlation between adjacent pixels (A = 0 and Ф = H). It is nonsensical to argue that maximal 

information inheres in such a display. When an intelligible picture does appear on the screen, the 

values of adjacent pixels then become correlated (A > 0 and Ф < H).  

If one inquires whether the pattern on the screen is meaningful to an observer, the answer will 

depend on how well the image correlates with the perceptual history of the observer. While 

quantifying such correlation may remain difficult, identifying the possibility of such correspondence is 
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important, because one of foremost criticisms of the Shannon approach is that it cannot address 

“meaning” in any realistic way. This criticism is understandable in light of the fact that the original 

Shannon “entropy” is a conflation of both constraint and flexibility. That same criticism, however, 

need not apply to relativistic formulations of information, as demonstrated by the following numerical 

examples (that speak cogently to Weaver’s “nonsense puzzle”): 

The following are three random strings of 200 digits: 

Sequence A: 

42607951361038986072061245134123237671363847519601557824849686201007746224524209

37159144904694056560480338986072061245134123237671363847519601557824849686201007

7462245242093715914490469405656048033898 

Sequence B: 

03617746439242093715914490469405656048033898607206124513412323767136384751960155

78248496862010077462245242093715914490469405656048033898607206124513412323767136

3847519601557824849686201007746224524209 

Sequence C: 

01475623843789694751743102380318185453848905236473225910906494173735504160210176

85326300670460724247097189694751743102380318185453848905236473225910906494173779

5041102101768532630067046072424709708969 

The values H for each sequence are 3.298, 3.288 and 3.296 bits, respectively. That no internal order is 

present in any of the sequences is shown by the average mutual information values of adjacent pairs of 

digits in each of the three cases (as with the adjacent pixels on a TV screen). These calculate to 10.97%, 

10.03% and 9.94% of the respective paired entropies. Each fraction is typical of a random distribution 

of 200 tokens among 10 types. Relationships between more distant pairs are likewise random. 

Next, the correspondences between the three pairs of sequences are examined. Recording how each 

digit in A pairs with the occupant in its corresponding location in B yields a joint entropy of 5.900 bits, 

11.61% of which appears as mutual information (once again, random correspondence). Similar 

pairings between sequences A and C, however, reveal that fully 91.69% of the joint “entropy” consists 

of mutual information between the sequences. Obviously, the sequences A and C are closely related. In 

fact, close scrutiny of them shows either to be an arbitrary permutation of the other, along with a 

handful of “mistakes”. 

While these comparisons may appear to some as typical exercises in coding/decoding, they actually 

have deeper implications. Instead of digits, one could have used as categories symbols for codons in  

a genome (A,C,T,G) or monomers in a protein (Gly, Ala, Leu, Trp, etc.) In the latter situation, 

sequence A might represent the order of proteins on the outer surface of an antibody in the plasma  

of an organism, while B and C might describe corresponding patterns on the surfaces of microbes 

present in the same fluid. While B appears to bear no relationship to A, C would match A in almost 

“hand- in- glove” fashion.  

In such a situation the pattern in C would provide ultimate meaning to A. The match would signify the 

end towards which A was created by the immune system and would initiate a highly directed action on 
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the part of A (to eliminate the microbe). This significance is clearly apparent in the high value of 

mutual information between the sequences. Whence, although the primitive Shannon measure does not 

by itself convey meaning, the relative information indicated by A clearly provides at least a sense of 

“proto meaning”. That such “meaning” for antibodies is but a pale shadow of meaning in the human 

context only reflects how wanly quantitative models in general prefigure more complicated human 

situations. In order to get from meaningless physical phenomena to full-blown human semiosis, it is 

necessary to pass through some inchoate precursor of meaning. Shannon measures, it would appear, 

are at least useful in treating this transitional phase. 

5. Quantifying What is Absent 

While these two examples highlight more accurately the positive role that information plays in 

living systems, less attention is usually paid to the residual Ф that represents flexibility. Most would 

rather ignore Ф in a science that is overwhelmingly positivist and apodictic, because rewards go to 

those who focus upon identifying the constraints that guide how things happen. The instances where 

physics addresses anything other than the positivistic are indeed very few—the Pauli Exclusion 

Principle and Heisenberg uncertainty are the only exceptions within this writer’s memory.  

Physics, however, deals almost exclusively with the homogeneous, but as soon as one leaves the 

realm of universals and enters the very heterogeneous world of the living, the absence of an object or a 

trait can loom large [14]. In ecology, for example, the absence of a particular resource or predator 

often weighs heavily on whether a given population persists or vanishes. For that matter, it is difficult 

even to talk about patterns without referring to the absences or holes in spatial arrays. Whence, 

accounting (literally) for absences takes on significant importance in the life sciences.  

