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INTRODUCTION

Ecology is the study of the relationships of organisms with
one another and with their non—living enviromment. The keyword to
notice in this definition is "relationships'". Rather than fixing
attention upon the organism or population itself, we as ecologists
should be primarily concerned with what transpires between popu-—
lations. As we also pretend to being scientists, we aim to quantify
our observations on these relationships, and this is most readily
done when those interdctions involve a palpable transfer of either
material or energy. When we describe the species composition and
densities of phytoplankton and zooplankton in an open ocean gyre, we
are behaving as good quantitative biologists. Not until we attempt
to balance grazing rates with rates of respiration, nutrient uptake
and sinking, are we acting as quantitative ecologists.

There are those who would point out that to measure the fluxes
between populations, we first need to quantify the abundances of the
participants. I do not wish to deny what is a methodological
necessity in most (though not all) cases. What I am proposing here,
however, is the perspective that the description of the network of
flow exchanges is the key to approaching the ecological problem.

The prevailing attitude among most ecosystem modellers is that
one seeks to describe a flow as the result of a putative force,
which may be quantified by the states of the interacting popu-
lations. For example, zooplankton grazing is usually assumed to be
some multivariate function of phytoplankton density, zooplankton
density, ambient temperature, relative sizes of predator and prey,
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etc. In writing this multivariate function, one is implicitly de-
scribing a force which causes a resultant flow - the grazing rate.
This approach often works well when only one, or a very few, pro-
cesses are being studied. The problem arises when we attempt to
predict the course of a linked network of many flows as being the
aggregate result of the simple forces. The predictions of such
coupled models are usually unreliable. Furthermore, with the fixed
structure inherent in this procedure one cannot treat the various
"emergent surprises' which enter the development of any real eco-
system. Even if one should try to vary the structure of the model in
some fashion, one is still left in need of a criterion against which
to evaluate the proposed changes.

A way out of this dilemma is afforded by adopting an alterna-
tive perspective in which the community flow network is not secondary
to the attributes of the constituent populations. Whence, the den-
sity, size and age structures, respiration efficiency, ethology and
other properties of any member population are affected by, and in the
long run are formed by, how well the state properties of the individ-
ual species contribute to some as-yet—~unspecified attribute of the
entire community network of flows. Different modes of individual
behavior, physiologies, genotypes, feeding links, even species them-—
selves, may enter and leave the community. How long they remain
depends upon their contribution to some property of the whole network
of exchanges.

If it sounds as though cause and effect are being confused by
this emphasis upon flows, then such observation is correct. Con~
sider, for example, the perfect causal loop (see also Hutchinson,
1948) in Figure 1. Medium flows from A to B causing further flow
from B to C, which in turn engenders flow from C back to A; and the
original cause (flow from A to B) becomes its own effect. Of course,
if one tries to identify this loop with any real cycle (e.g. A is
nitrogen in the water colummn, B is nitrogen in the phytoplankton and
C is nitrogen in the zooplankton as in Figure 2) the picture is
complicated by obligatory losses, and imports. But the causal loop
remains imbedded in the real network as an element to be reckoned
with,

Causal loops usually give rise to positive feedback phenomena.
Any change in the status of one of the components giving rise to an

e

Fig. 1. An ideal flow loop (causal cycle).
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Fig. 2. A hypothetical cycle of nitrogen in a planktonic system
(gN/m2/y). The ground symbols represent respiratory
losses.

increase in one of the flows will result in self-reward. Conversely,
changes which diminish any flow in the cycle will be self-mitigated.
The fluxes and the forces thereby became inextricably entwined. Now
this is a bad turn of events only if one's goal is the explanation
(at the subsystem level) of phenomena in a classical cause~effect
fashion. 1If, however, one seeks (as in thermodynamics) only to
quantitatively describe the eventual course of the whole system;
one's task is actually made easier, because now one need measure only
the perceptible flow network and ignore, for the time being, the
obscure and elusive forces.

I suggest that the measurement of ecosystem flow networks is
precisely the task of highest priority in ecology today. But ques—
tions remain: What constitutes an adequate description of a flow
network? How can one use the flow network as a diagnostic tool in
ecological research and management? And, perhaps most importantly,
can one be more specific about the criterion which best describes the
time evolution of an ecosystem flow network? Below I will briefly
attempt to outline my opinions on these three issues with occasional
examples drawn from the analysis of the carbon flow network of an
estuarine marsh gut (i.e. embayment) ecosystem.

FLOW DATA REQUIRED

How wmuch data need be collected depends largely upon decisions
made at the very outset of any investigation as to what the essen-
tial components of the community will be. How the chosen aggreg-
ation affects the outcome of an analysis has always been a crucial
question in ecosystems modeling (see Halfon, 1979; Cale et al.,

1982; Schaffer, 1981l). I will not dwell on this controversy, except
to remark that my experience with the few networks I have been able
to analyze leads me to believe that the conclusions drawn from global
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network variables seem more robust with respect to the degree of
aggregation than do results issuing from deterministic modeling
efforts. (Although the cycle analysis to be descrlbed later is very
sensitive to the lumping of compartments).

The carbon flow network data to be used for illustration were
collected by Homer and Kemp (unpublished manuscript) from a poly~
haline marsh gut in the vicinity of the Crystal River estuary on the
upper Gulf Coast of Florida. In the sample network 17 compartments
are identified as in Figure 3. The compartments are mixed in degree
of aggrepation with the lower trophic level species being lumped into
a few compartments, whereas the fish have been identified in several
cases to the species level.

Generally speaking, the types of flows which need to be measured
fall into four categories:

(1) exchanges among compartments within the system,

(2) ipputs from sources outside the system,

(3) wuseable exports outside the system, and

(4) dissipation of medium into a form of no further use to any
system.

Some investigators do not make a distinction between (3) and (4); but
as will be seen later, there aré compelling thermodynamic and hier-
archical reasons for treating these flows separately. In our example
network there are 69 internal exchanges, 6 inputs, 16 exports, and 17
respiratory flows. The flows balance around each compartment, i.e.
the network is assumed to balance over the annual cycle. Steady-
state 1s not, however, a requirement of most of the following analy-
‘ses.

The given flows are in terms of carbon/area/time. Corresponding
flow networks could have been measured in terms of energy, nitrogen,
phosphorous, silicon, or other materials.

While the analysis of a solitary network can be performed, it
is often not clear what significance to attach to the magnitudes of
some of the resultant quantities. This problem can be circumvented,
however, by seeking comparisons between two different systems or
between the same system at different times or under different exogen-
ous conditions. For example, we may wish to compare estuarine,
coastal, gyral and abyssal marine networks. Or we may wish to con-
trast equitorial upwelling community networks under both light and
heavy trade winds. A companion network to the example in Figure 3
has been quantified. It describes the exchanges in a nearby tidal
gut under practically identical environmental conditions, save that
the second community (Whlch network is depicted in Figure 4) is con—
tinually subjected to a 6°C rise in temperature because of its
proximity to thermal effluent from a nuclear power station.
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INPUT-OUTPUT ANALYSIS

Given a flow network, one of the more detailed questions one can
ask is how any one compartment is affecting (i.e. exchanging medium
with) any other compartment over all pathways, direct and indirect.
The direct interactions are manifest upop inspection of either the
diagram of the network or of the two-dimensional matrix of internal
exchanges. The indirect linkages are not always as easy to identify
and enumerate. Fortunately, much information can be obtained about
the indirect pathways through straightforward algebraic operations on
the matrix of direct flows (see also Leontief, 1951; Hannon, 1973;
Finn, 1976; Patten et al., 1976).

Calling Pj; the flow from i to j and T{ the total ouput from i,
then £33 = Pjj/Ti will represent the fraction of output of i which is
contributed directly to j. The F matrix for the control marsh gut
appears in Table 1. If F is a matrix with components £ij» it is easy
to demonstrate that wultiplying F by itself will yield a matrix F2
wherein the i-jth component represents the fraction of total output
from i which flows to ] over all pathways of exactly two steps.
Similarly, F3 will express the fractions transferred over all path-
ways of length three, and so forth ad infinitum. By summing all
powers of F, we obtain the so-called output structure matrix, S,
wherein the i~jth component represents the fraction of output from
i which flows to j over all possible pathways, i.e.

S=r0 + Fl + ¥2 4+ 73 4+ F* + ..

Because of the way in which F was normalized, this infinite sequence
converges exactly to

§ = (1-F)-!

where I is the identity matrix (Yan, 1969), and the minus one ex-
ponent represents matrix inversion.

As an example of the use of the output structure matrix, the
1-7 component of the Crystal River marsh gut indicates that in the
unperturbed web 5.46 x 10" of the microphyte throughput
(652 mgC/m /d), or .356 mg/m /d, eventually reaches the Bay
Anchovies (see Table 2). Curiously enough, about 15 times that
amount is transferred between the same two compartments in the per—
turbed network.

One can also multiply S by vectors representing the inputs,
exports and total throughputs of each compartment to obtain the
answers to such questions as: What is the fate of each individual
input to the network? Or, conversely, how much of each export can
be attributed to the various inputs? For example, there are two
major sources of carbon to the system, fixation of carbon by macro-
phytes and microphytes, with the macrophytes contribution 10.3 times
greater than the planktonic production. Given that macrophytes are
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generally more refactory than microphytes, one might guess that the
contributions to the exported detritus would be weighted more heavily
in favor of the macrophytes. Such is not the case, however, as in-
direct pathways and cycling actually decrease the predominance of
macrophytically-fixed carbon to microphytically-fixed carbon down to
9.7. By hindsight the reason for the decrease is apparent. Macro-
phytes contribute solely to the detrital pool; whereas microphytes
are grazed by several species, most notably zooplankton and mullet;
and are cycled in the foodweb, thereby lowering the effective respir-
ation rate.

The matrix of specific exchanges, F, was derived from the ex-—
change matrix, P, by normalizing according to outputs. One may also
normalize according to inputs by defining gij = Pij/T;. The corre-
sponding structure matrix,

s' = (1-6)7% ,

contains information about the direct and indirect sources of input
to each compartment. $';ji describes the fraction of throughput j
which is attributable to i as a source. (In the event of cycling
this fraction can exceed unity).