Such accounting, however, is precisely what Boltzmann initiated (whether consciously or 

unconsciously). Furthermore, Boltzman weighted non-being so as to skew its importance vis-à-vis that 

which exists, thereby providing a bias that accords with the second law. Now, it happens that 

Boltzmann’s formula pertains to circumstances far more complex than his rarified, homogeneous and 

non-interacting example system. Even in highly complex systems, Boltzmann’s H can be parsed into 

separate terms that gauge constraint and flexibility, respectively.  

Such parsing requires the comparison of two distributions with one another. There is no prohibition, 

however, against abstracting the two distributions from the same system. This was done above, for 

example, when the (non-significant) values of A were calculated on successive pairs of integers within 

each string of 200 integers. Of possibly greater utility is the comparison of the past (aposteriori) of a 

system with its (apriori) future, as can readily be accomplished within networks of interactions [15].  

To parse a network in this fashion one considers the interaction strengths, Tij, that join arbitrary 

components (nodes) i and j. The joint probability that i interacts with j can be estimated in frequentist 
manner as ( ) ∑≈

nm

mnij TTjip
,

/, . The immediate past of j can likewise be estimated as the afferent 

conditional distribution ( ) ∑≈
m

mjij TTjp / , and the immediate future by its efferent conditional 

distribution ( ) ∑≈
n

inij TTip / . One may now substitute these distributions into Equations (2a–c) for H, A 

and Ф to yield, 
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The reader should note that nothing need to be known concerning the particular details of the 

constraints that guide the constitutive links, nor about the specifics of the degeneracies that contribute 

to Ф. All one needs to calculate the overall system constraint and flexibility are the phenomenological 

observations Tij. Such ability to calculate overall properties in abstraction of any micro details is 

reminiscent of similar calculations in statistical thermodynamics. 

Being able to quantify the overall constraint inhering in a system (A) is a major step forward, but it 

could be argued that the ability to quantify that which is absent (Ф) represents an even greater 

advance. As Terrence Deacon [16] argues, arithmetics had been limited in what it could do until the 

Ninth Century invention of the cipher 0 to represent absence as a positional number, whereupon a host 

of arithmetic operations were considerably facilitated. One could argue similarly that the limits that 

obligate positivism has placed upon the ability of science to address living systems can now be 

superseded. In the Boltzmann/Shannon approach to information theory one obtains something possibly 

more important than the quantification of information (constraint) itself—one can now quantify how 

much is missing from a system. 

6. The Necessity of That Which is Absent 

In terms of ecological (and likely as well economic, social and immune) systems what is missing 

can be of critical importance. Parallel redundant pathways, inefficient and incoherent processes all 

contribute to the magnitude of Ф. While they often hinder the efficient functioning of the system (as 

gauged by A), it is precisely such “noise” that is required by a system if it is to mount a response to a 

novel perturbation [17]. Lacking sufficient apophasis, a highly efficient system becomes “brittle” and 

doomed to collapse at the first new perturbation [18]. It is imperative that living systems retain a 

degree of Fehlerfreundlichkeit (“error-friendliness” [19]) 

Furthermore, to endure and remain sustainable, it appears that a system must possess even more 

flexibility (Ф) than constraint (A). Available data on ecosystems indicate that such balance occurs 

within a narrow range of values of the quotient A/H [20]. Systems that are out-of-balance, such as 

eutrophic ecosystems, often lack sufficient Ф to persist. Remediation then requires an increase in 

flexibility (more apophasis, or a decrease in constraint) [21].  
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The necessity for apophasis bears strongly upon the issue of preserving biodiversity. In recent 

decades much effort has justifiably been invested at the global level towards the conservation of 

biodiversity. Society intuitively senses that maintenance of biodiversity is necessary for global 

ecological health. What is hardly ever mentioned, however, is that solid theoretical justification for 

preserving biodiversity has been wanting. In retrospect, we see why this is so: Having only positivist 

tools at one’s disposal, one cannot hope to circumscribe the interplay between constraint and looseness 

that provides sustainability. But the definitions of A and Ф now engender a quantitative methodology 

with which to follow the dynamics between the apodictic and the apophatic. Furthermore, such 

analysis often reveals that it is an increase in the latter that becomes necessary for system survival. 