S' possess another very useful property. It is not difficult
to demonstrate that the sum of each column of S' represents the
average trophic position of its respective compartment (Levine,
1980). TFor example, if a taxon obtains 507% of its throughput di-
rectly from outside the system, 307 along pathways one step removed
from a primary input, and 207 along pathways two steps removed from
original sources, then it functions 507 of a primary producer, 30%
as a "herbivore" and 20% as a "carnivore'". Its average trophic
position is thereby 1.7 (=0.5x1 + 0.3x2 + 0.2x3). Here one assumes
that all flux entering from outside the system is considered at the
first trophic level; otherwise the trophic positions of the inputs
would be added to the column sum.

The average trophic positions of the 17 taxa in both of the
Crystal River marsh guts are displayed in Table 3. The changes in
the relative trophic rankings among the taxa are rather unremark-~
able. Perhaps the biggest winner is the Bay Anchovy which jumped
from fourth place to ninth in the trophic rankings, even though its
dietary habits changed little. What is quite curious, however, is
that the trophic values for practically all taxa have risen in the
disturbed creek. These observations raise more questions than they
answer, and to clarify the picture it is necessary to expand the
scope of observation from pairwise interactions to whole cycles of
medium.

CYCLE ANALYSTS

The central role which I assume cycles to play in the develop-
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Table 3., Ranked Listing of the Average Trophic Levels at Which
Each Taxon is Feeding. Listed on the left-hand side are
the rankings of taxa in the unperturbed marsh gut. On
the right side the same taxa feed at slightly different
levels in an identical marsh gut which has been
chronically exposed to a 6°C elevation in temperature.

Control AT Perturbed
Av. Trophic Av. Trophic
"Rank Taxon Value Taxon Value
1 Microphytes 1.00 Microphytes 1.00
2  Macrophytes 1.00 Macrophytes 1.00
3 Detritus 2.34 Detritus 2.47
4 Bay Anchovy 2.70 Mullet 3.09
5  Zooplankton 2.95 Zooplankton 3.11
6 Mullet 3.00 Sheepshead Killifish 3,11
7  Sheepshead Killifish 3.02 Benthic Invertebrates 3.47
8 Benthic Invertebrates 3.34 Goldspotted Killifish 3.62
9 Goldspotted Killifish 3.51 Bay Anchovy 3.93
10 Benthic Inv. Feeders 3.51 Moharra 4.15
11  Moharra 4,00 Silverside . 4.27
12  Silverside 4,13 Longnosed Killifish 4. 47
13  Stingray 4,22+ Benthic Inv. Feeders  4.47
14  Pinfish 4,23 Pinfish 4.58
15 Longnosed Killifish 4.34  Gulf Killifish 4,69
16 Needlefish 4.45  Stingray 4.76
17 Gulf Killifish 4,57 Needlefish 4.76

ment of an ecosystem has already been mentioned. It is desirable,

therefore, to be able to identify all the cycles inherent in a net-
work and to seek clues as to how these various cycles might inter-—

act.

The enumeration of all the cycles in a graph is not always an
easy task. In tracing through the various pathways of a network it
soon becomes obvious that the number of possible paths and cycles
can increase geometrically (or even factorially) as the number of
components in the system rises., Hence, an arbitrary search for
cycles in a network of, say, 20 components has the potential for
quickly saturating the capabilities of even the larger modern com-
puters (20f= 24 x 1018y, Fortunately, however, algorithms are now
available which efficiently enumerate cycles in networks of moder-
ate size (Read and Tarjan, 1975; Johnson, 1975; Mateti and Deo,
1976; Ulanowicz, 1982a).
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One might next ask whether the members of the list of cycles
fall into any natural groupings. As ecologists we are often con-
cerned with the vulnerability of any structure. To someone familiar
with a given ecosystem, it may be possible for him to trace around
the links of any chosen cycle and identify the most vulnerable
transfer in the loop. Once a vulnerable link has been established
in each cycle, the circuits can then be grouped in such a way that
all the members of any group share the same most vulnerable arc. In
a real sense each vulnerable arc is a weak spot in the network, and
its domain of influence upon the feedback structure is defined by
the collection of cycles in which it appears, hereinafter referred
to as 1ts mnexus.

To be more specific, one counts 119 distinect cycles in the
graph of the control creek, as listed in Appendix A. For the sake
of discussion we shall choose the smallest link in each cycle to be
that loop's most vulnerable arc. The 119 cycles segregate into 41
nexuses. Several of these aggregations are rather large, one con-
sisting of 14 separate cycles, one of 13, one of 10, three of 6,
etc. The largest nexus is depicted in Figure 5 (with the vulnerable
link denoted by the heavy arrow). In contrast, the heated creek
foodweb contains only 46 simple cycles belonging to 30 nexuses
(Appendix B). None of the large nexuses cited in the control creek
survives in the perturbed system. The largest nexus in the dis~
turbed network is a single, 4-cycle grouping.

There are further differences between the two networks when one
notes the magnitudes of the vulnerable arcs. The weak links in all

Gold~
Spotted
Killifish

Bay
Anchovy

Benthic ‘/
% Inverte -
oF brates / //-
Detritus 005 A\ Gulf 1070, |

Killifish Stingray

4020

%

Moharra

Muilet f

Fig. 5. The nexus of cycles associated with the cropping of Gulf
Killifish (11) by Stingray (6). The flows shown (in
mgC/m/d) are the amounts actually subtracted from the
original flows in Figure 3 in the process of calculating
the residual acyclic web.
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of the many-cycled nexuses of the control system were small in mag-
nitude, and the component cycles tended to consist of 4 or 5 links.
In both systems the vulnerable arcs with the highest flows were as-—
sociated with short, 2 step cycles. For example, the loop with
largest flow in both webs was the immediate recycle of carbon be-~
tween the detritus and the benthic invertebrates. This turnover
actually increased from 687 in the control to 734 (mgC/m%/d) in the
perturbed system. Likewise, the turnover between zooplankton and
detritus rose from 73 to 78 (mgC/m?/d) in the disturbed creek. The
fraction of total flow which was being cycled (see Finn, 1877)
actually went up from 10.57 in the control to 14.07 in the heated
system. '

Some of these observations seem counterintuitive when viewed
alone. For example, Finn echoed Odum's (1969) suggestion that a
higher fraction of cycled flow was indicative of more mature, less
disturbed networks. WNonetheless, cycle analysis reveals a coherent
picture of what has happened to the heated system. It is a clear-
cut instance of eutrophication. The higher—order (presumably
slower) cycles have disappeared. The shorter, faster, trophically
lower, turnovers now cycle more intensely. Whether the rise of the
intense, short cycles caused the disappearance of the higher-order
cycles (as is presumed to be the case in cultural eutrophication),
or whether the increase in short cycling was occasioned by some
dysfunctions in the longer loops 1is a moot point in the realm of
cybernetics.

The trophic response of the Bay Anchovy to community stress is
now clear. The diet of this species appears to consist entirely of
detritus, zooplankton and benthic invertebrates - all of the players
involved in the accelerated short cycles. It was in a perfect pos-
ition to exploit the eutrophic changes. We also see that the gen-
eral rise in trophic values after perturbation was somewhat mis—
leading, as it was inflated by the rapid multiple passes through the
shorter, but more intense, cycles.

A consistent picture of the underlying trophic dynamics in both
networks can be obtained by first subtracting away all cycled flow
and analyzing the residual acyclic webs. This decomposition of an
arbitrary graph into cyclic and acyclic subgraphs is not a trivial
problem. An approach based on the scheme of aggregation by smallest
arc has been described by the author (Ulanowicz, 1982b). Suffice it
to remark that in an acyclic network, any component which feeds at
more than one trophic level can be unequivocally partitioned among
the compartments of a finite, concatenated food chain in the sense
of Lindemann (see also Ulanowicz and Kemp, 1979). In our previous
example the species acting 507 as a primary producer, 30% as a
herbivore and 207 as a carnivore would have its throughput, exports
and respirations apportioned among the first three trophic compart-
ments in the ratio 5:3:2. The acyclic subgraphs of the two creeks
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2331 2092 730 11.06  0.2138

Fig. 6. Aggregated trophic flows of carbon (mgC/m?/d) inherent in
the web exchanges (Figures 3 and 4) after the cycled ma-
terial has been removed from the network. (a) the con-
trol marsh gut; (b) the thermally stressed marsh gut.

can be mapped into straight trophic chains of length 5. The differ-
ences in the first two levels are small, but flows at the third level
of the disturbed system are halved and fall off nearly tenfold at the
fifth step (see Figure 6). Again, the effects of stress are more
obvious at higher trophic levels,

GLOBAL COMMUNITY MEASURES

The story of network response to perturbation can be read in
reverse to gain insights into the manner in which ecosystem networks
develop in the relative absence of stress. Two attributes crucial to
such a description are size and structure. One expects the winners
in the evolutionary game to possess advantageous combinations of size
and structure. (One need not think of systems competing with one
another, rather one compares the actual state of the system with
other putative nearby states).

A convenient measure of the size of a flow network is the total
system throughput, the sum of all the individual throughputs, Tj.
All other things being equal, one expects the total systems through-
put to rise during the course of the development (living things
grow); or, conversely, fall due to perturbation (as did the total
throughput of the disturbed creek). It was also apparent how the
diversity of the structure was adversely affected by perturbation
and, conversely, would be expected to rise during unperturbed devel-
opment. Hence, one is led to consider the diversity of the various
throughputs as a measure of this complexity, i.e.