7. The Heraclitian Drama 

Equation (2) suggests that the relationship between constraint and flexibility is complementary  

or antagonistic in most systems. Conventionally, attention focuses upon the dynamics inherent in  

the apodictic variable, A, but it should be clear that not maintaining the complementary Ф leads the 

system inevitably towards collapse. It is counterproductive, therefore, to regard the dynamics of  

living systems solely as some mechanical/material juggernaut that grinds inexorably towards some  

maximal efficiency. Any perspective on ecosystems that ignores apophasis can thereby be labeled 

“one-eyed-ecology” [22].  

Virtually all domains of science remain “one-eyed” in scope, save for the discipline of 

thermodynamics, where entropy explicitly appears as a manifestation of the apophatic (although it is 

rarely acknowledged as such). Schroedinger coined the term “negentropy” to refer to the inverse of 

entropy, and there have been numerous treatments of the entropy-negentropy conversation. Terrance 

Deacon [23] has spearheaded the need for acknowledging the role of the apophatic in biology 

(although not in quantitative terms). In economics the role of the apophatic occasionally arises  

under the rubric of “externalities”, but economists are reluctant to divert their attentions from 

conventional dynamics. 

Although the aim of this collection of essays has been a better apodictic notion of information, 

perhaps a more important goal should be a fuller appreciation for the dialectic between constraint and 

flexibility. In the end, the metaphor of transaction provides a more appropriate context within which to 

appraise the dynamics of living systems, because the dynamics of life cannot be minimalized as 

“matter moving according to universal laws” [24]. It resembles rather a Heraclitian dialectic between 

the buildup of organization and its decay according to the second law.  

To put a finer point on the dialectic, one notes that the opposition between generation and decay is 

not absolute. In Hegelian fashion, each of the countervailing trends requires the other at some higher 

level: The development of new adaptive repertoires requires a cache of what formerly appeared as 

redundant, inefficient, incoherent and dissipative processes. On the other hand, greater constrained 

performance always generates increased dissipation. 

In the dialectical scenario, information as commonly perceived becomes a degenerate subclass of 

the more general notion of constraint. No longer is it necessary to treat information using the narrow 

rubrics of communication theory. That Shannon developed his mathematics in that theatre can be 
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regarded as an historical accident. His ensuing quantifications apply far more broadly, not just to 

constraint in general, but possibly more importantly, to the lack of constraint as well. 

Even though Shannon’s H formula rests upon solid axiomatic foundations, it has engendered 

perhaps as much confusion as it did enlightenment. The selfsame formula was believed to quantify the 

mutually exclusive attributes of entropy and information. Such contradiction has strained logic and 

spawned abstruse narration, e.g., Brillouin [25]. The root of the confusion had its origin in von 

Neuman’s most unfortunate suggestion to tie the formula to Boltzmann’s entropy. Boltzmann’s applied 

his equation to a hyper-simplistic system wherein H was constrained to represent only the most 

disorganized state of affairs. More generally, however, an increase in the H function can also pertain to 

situations in which organization actually increases [22].  

The key to resolving confusion about H is to tie the function not only to the second law of 

thermodynamics, but to connect it to the third law as well. Entropy can never be defined in absolute 

terms, but acquires meaning only in relation to a reference state. Defining H in a relational context 

obviates any schizoid interpretation by allowing its decomposition into two agonistic (complementary) 

terms that quantify the degree of system constraint and its residual freedom, respectively. The 

implication of this decomposition is that the third law applies not only to the concept of entropy, but to 

the conjugate constraint as well. That is, constraint (and its degenerate subclass, information) has no 

meaning in abstraction from the third law. Like entropy, information is always relative. That is, what is 

measured as constraint or information of a in the context of b will generally be different from that 

between a and c [6].  

In hindsight it is now clear why the H function alone is a poor surrogate for many of its intended 

applications (beginning with entropy per se). As demonstrated above, H fails to represent “meaning”, 

whereas its relational component, A, appears capable to the task. Other purported shortcomings of 

Shannon information should be re-examined as well in the light of equation (2) above. 

In conclusion, it is highly premature to dismiss the Shannon/Boltzmann approach for measuring 

information, because something else as important as information is at stake. Other attempts at 

improving the apodictic characterization of information fail to encompass the necessary roles for 

apophasis. The Boltzmann/Shannon mathematics provides in the end a richer and more inclusive 

vantage on the dynamics of nature—one that allows the scientist to open his/her blind eye towards the 

broader causality at work in the living world. In that sense, it can truly be said that the most important 

contribution that information theory makes to science is not information. 
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