- ;T: Q]_ log Qi,

where Q; (=Ti/§ Tj) is the fraction of the total throughput particu-
lar to componebt i. The product of size and complexity is con-
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veniently called the development capacity,
C=-TZ% Q; log Qj,
1
where T has been taken to represent the total throughput (I Tj).
J

The inadequacy of using C as a measure of development is pre—
cisely what plagued the epochal diversity-stability arguments, namely
how the compartments are related to one another does not appear in
the formula. But the coefficients fjj quantify how the output of ome
compartment is linked to the input of another. Accordingly, one may
define

A=TZZI £55 Qi log (fij/i fry Q)
ij

as a component of C which captures how coherently, or with what
degree of definition, the elements are connected to one another
{Rutledge et al., 19763 Ulanowicz, 1980).

One can show mathematically that C serves as an upper bound on
A and -that both quantities are inherently non-negative, i.e.,

C>A>0

That portion of the capacity which does not appear as coherent
structure (i.e., the difference, C-A) is termed the overhead, and may
be further decomposed into three components. The first component re-
sults from the obligatory dissipative processes.

§=-TZ2riQf log Qi
1

where rj is the fraction of Tj lost to dissipation, i.e. subsystem-
scale processes. The second component allows for transfer to other
systems.

E=-T E e; Qf log Q3

vhere ej is the fraction of Tj flowing to another system. These ex-—
ports make up the links in any assembled suprasystem and may be
thought of as contributions to higher order structure. The residual
overhead

R=-TZZI fj5 Qi log(fij Qi/Z fkj Q)
1] k
can also be shown to be non-negative and measures the average multi-—
plicity of pathways among the components; or, alternatively, the
degree of confusion as to where within the network an arbitrary
output might flow. It is (like A) a property existing at the level
of the system. Hence, the overhead has been partitioned along hier-
archical lines.

Returning to A, the ascendency, it captures the tradeoff be-
tween system size and structure and could possibly serve as the
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criterion describing the time evolution of an ecosystem flow net-
work, In fact the increases in A so paralleled the increases in
other attributes of mature ecosystems (e.g. Odum, 1969) that I have
elsewhere (Ulanowicz, 1980) hypothesized that self-organizing com—
munities behave over an adequate interval of time so as to optimize
their ascendencies subject to hierarchical and environmental con-
straints. Regardless of whether or not this hypothesis will sub-
sequently be validated, the five quantities defined above provide a
lexicon for describing community level change in flow networks.

Any data set on flows meeting the requirements specified earlier
in this paper is sufficient to calculate the network ascendency and
related variables., In the creek networks the ascendency has de-
creased from 7235 (mgC/m?/d) in the control to 5349 in the disturbed
creek, as one might expect from the converse of the ascendency hy-
pothesis. The magnitude of the decrease is somewhat misleading, as
it reflects mostly the decrease in systems throughput. The organ-—
izational factor in the ascendency has decreased by only 7%, indi-
cating strong structural homeostatsis. The resistance of structure
to change emphasizes the utility of the cycle analysis in drama-
tizing the otherwise subtle changes which have taken place in the
network topology. The overall increase in the relative amount of
overhead came from nearly equal increases in dissipation and redun-
dancy. The fraction of C encumbered by tribute, E, actually fell in
the disturbed network, reflecting the homeostatic response of the
system in tightening the remaining cycles.

Concluding Remarks

I would like to end this brief synopsis of network flow analy-
sis with the opinion that the approach is eminently ecological in
nature. . The focus 1is upon the interactions, rather than upon the
taxa themselves. The field of vision encompasses the entire com—
munity of processes. The attitude is phenomenological, or empiri-
cal; one is concerned with a quantitative description of what
actually happened, rather than with the supposition of causes, real
or fictitious. This is not to denigrate the need for inference, but
only to postpone suppositions until more familiarity with community
level descriptions has been achieved. It is my belief that the
sought-after inferences or laws will become most readily apparent at
the level of the entire ecosystem.

This last probability is philosophically satisfying. Phenomena
at a smaller scale may appear confusing, unexpected or contradic-—
tory. But the larger picture seems coherent and directions well-
defined. Of course, this mirrors the results of the most phenomeno—
logical branch of physical science - thermodynamics. In fact eco-
logical phenomenology, as typified by flow network analysis, may yet
extend the frontiers of thermodynamics. Nevertheless, to formulate
principles by searching at larger scales of observation violates the
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prevailing dogma of the biological sciences today — reductionism.
In all likelihood the world, cybernetic as it appears, will reveal
influences going in both holistic and reductionistic directions.
Right now, however, such a small fraction of biological research
effort is aimed at elucidating more global principles, that I be-
lieve a bottleneck impeding our deeper understanding of the natural
work exists. It is to help overcome such an impediment that this
conference has been called to promote the measurement of ensembles
of flows occurring in marine ecosystems.
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APPENDIX A

Cycle Analyses (Control Creek)

3-Cycle Nexus with Weak Arc (10, 6) = .010
1. 3-10~ 6- 3-

2. 3- 4-10- 6~ 3-

3. 3. 5~10- 6~ 3-

6-Cycle Nexus with Weak Are (14,16) = ,010
4, 3-14~16-3-

5. 3-14~16~- 8~ 3-

6. 3- 4~14-16~ 3-

7. 3- 4-14-16~- 8- 3~

8. 3- 5-14-16- 3-

9. 3- 5-14-16~ 8- 3~

4~Cycle Nexus with Weak Arc ( 9,11) = ,01Q

19. 3~ 9-11- 3-

11. 3~ 9-11- 6- 3-
12. 3~ 5- 9-11- 3-
13. 3~ 5- 9-11- 6-~ 3-
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4-Cycle Nexus with Weak Arc (79,16) = . 010

14. 3- 9-16- 3-

15. 3- 9-16- 8- 3-
16. 3- 5- 9-16~ 3-
17. 3- 5- 9-16~ 8- 3-

13-Cycle Nexus with Weak Arc ( 8,16) = .Q20

18. 3- 7- 8-16- 3-
19. 3-13- 8-16- 3-
20, 3-14- 8-16- 3~
21, 3- 4~ 7- 8-16- 3-
22, 3~ 4-13- 8-16- 3~
23. 3- 4-14- 8-16~ 3-
24, 3- 5- 8-16- 3-
25. 3~ 5~ 7- 8-l6- 3-
26, 3- 5-13- 8-16- 3~
27. 3- 5-14- 8-16- 3~
28. 3- 5~12- 8-16- 3-
29. 3-17- 8-16- 3~

30. 8-16- 8-

2-Cycle Nexus with Weak Arc ( 9, 6) = .030
31. 3~ 9- 6- 3-

32. 3~ 5- 9- 6- 3-

2-Cycle Nexus with Weak Arc (12,11) = .030
33. 3~ 5-12-11- 3~

34. 3- 5-12-11- 6~ 3~

1-Cycle Nexus with Weak Arc (17, 8) = .030
35. 3-17- 8- 3-

1-Cycle Nexus with Weak Arc (12, 8) = . 050
36. 3- 5-12- 8- 3-

3-Cycle Nexus with Weak Arc (14, 8) = .060
37. 3~ 1l4- 8- 3-

38. 3- 4-14~ 8- 3-

39, 3~ 5-14- 8- 3-

14-Cycle Nexus with Weak Arc (11, 6) = .070

40, 3- 7-11- 6- 3~
41. 3-10-11- 6- 3-
42. 3-13-11- 6- 3-
43. 3-14-11- 6- 3-
44, 3- 4~ 7-11- 6- 3-
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45, 3~ 4-10-11- 6~ 3-
46. 3~ 4-13-11- 6~ 3-
47. 3~ 4-14-11- 6- 3-
48, 3~ 5-11- 6- 3~

49, 3- 5- 7-11- 6- 3-
50. 3- 5-10-11- 6~ 3-
51. 3~ 5-13~-11- 6- 3-
52. 3= 5-14-11- 6~ 3-
53. 3-17-11- 6- 3-

1-Cycle Nexus with Weak Arc

( 3,15)

R. E. ULANOWICZ

.070

54. 3-15- 3-

1-Cycle Nexus with Weak Arc

(17,11)

.080

55, 3-17-11- 3-

10-Cycle Nexus with Weak Arc (16, 8) =

.090

56. 3- 7-16- 8- 3-
57. 3~10-16- 8~ 3-
58. 3-13-16- 8~ 3-
59. 3- 4~ 7-16~ 8- 3~
60. 3- 4-10-16~ 8- 3~
61. 3- 4-13-16~ 8- 3~
62. 3- 5-16- 8- 3-
63. 3~ 5- 7-16- 8- 3~
64. 3- 5-10-16- 8- 3-
65. 3- 5-13-16- 8- 3-

3-Cycle Nexus with Weak Arc

(10,11)

]

.090

66. 3-10-11- 3-
67. 3- 4-10-11- 3-
68. 3~ 5-10-11- 3~

3-Cycle Nexus with Weak Arc

(10,16)

.100

69. 3-10-16~ 3-
70. 3- 4-10-16- 3~
71. 3- 5-10-16- 3~

1-Cycle Nexus with Weak Arc

(5, 8)

]

<120

72, 3- 5- 8- 3-

1-Cycle Nexus with Weak Arc

( 4,15)

(]

.140

73.  3— 4-15- 3-

1-Cycle Nexus with Weak Arc

(5,9

.150

74. 3= 5~ 9- 3~
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1-Cycle Nexus with Weak Arc (15, 3) = .170
75. 3= 5-15- 3-

3~Cyele Nexus with Weak Arc (7, 3) = .220
76. 3- 7- 3-

77. 3= 4- 7- 3~

78. 3~ 5- 7- 3-

1-Cycle Nexus with Weak Arc ( 4,10) = 220
79. 3-4-10- 3-

6-Cycle Nexus with Weak Arc ( 8, 3) = .340
80. 3— 7- 8- 3-

81. 3-13- 8 3-

82. 3~ 4- 7- 8- 3-

83. 3~ 4-13- 8- 3-

84, 3- 5-7- 8- 3-

85. 3- 5-13~ 8- 3-

2~Cycle Nexus with Weak Arc ( 3, 7) = .370
86. 3- 7-11- 3~

87. 3— 7-16~ 3-

3~Cycle Nexus with Weak Arc (14,11) = .370
88. 3-14-11- 3-

89. 3~ 4-14-11- 3~

90. 3- 5-14-11- 3-

6-Cycle Nexus with Weak Arc (16, 3) = .410
91, 3-13-16- 3~

92. 3~ 4~ 7-16- 3~

93. 3- 4-13~16~ 3-

94. 3~ 5-16- 3-

95, 3~ 5~ 7-16~ 3~

96. 3~ 5-13-16- 3-

2-Cycle Nexus with Weak Arc ( 7,11) = "~ .500
97. 3~ 4= 7-11- 3- '

98, 3- 5- 7-11- 3-

3-Cycle Nexus with Weak Arc (13, 6) = .510

99. 3~13- 6- 3-
100. 3~ 4-13- 6- 3~
101, 3~ 5-13- 6- 3-

43
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1-Cycle Nexus

with Weak

Arc

(5,10

.610

102, 3- 5-10-

1-Cycle Nexus

3~

with Weak

Arc

(9,

3

.650

103. 3- 9- 3-

1-Cycle Nexus

with Weak

Arc

(6,

3)

.650

104, 3-17- 6-

1-Cycle Nexus

3-

with Weak

Arc

(o,

3)

.680

105. 3-10- 3-

1-Cycle Nexus

with Weak

Arc

(3,14)

. 900

106. 3-14- 3~

2-Cycle Nexus

with Weak

Arc

( 3,13

.970

107. 3-13- 3-
108. 3~13-11-

1-Cycle Nexus

3-

with Weak

Arc

(12,

3)

1.060

109. 3- 5-12-

3-Cycle Nexus

33—

with Weak

Arc

(11,

1.320

110. 3-
111. 3-
112, 3~

5-11-

2-Cycle Nexus

4-13-11- 3-

3~

5-13-11-~ 3-

with Weak

Arc

(14,

3)

1.530

113, 3-
114. 3-

4~14-
5~14-

2-Cycle Nexus

3...
3_

with Weak

Arc

(13,

3)

3.380

115. 3-
116. 3-

4-13-
5-13-

1-Cycle Nexus

3_
3....

with Weak

Arc

(7,

3)

16,290

117. 3-17- 3-

1-Cycle Nexus

with Weak

Arc

(4,

3)

73.200

118. 3~ 4- 3~

1-Cycle Nexus

with Weak

Arc

(5,

3)

it

686.900

119. 3~ 5- 3~

R. E. ULANOWICZ
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APPENDIX B

Cycle Analyses (Perturbed Creek)

3~Cycle Nexus with Weak Arc ( 6, 3) _ .010
1. 3- 7- 6~ 3-

2. 3~ 4= 7- 6~ 3-

3. 3- 5- 7- 6~ 3-

3-Cycle Nexus with Weak Arc (10,11) = .010
4, 3-10-11- 3-

5. 3~ 4-10-11- 3~

6. 3- 5-10~-11- 3-

2-Cycle Nexus with Weak Arc ( 9,11) = .010
7. 3= 9-11- 3-

8. 3- 5- 9-11- 3-

1-Cycle Nexus with Weak Arc (17, 6) = .010
9, 3-17- 6- 3-

1~-Cycle Nexus with Weak Arc (11,11) = .010
10. 11-11-

1-Cycle Nexus with Weak Arc ( 5, 9) = .040
11. 3- 5- 9- 3-

3-Cycle Nexus with Weak Arec ( 8, 3) = .060
12, 3~ 7- 8- 3~

13. 3= 4~ 7- 8- 3~

14, 3~ 5- 7- 8- 3~

2-Cycle Nexus with Weak Arc ( 3, 13) = . 060
15. 3-13- 3-

16, 3-13-11- 3-

1-Cycle Nexus with Weak Are (17,11) = .060
17. 3-17-11- 3-

1-Cycle Nexus with Weak Arc (17, 8) = .060

18, 3~ 17- 8- 3-

45
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4~Cycle Nexus with Weak Arc (16, 3) .070
19. 3- 7-16- 3-

20. 3~ 4- 7-16- 3-

21. 3~ 5- 7-16- 3~

22, 3~ 5-16- 3-

1-Cycle Nexus with Weak Arc ( 4,10) .070
23. 3~ 4-10- 3-

1-Cycle Nexus with Weak Arc ( 3,14) .110
24, 3~14- 3~

2-Cycle Nexus with Weak Arc (14, 3) .160
25. 3- 4~14~ 3-

26, 3= 5=14~ 3-

1-Cycle Nexus with Weak Arc (12,11) .170
27. 3- 5-12~11~ 3-

1-Cycle Nexus with Weak Arc ( 9, 3) .180
28. 3- 9- 3-

2~-Cycle Nexus with Weak Arc (13, 3) .180
29, 3- 4-13- 3-

30. 3- 5-13- 3-

1-Cycle Nexus with Weak Arc ( 5,10) .190
31. 3= 5-10- 3-

1-Cycle Nexus with Weak Arc (10, 3) .210
32. 3~10- 3-

1-Cycle Nexus with Weak Arc ( 4,13) .330
33. 3= 4~13-11- 3-

1-Cycle Nexus with Weak Arc (13,11) .330
34, 3- 5-13-11- 3-

3-~Cycle Nexus with Weak Arc ( 7,11) .370
35. 3- 7-11- 3~

36. 3- 4= 7-11~ 3~

37. 3- 5- 7-11- 3~

1~Cycle Nexus with Weak Arc (15, 3) 470
38. 3= 5-15- 3-

R. E. ULANOWICZ
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1-Cycle Nexus with Weak Arc (11, 3) = . 540
39, 3- 5-11- 3-

1-Cycle Nexus with Weak Arc (12, 3) = .700
40. 3- 5-12- 3-

1-Cycle Nexus with Weak Arc { 5, 7) = 2.100
41, 3~ 5- 7- 3-

2-Cycle Nexus with Weak Arc ( 7, 3) = 4,690
42, 3- 7- 3-

43. 3= 4= 7~ 3-

1-Cycle Nexus with Weak Arc (17, 3) = 11.640
&4, 3- 17- 3-

1-Cycle Nexus with Weak Arc ( 4, 3) = 78.100
45. 3—- 4- 3~

1-Cycle Nexus with Weak Arc ( 5, 3) = 742.600

46, 3-

5- 3-






BOOK REVIEW

Michael Conrad, ADAPTABILITY: The Significance of Variability from
Molecule 10 Ecosystem, Plenum Press, 1983, 383 pp., $42.50

The author acknowledges in the preface that the writing of this book spanned
19 years, in more than 17 institutions, located in at least seven countries. The
potential reader, in thumbing through the volume, might wonder whether a
proportional commitment of time and energy 1s required to digest the work. Such
fears are hardly exaggerated—this book is not for the casual reader. The crucial
guestion, however, is whether perseverance on the part of -the reader will be
rewarded.

The central thesis is rather simple, but nonetheless profound. Biological
dypamics are usually described using mathematical tools developed in the
physical sciences, where variations on an underlying principle are considered
noise to be discarded. Many biologists are comvinced that it is wrong to neglect
such variability, and theoreticians such as Ashby, Atlan, and Prigogine have
highlighted the importance of variability in developing systems. Conrad goes
further to contend that vatiability is the fundameniol object from which dynamics
(or more primitively, state transitions) are inferred.

If Conrad is correct in his assertjon, then society needs to reconsider the ways
in which it plans for the future. The designs of man are predominantly concerned
with predictability and efficiency at the necessary expense of variability. But
designs that are successful in achieving high efficiency are ultimately doomed to
fail because they lack the requisiie variability to deal with inevitable stochastic
zvents.

If this seems rather self-evident to anyone with a tolerant frame of mind, one
need not look far to find evidence of those who are blissfully unaware of such a
paradox. For example, one reads accounts of efforts to simulate inielligence
algonithmically on machines of high reliability and precision. Conrad points out
the crucial role that stochasticity, unreliability, and imprecision play in the
workings of the brain and in the development of true intelligence. He shows how
the “gradual transformability” necessary for intelligence is impossible with the
“nondecomposable™ systems in use today. thus implving that the present at-
tempts are akin to earlier efforts to realize perpetual motion. Of course, the
number of persons concerned with astificial intelligence pales in comparison to
the legion of political and economic ideologues who would impress their precise
visions of an efficient society upon the world!

MATHEMATICAL BIOSCIENCES 67:153- 154,
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Familiar tools, such as probabilities, entropies, and conditional entropies are
used to give concrete mathematical expression to the different forms of variabil- -
ity. The algebra expressing the relationships among these forms is not tedious.

If the book bears upon such weighty and exciting matters using only inter-
mediate level mathematics, what, then, makes it so excruciatingly difficult to
digest? In' my opinion the author tries to cover too much in one volume. He is
understandably enamored of the generality of his thesis and is anxious to
demonstrate its app].icabih'ty to a wide range of systems extending “from
molecule to ecosystem.” To do this. he finds it necessary to create a seemmgly

endless array of verbal concepts and mathematical symbols.

To further complicate matters, there is simply no room to present enough
background. material on thermodynamics, information theory, genetics, evolu-
‘tion, physiology, ecology, molecular biology, and cybernetics, so the author
presupposes that the reader is fluent in these fields. Therefore, anyone lacking
depth in all these disciplines (and that includes virtually everyone) is apt to lose
patience with the author at some point along the way.

“Needless to say, any formalism which is capable of coping with the full
complexity of adaptability processes in nature must itself be complex,” the
author warns in the preface. But 1 strongly suspect that the significance of
adapuability could be more effectively impressed upon the reader without having
to consider “the full complexity.” One can only wish that the author had
rounded out a score of years and taken the time to ruthlessly prune the
manuscript into a more efficient text. (But in all fairmess the present form is at
least self-consistent with the author’s caution against overemphasis on design.)

Lest anvone get the wrong impression, I regard Michael Conrad as a strong
contributor to the inchoate domain of fe’theoretical biclogy. Anyone in the field
who is unwilling to tease out the author’s insights from among the welter of
definitions is likely to be at a disadvantage in the exciting debates that loom in
the pear future. If only someone could convince-Professor Conrad to be a little
less self-consistent!
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